Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon
Abstract
1. Introduction
2. Methods
2.1. M. gaditana Growth Conditions, Concentrate, and Characterization
2.2. Experimental Diets and Fish
- -
- Weight gain (%) = 100 [(W2 − W1)/W1]where W2 = final weight and W1 = initial weight of fish
- -
- Specific growth rate (SGR, %/day) =100 × (ln W2 − ln W1)/feeding days where ln is the natural logarithm, W1 = initial weight and W2 = final weight of fish.
- -
- Feed conversion ratio (FCR) = feed consumed/ biomass increase.
- -
- Survival rate (SR%) = (final fish number/initial fish number) × 100.
- -
- Feed intake (g/day/individual) = total feed intake/(days × number of fish)
- -
- The Fulton’s condition factor (K) of the experimental fish was calculated as: K = 100 W/L3 [48] where W = weight of the fish in grams and L = total length of the fish in centimeters.
2.3. Serum and Fish Fillet Sampling
2.4. Anti-Piscirickettsia salmonis Assay
2.5. Statistical Analysis
3. Results
3.1. Mg Concentrate Characterization
3.2. Fish Growth Performance Indices
3.3. Salmon Fillets Fatty Acid Retention
3.4. Effect of M. gaditana in Anti-P. salmonis Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SERNAPESCA. Informe Sobre Uso de Antimicrobianos en la Salmonicultura Nacional. Subdirección de Acuicultura, Departamento de Salud Animal. 2022. Available online: http://www.sernapesca.cl/sites/default/files/informe_sobre_uso_de_antimicrobianos_en_la_salmonicultura_nacional_ano_2021.pdf (accessed on 3 January 2025).
- SERNAPESCA. Informe con Antecedentes Sanitarios de Agua Dulce y Mar año, 1er Semestre 2023. 2023. Available online: https://www.sernapesca.cl/app/uploads/2023/12/Informe-Sanitario-1S-2023-Publicacion-002.pdf (accessed on 3 January 2025).
- Quiñones, R.A.; Fuentes, M.; Montes, R.M.; Soto, D.; León-Muñoz, J. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 2019, 11, 375–402. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Ivanova, L.; Shah, S.Q.A.; Sørum, H.; Tomova, A. Freshwater salmon aquaculture in Chile and transferable antimicrobial resistance. Environ. Microbiol. 2020, 22, 559–563. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Cabello, F.; Good, C.M.; Lunestad, B.T. Veterinary drug use in United States net pen Salmon aquaculture: Implications for drug use policy. Aquaculture 2020, 518, 734820. [Google Scholar] [CrossRef]
- Ramírez, C.; Gutiérrez, M.S.; Venegas, L.; Sapag, C.; Araya, C.; Caruffo, M.; López, P.; Reyes-Jara, A.; Toro, M.; González-Rocha, G.; et al. Microbiota composition and susceptibility to florfenicol and oxytetracycline of bacterial isolates from mussels (Mytilus spp.) reared on different years and distance from salmon farms. Environ. Res. 2022, 204, 112068. [Google Scholar] [CrossRef]
- Lozano, I.; Díaz, N.F.; Muñoz , S.; Riquelme, C. Antibiotics in Chilean Aquaculture: A Review. Antibiot. Use Anim. 2018, 3, 25–44. [Google Scholar] [CrossRef]
- Millanao, A.R.; Barrientos-Schaffeld, C.; Siegel-Tike, C.D.; Tomova, A.; Ivanova, L.; Godfrey, H.P.; Dölz, H.J.; Buschmann, A.H.; Cabello, F.C.; Millanao, A.R.; et al. Antimicrobial resistance in Chile and The One Health paradigm: Dealing with threats to human and veterinary health resulting from antimicrobial use in salmon aquaculture and the clinic. Rev. Chil. Infectol. 2018, 35, 299–308. [Google Scholar] [CrossRef]
- Lozano-Muñoz, I.; Wacyk, J.; Kretschmer, C.; Vásquez-Martínez, Y.; Cortez-San Martin, M. Antimicrobial resistance in Chilean marine-farmed salmon: Improving food safety through One Health. One Health 2021, 12, 100219. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Cvitanich, J.D.; Garate n, O.; Smith, C.E. The isolation of a rickettsia-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J. Fish Dis. 1991, 14, 121–145. [Google Scholar] [CrossRef]
- Sandoval, R.; Oliver, C.; Valdivia, S.; Valenzuela, K.; Haro, R.E.; Sánchez, P.; Olavarría, V.H.; Valenzuela, P.; Avendaño-Herrera, R.; Romero, A. Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis. FEMS Microbiol. Lett. 2016, 363, fnw102. [Google Scholar] [CrossRef]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 2022, 29, 11054–11075. [Google Scholar] [CrossRef] [PubMed]
- Mardones, F.O.; Paredes, F.; Medina, M.; Tello, A.; Valdivia, V.; Ibarra, R.; Correa, J.; Gelcich, S. Identification of research gaps for highly infectious diseases in aquaculture: The case of the endemic Piscirickettsia salmonis in the Chilean salmon farming industry. Aquaculture 2018, 482, 211–220. [Google Scholar] [CrossRef]
- Contreras-Lynch, S.; Smith, P.; Olmos, P.; Loy, M.E.; Finnegan, W.; Miranda, C.D. A Novel and Validated Protocol for Performing MIC Tests to Determine the Susceptibility of Piscirickettsia salmonis Isolates to Florfenicol and Oxytetracycline. Front. Microbiol. 2017, 8, 1255. [Google Scholar] [CrossRef]
- Cartes, C.; Isla, A.; Lagos, F.; Castro, D.; Muñoz, M.; Yañez, A.; Haussmann, D.; Figueroa, J. Search and analysis of genes involved in antibiotic resistance in Chilean strains of Piscirickettsia salmonis. J. Fish Dis. 2016, 40, 1025–1039. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P. Salmon aquaculture, Piscirickettsia salmonis virulence, and one health: Dealing with harmful synergies between heavy antimicrobial use and piscine and human health. Aquaculture 2019, 507, 451–456. [Google Scholar] [CrossRef]
- Saavedra, J.; Hernandez, N.; Osses, A.; Castillo, A.; Cancino, A.; Grothusen, H.; Navas, E.; Henriquez, P.; Bohle, H.; Bustamante, F.; et al. Prevalence, geographic distribution and phenotypic differences of Piscirickettsia salmonis EM-90-like isolates. J. Fish Dis. 2017, 40, 1055–1063. [Google Scholar] [CrossRef]
- Henríquez, P.; Kaiser, M.; Bohle, H.; Bustos, P.; Mancilla, M. Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J. Fish Dis. 2016, 39, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Arnemo, M.; Kavaliauskis, A.; Andresen, A.M.S.; Bou, M.; Berge, G.M.; Ruyter, B.; Gjøen, T. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 2017, 43, 1065–1080. [Google Scholar] [CrossRef]
- Miao, L.H.; Remø, S.C.; Espe, M.; Philip, A.J.P.; Hamre, K.; Fjelldal, P.G.; Skjærven, K.; Holen, E.; Vikeså, V.; Sissener, N.H. Dietary plant oil supplemented with arachidonic acid and eicosapentaenoic acid affects the fatty acid composition and eicosanoid metabolism of Atlantic salmon (Salmo salar L.) during smoltification. Fish Shellfish Immunol. 2022, 123, 194–206. [Google Scholar] [CrossRef]
- Andresen, A.M.S.; Lutfi, E.; Ruyter, B.; Berge, G.; Gjøen, T. Interaction between dietary fatty acids and genotype on immune response in Atlantic salmon (Salmo salar) after vaccination: A transcriptome study. PLoS ONE 2019, 14, e0219625. [Google Scholar] [CrossRef] [PubMed]
- Roques, S.; Deborde, C.; Richard, N.; Skiba-Cassy, S.; Moing, A.; Fauconneau, B. Metabolomics and fish nutrition: A review in the context of sustainable feed development. Rev. Aquac. 2020, 12, 261–282. [Google Scholar] [CrossRef]
- Tocher, D.R.; Bell, J.G.; Dick, J.R.; Henderson, R.J.; McGhee, F.; Michell, D.; Morris, P.C. Polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation and the effects of dietary linseed and rapeseed oils. Fish Physiol. Biochem. 2000, 23, 59–73. [Google Scholar] [CrossRef]
- Bou, M.; Berge, G.M.; Baeverfjord, G.; Sigholt, T.; Østbye, T.-K.; Romarheim, O.H.; Hatlen, B.; Leeuwis, R.; Venegas, C.; Ruyter, B. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L.): Effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br. J. Nutr. 2017, 117, 30–47. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef]
- Sissener, N.H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 2018, 221, jeb161521. [Google Scholar] [CrossRef] [PubMed]
- Neumann, U.; Derwenskus, F.; Gille, A.; Louis, S.; Schmid-Staiger, U.; Briviba, K.; Bischoff, S.C. Bioavailability and safety of nutrients from the microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 mice. Nutrients 2018, 10, 965. [Google Scholar] [CrossRef]
- Lozano-Muñoz, I.; Muñoz, S.; Díaz, N.F.; Medina, A.; Bazaes, J.; Riquelme, C. Nutritional Enhancement of Farmed Salmon Meat for Human Healthvia Non-GMO Nannochloropsis gaditana: Eicosapentaenoic Acid (EPA, 20:5n-3), Docosapentaenoic Acid (DPA, 22:5n-3) and Vitamin D3. Molecules 2020, 25, 4615. [Google Scholar] [CrossRef]
- Sukarni; Sudjito; Hamidi, N.; Yanuhar, U.; Wardana, I.N.G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int. J. Energy Environ. Eng. 2014, 5, 279–290. [Google Scholar] [CrossRef]
- Ljubic, A.; Jacobsen, C.; Holdt, S.L.; Jakobsen, J. Microalgae Nannochloropsis oceanica as a future new natural source of vitamin D3. Food Chem. 2020, 320, 126627. [Google Scholar] [CrossRef]
- Mitra, M.; Patidar, S.K.; George, B.; Shah, F.; Mishra, S. A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res. 2015, 8, 161–167. [Google Scholar] [CrossRef]
- Riveros, K.; Sepulveda, C.; Bazaes, J.; Marticorena, P.; Riquelme, C.; Acién, G. Overall development of a bioprocess for the outdoor production of Nannochloropsis gaditana for aquaculture. Aquac. Res. 2018, 49, 165–176. [Google Scholar] [CrossRef]
- Lock, E.-J.; Waagbø, R.; Bonga, S.W.; Flik, G. The significance of vitamin D for fish: A review. Aquac. Nutr. 2010, 16, 100–116. [Google Scholar] [CrossRef]
- Fernández, I.; Gavaia, P.; Darias, M.J.; Gisbert, E. Fat-Soluble Vitamins in Fish: A Transcriptional Tissue-Specific Crosstalk that Remains to be Unveiled and Characterized. In Emerging Issues in Fish Larvae Research; Yúfera, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 159–208. ISBN 978-3-319-73244-2. [Google Scholar]
- Korf, H.; Decallonne, B.; Mathieu, C. Vitamin D for infections. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Gombart, A. The Antibiotic Effects of Vitamin D. Endocr. Metab. Immune Disord.-Drug Targets 2014, 14, 255–266. [Google Scholar] [CrossRef]
- Golpour, A.; Bereswill, S.; Heimesaat, M.M. Antimicrobial and immune-modulatory effects of vitamin D provide promising antibiotics-independent approaches to tackle bacterial infections—Lessons learnt from a literature survey. Eur. J. Microbiol. Immunol. 2019, 9, 80–87. [Google Scholar] [CrossRef]
- Analysis of Official Analytical Chemists International. AOAC Official Method 954.02 Acid Hydrolysis, Baked Goods & Pet Food. 2006. Available online: https://www.aoac.org (accessed on 3 January 2025).
- Analysis of Official Analytical Chemists International. AOAC Official Method 920.39 Crude Fat in Animal Feed. 2000. Available online: https://www.aoac.org (accessed on 3 January 2025).
- Analysis of Official Analytical Chemists International. AOAC Official Method 996.06 Analysis of Methyl esters by Capillary GLC. 2012. Available online: https://www.aoac.org (accessed on 3 January 2025).
- Analysis of Official Analytical Chemists International. Protein (crude) in animal feed and pet food 984.13. Off. Methods Anal. Off. Anal. Chem. Int. 1995, 1, 30–31. [Google Scholar]
- Analysis of Official Analytical Chemists International. AOAC Official Method 942.05 Determinaton of Ash in Animal feed. 2012, 1392–1397. Available online: https://www.aoac.org (accessed on 3 January 2025).
- Analysis of Official Analytical Chemists International. AOAC Official Method 934.01 Loss on Drying (Moisture) at 95–100 °C for Feeds 2000. Available online: https://www.aoac.org (accessed on 3 January 2025).
- EN 12821 EN 12821:2009; Foodstuffs—Determination of Vitamin D by High Performance Liquid Chromatography. Measurement of Cholecalciferol (D3) or Ergocalciferol (D2). National Standards Authority of Ireland: Dublin, Ireland, 2009.
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Reid, D.P.; Szanto, A.; Glebe, B.; Danzmann, R.G.; Ferguson, M.M. QTL for body weight and condition factor in Atlantic salmon (Salmo salar): Comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity 2005, 94, 166–172. [Google Scholar] [CrossRef]
- Topic Popovic, N.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Persin Berakovic, A.; Sauerborn Klobucar, R. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564. [Google Scholar] [CrossRef]
- Directiva 210/63. Directiva 2010/63/UE del parlamento europeo y del consejo de 22 de septiembre de 2010 relativa a la protección de los animales utilizados para fines científicos (Texto pertinente a efectos del EEE). D. Of. Comunidades Eur. 2010, 20, 33–79.
- AOAC. AOAC Official Method 948.15, Fat (crude) in Seafood. Acid Hydrolysis Method 1948. Available online: https://www.aoac.org (accessed on 3 January 2025).
- AOAC. AOAC Official Method 938.08, Ash of Seafood 1938. Available online: https://www.aoac.org (accessed on 3 January 2025).
- Yañez, A.; Valenzuela, K.; Silva, H.; Retamales, J.; Romero, A.; Enriquez, R.; Figueroa, J.; Claude, A.; Gonzalez, J.; Avendaño-Herrera, R.; et al. Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Dis. Aquat. Organ. 2012, 97, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Yañez, A.J.; Silva, H.; Valenzuela, K.; Pontigo, J.P.; Godoy, M.; Troncoso, J.; Romero, A.; Figueroa, J.; Carcamo, J.G.; Avendaño-Herrera, R. Two novel blood-free solid media for the culture of the salmonid pathogen Piscirickettsia salmonis. J Fish Dis 2013, 36, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Dang, V.T.; Speck, P.; Doroudi, M.; Smith, B.; Benkendorff, K. Variation in the antiviral and antibacterial activity of abalone Haliotis laevigata, H. rubra and their hybrid in South Australia. Aquaculture 2011, 315, 242–249. [Google Scholar] [CrossRef]
- Alves, S.P.; Mendonça, S.H.; Silva, J.L.; Bessa, R.J.B. Nannochloropsis oceanica, a novel natural source of rumen-protected eicosapentaenoic acid (EPA) for ruminants. Sci. Rep. 2018, 8, 10269. [Google Scholar] [CrossRef]
- Gong, Y.; Sørensen, S.L.; Dahle, D.; Nadanasabesan, N.; Dias, J.; Valente, L.M.P.; Sørensen, M.; Kiron, V. Approaches to improve utilization of Nannochloropsis oceanica in plant-based feeds for Atlantic salmon. Aquaculture 2020, 522, 735122. [Google Scholar] [CrossRef]
- Nagappan, S.; Das, P.; AbdulQuadir, M.; Thaher, M.; Khan, S.; Mahata, C.; Al-Jabri, H.; Vatland, A.K.; Kumar, G. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021, 341, 1–20. [Google Scholar] [CrossRef]
- Sørensen, S.L.; Ghirmay, A.; Gong, Y.; Dahle, D.; Vasanth, G.; Sørensen, M.; Kiron, V. Growth, Chemical Composition, Histology and Antioxidant Genes of Atlantic Salmon (Salmo salar) Fed Whole or Pre-Processed Nannochloropsis oceanica and Tetraselmis sp. Fishes 2021, 6, 23. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, L.; Li, M.X.; Shen, J.; Liu, X.D.; Xiao, Z.G.; Wu, D.L.; Ho, I.H.T.; Wu, J.C.Y.; Cheung, C.K.Y.; et al. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDIA3 receptor in gastric epithelial cells. Autophagy 2019, 15, 707–725. [Google Scholar] [CrossRef]
- Almoudi, M.M.M.; Hussein, A.S.; Abu Hassan, M.I.; Al Talib, H.; Khan, H.B.S.G.; Nazli, S.A.B.; Effandy, N.A.E.B. The antibacterial effects of vitamin D3 against mutans streptococci: An in vitro study. Eur. Oral Res. 2021, 55, 8–15. [Google Scholar] [CrossRef]
- Liu, J.; Shao, R.; Lan, Y.; Liao, X.; Zhang, J.; Mai, K.; Ai, Q.; Wan, M. Vitamin D3 protects turbot (Scophthalmus maximus L.) from bacterial infection. Fish Shellfish Immunol. 2021, 118, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega- 3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Bastías, J.M.; Balladares, P.; Acuña, S.; Quevedo, R.; Muñoz, O. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets. PLoS ONE 2017, 12, e0180993. [Google Scholar] [CrossRef] [PubMed]
- Toshkova-Yotova, T.; Georgieva, A.; Iliev, I.; Alexandrov, S.; Ivanova, A.; Pilarski, P.; Toshkova, R. Antitumor and antimicrobial activity of fatty acids from green microalga Coelastrella sp. BGV. S. Afr. J. Bot. 2022, 151, 394–402. [Google Scholar] [CrossRef]
- Domb, A.J.; Kunduru, K.R.; Farah, S. Antimicrobial Materials for Biomedical Applications; Royal Society of Chemistry: London, UK, 2019; ISBN 978-1-78801-854-8. [Google Scholar]
- Ibrahim, D.; Abd El-Hamid, M.I.; Al-Zaban, M.I.; ElHady, M.; El-Azzouny, M.M.; ElFeky, T.M.; Al Sadik, G.M.; Samy, O.M.; Hamed, T.A.; Albalwe, F.M.; et al. Impacts of Fortifying Nile Tilapia (Oreochromis niloticus) Diet with Different Strains of Microalgae on Its Performance, Fillet Quality and Disease Resistance to Aeromonas hydrophila Considering the Interplay between Antioxidant and Inflammatory Response. Antioxidants 2022, 11, 2181. [Google Scholar] [CrossRef]
- Guzmán, F.; Wong, G.; Román, T.; Cárdenas, C.; Alvárez, C.; Schmitt, P.; Albericio, F.; Rojas, V. Identification of Antimicrobial Peptides from the Microalgae Tetraselmis suecica (Kylin) Butcher and Bactericidal Activity Improvement. Mar. Drugs 2019, 17, 453. [Google Scholar] [CrossRef]
- Bahi, A.; Ramos-Vega, A.; Angulo, C.; Monreal-Escalante, E.; Guardiola, F.A. Microalgae with immunomodulatory effects on fish. Rev. Aquac. 2023, 15, 1522–1539. [Google Scholar] [CrossRef]
- Tülay Çağatay, I.; Özbaş, M.; Yilmaz, H.E.; Ali, N. Determination of Antibacterial Effect of Nannochloropsis oculata Against Some Rainbow Trout Pathogens. Nat. Eng. Sci. 2021, 6, 87–95. [Google Scholar] [CrossRef]
- Putra, Y.; Mustikasari, I.; Pangestuti, R.; Rahmadi, P.; Siahaan, E.A. Fatty acid profiles and biological activity of Nannochloropsis oculata and Isochrysis galbana, clone t-ISO. IOP Conf. Ser. Earth Environ. Sci. 2022, 1083, 012079. [Google Scholar] [CrossRef]
- Martinez-Rubio, L.; Morais, S.; Evensen, Ø.; Wadsworth, S.; Vecino, J.G.; Ruohonen, K.; Bell, J.G.; Tocher, D.R. Effect of functional feeds on fatty acid and eicosanoid metabolism in liver and head kidney of Atlantic salmon (Salmo salar L.) with experimentally induced Heart and Skeletal Muscle Inflammation. Fish Shellfish Immunol. 2013, 34, 1533–1545. [Google Scholar] [CrossRef]
- Fritsche, K.L. The Science of Fatty Acids and Inflammation. Adv. Nutr. 2015, 6, 293S–301S. [Google Scholar] [CrossRef]
- Lamon-Fava, S.; So, J.; Mischoulon, D.; Ziegler, T.R.; Dunlop, B.W.; Kinkead, B.; Schettler, P.J.; Nierenberg, A.A.; Felger, J.C.; Maddipati, K.R.; et al. Dose- and time-dependent increase in circulating anti-inflammatory and pro-resolving lipid mediators following eicosapentaenoic acid supplementation in patients with major depressive disorder and chronic inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2021, 164, 102219. [Google Scholar] [CrossRef]
- Pussinen, P.J.; Kopra, E.; Pietiäinen, M.; Lehto, M.; Zaric, S.; Paju, S.; Salminen, A. Periodontitis and cardiometabolic disorders: The role of lipopolysaccharide and endotoxemia. Periodontology 2000 2022, 89, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Severín, J.; Travisany, D.; Maass, A.; Cambiazo, V.; Chávez, F.P. Global Proteomic Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular Infection. Microorganisms 2020, 8, 1845. [Google Scholar] [CrossRef] [PubMed]
- Marín-Palma, D.; Taborda, N.A.; Urcuqui-Inchima, S.; Hernandez, J.C. Inflamación y respuesta inmune innata: Participación de las lipoproteínas de alta densidad. Iatreia 2017, 30, 423–435. [Google Scholar]
- Panpetch, W.; Sawaswong, V.; Chanchaem, P.; Ondee, T.; Dang, C.P.; Payungporn, S.; Tumwasorn, S.; Leelahavanichkul, A. Candida Administration Worsens Cecal Ligation and Puncture-Induced Sepsis in Obese Mice Through Gut Dysbiosis Enhanced Systemic Inflammation, Impact of Pathogen-Associated Molecules From Gut Translocation and Saturated Fatty Acid. Front. Immunol. 2020, 11, 561652. [Google Scholar]
- Keller, R.; Fischer, W.; Keist, R.; Bassetti, S. Macrophage response to bacteria: Induction of marked secretory and cellular activities by lipoteichoic acids. Infect. Immun. 1992, 60, 3664–3672. [Google Scholar] [CrossRef]
- Namgaladze, D.; Brüne, B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2016, 1861, 1796–1807. [Google Scholar] [CrossRef]
Ingredient (%) | Control | Mg (1%) | Mg (10%) |
---|---|---|---|
Fish meal | 28.00 | 28.00 | 28.00 |
Soybean (concentrate) | 16.64 | 15.64 | 14.90 |
Whole wheat | 14.00 | 14.00 | |
Wheat meal | 7.00 | ||
Fish oil | 19.70 | 19.70 | 18.40 |
Corn gluten | 10.00 | 10.00 | 10.00 |
Viscera meal (chicken) | 10.00 | 10.00 | 10.00 |
Microchloropsis gaditana (Mg) | 1.00 | 10.00 | |
Monocalcium phosphate | 1.00 | 1.00 | 1.00 |
Mineral-vitamin premix | 0.38 | 0.38 | 0.38 |
L-Lysine | 0.21 | 0.21 | 0.27 |
DL-Methionine | 0.07 | 0.07 | 0.08 |
Chemical composition | |||
Protein, % | 45.76 | 45.96 | 44.38 |
Crude fat, % | 19.54 | 19.61 | 19.66 |
Ash, % | 9.84 | 10.03 | 11.08 |
Fiber, % | 1.35 | 1.11 | 1.38 |
Moisture, % | 6.68 | 6.28 | 6.54 |
Sodium % | 0.38 | 0.40 | 1.08 |
Calcium % | 1.10 | 1.11 | 1.21 |
Zinc, ppm | 176 | 216 | 180 |
Vitamin D3 µg/100 g 1 | 15.40 ± 4.0 | 13.40 ± 3.50 | 12.80 ± 3.30 |
Fatty acid profile 2 | |||
Myristic | 6.21 | 6.23 | 6.32 |
Myristoleic | 0.06 | 0.05 | 0.06 |
Palmitic | 17.51 | 17.86 | 17.75 |
Palmitoleic | 7.13 | 7.21 | 7.60 |
Margaric | 0.39 | 0.40 | 0.29 |
Stearic | 3.71 | 3.80 | 3.66 |
Elaidic | 0.18 | 0.18 | 0.19 |
Oleic | 12.43 | 12.56 | 12.25 |
Vaccenic | 3.18 | 3.26 | 3.09 |
Linoleic | 4.30 | 4.34 | 4.31 |
Linolenic | 1.05 | 1.05 | 1.00 |
Gamma-Linolenic | 0.21 | 0.21 | 0.22 |
Stearidonic | 2.28 | 2.22 | 2.16 |
Arachidic | 0.34 | 0.35 | 0.33 |
Gonodic | 1.70 | 1.71 | 1.60 |
Homo-α-linolenic | 0.08 | 0.08 | 0.09 |
Arachidonic | 0.70 | 0.74 | 0.88 |
Eicosapentaenoic (EPA) | 12.52 | 12.51 | 12.86 |
Behenoic | 0.16 | 0.17 | 0.17 |
Erucic | 0.34 | 0.34 | 0.33 |
C22:2n6 | 0.59 | 0.62 | 0.58 |
Adrenic | 0.09 | 0.09 | 0.11 |
Docosapentaenoic (DPA) | 1.62 | 1.62 | 1.53 |
Docosahexaenoic (DHA) | 6.73 | 6.60 | 6.31 |
Lignoceric | 0.10 | 0.09 | 0.10 |
Nervonic | 0.44 | 0.46 | 0.45 |
Moisture, % | 4.44 |
Crude protein, % | 36.54 |
Ash, % | 21.26 |
Crude fat, % | 4.18 |
Vitamin D3 µg/100g | <0.25 |
Calcium, % | 4.11 |
Sodium, % | 5.40 |
Zinc, ppm | 171 |
Na/K ratio | 5.40 |
Fatty Acid Profile (as percent of total fatty acids) | |
Myristic | 7.65 |
Myristoleic | 0.16 |
C15:0 | 0.28 |
Palmitic | 17.23 |
Palmitoleic | 17.93 |
Stearic | 0.33 |
Elaidic | 0.19 |
Oleic | 3.87 |
Vaccenic | 0.37 |
Linoleic | 3.17 |
Linolenic | 0.17 |
Arachidonic (ARA) | 3.92 |
Eicosapentaenoic (EPA) | 26.73 |
Docosahexaenoic (DHA) | 0.07 |
Lignoceric | 0.20 |
n-3/n-6 PUFAs | 3.56 |
ARA/EPA | 0.15 |
Mg Levels (%) | |||||
---|---|---|---|---|---|
Control (0.0) | 1.0 | p Value | 10.0 | p Value | |
Initial weight (g) | 105.21 ± 0.88 | 105.02 ± 2.00 | 0.970 | 103.20 ± 0.55 | 0.173 |
Final weight (g) | 208.19 ± 1.9 | 218.98 ± 6.13 * | 0.023 | 219.56 ± 10.59 * | 0.003 |
Final length (cm) | 26.09 ± 0.10 | 26.06 ± 0.32 | 26.26 ± 0.65 | ||
Weight gain (%) | 102.99 ± 1.4 | 113.97 ± 8.03 | 0.053 | 116.36 ± 11.0 * | 0.005 |
1 Specific growth rate (%/day) | 1.39 ± 0.01 | 1.49 ± 0.09 | 0.099 | 1.59 ± 0.01 * | 0.008 |
Condition factor | 1.13 ± 0.01 | 1.15 ± 0.007 | 0.168 | 1.14 ± 0.01 | 0.485 |
1 Feed conversion ratio | 1.11 ± 0.03 | 1.45 ± 0.24 | 0.145 | 0.93 ± 0.26 | 0.526 |
1 Survival rate (%) | 97.33 ± 2.30 | 98.66 ± 2.30 | 0.716 | 98.66 ± 2.30 | 0.716 |
1 Feed Intake (%BW/day) | 1.37 ± 0.03 | 1.57 ± 0.002 | 0.580 | 1.34 ± 0.44 | 0.986 |
Mg Levels (%) | |||||
---|---|---|---|---|---|
Control (0.0) | 1.0 | p Value | 10.0 | p Value | |
Moisture, % | 74.84 ± 0.17 | 75.33 ± 0.99 | 0.561 | 74.54 ± 0.39 | 0.799 |
Crude protein, % | 19.07 ± 0.61 | 19.33 ± 0.80 | 0.875 | 19.21 ± 0.78 | 0.960 |
Ash, % | 2.49 ± 0.18 | 2.57 ± 0.19 | 0.839 | 2.55 ± 0.20 | 0.920 |
Crude fat, % | 4.22 ± 0.69 | 3.61 ± 0.24 | 0.403 | 4.30 ± 0.74 | 0.981 |
Vitamin D3 (µg/100 g) | 2.58 ± 0.38 | 3.02 ± 0.68 | 0.776 | 5.32 ± 1.28 * | 0.017 |
1 Fatty Acid Profile | |||||
Myristic | 4.42 ± 0.07 | 4.34 ± 0.04 | 0.334 | 4.48 ± 0.08 | 0.506 |
Palmitic | 15.68 ± 0.16 | 15.15 ± 0.09 | 0.028 | 15.29 ± 0.28 | 0.850 |
Palmitoleic | 6.00 ± 0.11 | 6.01 ± 0.01 | 0.998 | 6.26 ± 0.10 * | 0.019 |
Stearic | 4.03 ± 0.03 | 3.90 ± 0.04 * | 0.007 | 3.80 ± 0.02 * | <0.000 |
Oleic | 16.85 ± 1.01 | 15.99 ± 0.09 | 0.255 | 15.63 ± 0.46 | 0.104 |
Vaccenic | 3.57 ± 0.03 | 3.61 ± 0.03 | 0.259 | 3.67 ± 0.01 * | 0.008 |
Linoleic | 6.71 ± 0.38 | 6.38 ± 0.08 | 0.250 | 6.15 ± 0.15 | 0.056 |
Linolenic | 1.33 ± 0.09 | 1.28 ± 0.25 | 0.534 | 1.24 ± 0.03 | 0.153 |
C20:1n11 | 1.24 ± 0.06 | 1.34 ± 0.02 | 0.050 | 1.56 ± 0.01 * | <0.000 |
Arachidonic (ARA) | 0.83 ± 0.02 | 0.83 ± 0.01 | 0.980 | 0.81 ± 0.03 | 0.544 |
Eicosapentaenoic (EPA) | 7.56 ± 0.24 | 7.94 ± 0.09 | 0.221 | 8.33 ± 0.38 * | 0.023 |
Erucic | 0.27 ± 0.00 | 0.28 ± 0.00 | 0.382 | 0.29 ± 0.00 * | 0.040 |
Cetoleic | 1.62 ± 0.08 | 1.70 ± 0.02 | 0.270 | 1.91 ± 0.07 * | 0.003 |
Docosapentaenoic (DPA) | 2.94 ± 0.13 | 3.15 ± 0.07 | 0.093 | 3.31 ± 0.10 * | 0.009 |
Docosahexanoic (DHA) | 11.87 ± 0.89 | 12.85 ± 0.74 | 0.233 | 11.83 ± 0.39 | 0.997 |
∑ n-3/n-6 | 2.96 ± 0.25 | 3.22 ± 0.10 | 0.063 | 3.24 ± 0.13 | 0.053 |
∑ n-6/n-3 | 0.339 ± 0.02 | 0.309 ± 0.01 | 0.171 | 0.308 ± 0.01 | 0.154 |
EPA + DHA | 19.43 ± 1.13 | 20.79 ± 0.65 | 0.217 | 20.16 ± 0.75 | 0.665 |
∑ n-6/EPA + DHA | 0.446 ± 0.04 | 0.403 ± 0.01 | 0.216 | 0.407 ± 0.01 | 0.274 |
ARA/EPA | 0.109 ± 0.001 | 0.104 ± 0.002 | 0.108 | 0.097 ± 0.002 * | 0.001 |
Saturated | 25.29 ± 0.19 | 24.50 ± 0.19 * | 0.010 | 24.75 ± 0.28 * | 0.045 |
Monounsaturated | 31.63 ± 1.04 | 30.93 ± 0.13 | 0.437 | 31.46 ± 0.71 | 0.937 |
Polyunsaturated | 34.16 ± 0.79 | 35.45 ± 0.45 | 0.104 | 34.80 ± 0.74 | 0.455 |
Antibacterial Activity (%) | Day 0 | Diet (Day 49) | ||||
Control | Mg 1 % | p Value | Mg 10 % | p Value | ||
45.44 ± 19.83 | 51.01 ± 45.93 | 66.68 ± 48.10 | 0.128 | 84.59 ± 17.03 * | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, N.; Muñoz, S.; Medina, A.; Riquelme, C.; Lozano-Muñoz, I. Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon. Life 2025, 15, 455. https://doi.org/10.3390/life15030455
Díaz N, Muñoz S, Medina A, Riquelme C, Lozano-Muñoz I. Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon. Life. 2025; 15(3):455. https://doi.org/10.3390/life15030455
Chicago/Turabian StyleDíaz, Nelson, Susana Muñoz, Alberto Medina, Carlos Riquelme, and Ivonne Lozano-Muñoz. 2025. "Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon" Life 15, no. 3: 455. https://doi.org/10.3390/life15030455
APA StyleDíaz, N., Muñoz, S., Medina, A., Riquelme, C., & Lozano-Muñoz, I. (2025). Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon. Life, 15(3), 455. https://doi.org/10.3390/life15030455