Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = Pil1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7084 KiB  
Article
Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets
by Qian Gao, Shuangshuang Bao, Yaqi Sun, Kaixin Zhou and Yan Lin
Genes 2025, 16(7), 832; https://doi.org/10.3390/genes16070832 - 17 Jul 2025
Viewed by 340
Abstract
Background: Dendritic cells (DCs) play an important role as a bridge between innate and adaptive immunity, and changes in gene expression of DCs during the immune response to Mycobacterium tuberculosis (M.tb) may affect the development of tuberculosis. Methods: Using systems biology [...] Read more.
Background: Dendritic cells (DCs) play an important role as a bridge between innate and adaptive immunity, and changes in gene expression of DCs during the immune response to Mycobacterium tuberculosis (M.tb) may affect the development of tuberculosis. Methods: Using systems biology methods, mRNA and miRNA expression profile data of DCs infected with M.tb were obtained. A total of 1398 differentially expressed mRNAs and 79 differentially expressed miRNAs were identified, and a corresponding miRNA–mRNA regulatory network was constructed using Cytoscape 3.9.1 software. The functional annotations and pathway classifications of the miRNA–mRNA network were identified using the DAVID tool. Then, the key pathway modules in the miRNA–mRNA network were screened and subjected to PPI network analysis to identify hub nodes. Subsequently the miRNA/mRNA axis was determined, validated by qRT-PCR, and evaluated through ROC curve analysis. Results: The TNF signaling pathway and the Tuberculosis pathway were key pathway modules, with miR-34a-3p/TNF and miR-190a-3p/IL1B being the greatest correlations with the two pathway modules. qRT-PCR results showed that IL1B and miR-190a-3p exhibited significant differences in both the H37Ra and BCG infection groups. The AUC of two factors (IL1B and miR-190a-3p) was 0.9561 and 0.9625, respectively, showing high sensitivity and specificity. Conclusions: Consequently, miR-190a-3p/IL1B might be a good candidate marker to characterize the immune response of DCs to M.tb and a transition signal from innate to adaptive immunity. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

31 pages, 11216 KiB  
Article
An Optimal Integral Fast Terminal Synergetic Control Scheme for a Grid-to-Vehicle and Vehicle-to-Grid Battery Electric Vehicle Charger Based on the Black-Winged Kite Algorithm
by Ishak Aris, Yanis Sadou and Abdelbaset Laib
Energies 2025, 18(13), 3397; https://doi.org/10.3390/en18133397 - 27 Jun 2025
Viewed by 444
Abstract
The utilization of electric vehicles (EVs) has grown significantly and continuously in recent years, encouraging the creation of new implementation opportunities. The battery electric vehicle (BEV) charging system can be effectively used during peak load periods, for voltage regulation, and for the improvement [...] Read more.
The utilization of electric vehicles (EVs) has grown significantly and continuously in recent years, encouraging the creation of new implementation opportunities. The battery electric vehicle (BEV) charging system can be effectively used during peak load periods, for voltage regulation, and for the improvement of power system stability within the smart grid. It provides an efficient bidirectional interface for charging the battery from the grid and discharging the battery into the grid. These two operation modes are referred to as grid-to-vehicle (G2V) and vehicle-to-grid (V2G), respectively. The management of power flow in both directions is highly complex and sensitive, which requires employing a robust control scheme. In this paper, an Integral Fast Terminal Synergetic Control Scheme (IFTSC) is designed to control the BEV charger system through accurately tracking the required current and voltage in both G2V and V2G system modes. Moreover, the Black-Winged Kite Algorithm is introduced to select the optimal gains of the proposed IFTS control scheme. The system stability is checked using the Lyapunov stability method. Comprehensive simulations using MATLAB/Simulink are conducted to assess the safety and efficacy of the suggested optimal IFTSC in comparison with IFTSC, optimal integral synergetic, and conventional PID controllers. Furthermore, processor-in-the-loop (PIL) co-simulation is carried out for the studied system using the C2000 launchxl-f28379d digital signal processing (DSP) board to confirm the practicability and effectiveness of the proposed OIFTS. The analysis of the obtained quantitative comparison proves that the proposed optimal IFTSC provides higher control performance under several critical testing scenarios. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 6879 KiB  
Article
Heteropolyacid-Based Poly(Ionic Liquid) Catalyst for Ultra-Deep and Recyclable Oxidative Desulfurization of Fuels
by Mengyue Chen, Tianqi Huang, Shuang Tong, Chao Wang and Ming Zhang
Catalysts 2025, 15(7), 622; https://doi.org/10.3390/catal15070622 - 24 Jun 2025
Viewed by 405
Abstract
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction [...] Read more.
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction parameters (e.g., temperature, catalyst dosage, and O/S molar ratio) were systematically investigated, as well as the catalytic mechanism. The typical sample C8-PIL@PW exhibited exceptional oxidative desulfurization (ODS) performance, achieving a sulfur removal of 99.2% for dibenzothiophene (DBT) without any organic solvent as extractant. Remarkably, the sulfur removal could still retain 89% after recycling five times without regeneration. This study provides a sustainable and high-efficiency catalyst for ODS, offering insights into fuel purification strategies. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Figure 1

20 pages, 6424 KiB  
Article
Combined Multi-Omics and Co-Expression Network Analyses Uncover the Pigment Accumulation Mechanism of Orange-Red Petals in Brassica napus L.
by Ledong Jia, Shengting Li, Chao Zhang, Lijun Zeng, Shulin Shen, Nengwen Yin, Huiyan Zhao, Zhanglin Tang, Cunmin Qu, Jiana Li and Zhiyou Chen
Biology 2025, 14(6), 693; https://doi.org/10.3390/biology14060693 - 13 Jun 2025
Viewed by 527
Abstract
Rapeseed (Brassica napus L.) has been cultivated as an ornamental plant in recent years. However, the metabolic and regulatory processes involved in pigment accumulation in. B. napus flowers are poorly understood. To address this knowledge gap, we conducted a multi-omics analysis of [...] Read more.
Rapeseed (Brassica napus L.) has been cultivated as an ornamental plant in recent years. However, the metabolic and regulatory processes involved in pigment accumulation in. B. napus flowers are poorly understood. To address this knowledge gap, we conducted a multi-omics analysis of the orange-red-flowered ‘OrP’ and the yellow-flowered ‘ZS11’ rapeseed cultivars. The total anthocyanin content of ‘OrP’ petals was 5.420-fold and 3.345-fold higher than ‘ZS11’ petals at the S2 and S4 developmental stages, respectively. The red coloration of ‘OrP’ flowers resulted primarily from the presence of anthocyanin pigment derivatives. The up-regulated differentially expressed genes (DEGs) of four stages in ‘OrP’ were found to be significantly enriched in phenylpropanoid, flavonoid, and anthocyanin metabolism-associated GO and KEGG terms. Weighted Gene Co-expression Network Analysis (WGCNA) revealed that 51 DEGs were linked to anthocyanin metabolism, including several structural genes such as BnaCHS, BnaF3H, BnaF3′H, BnaCHS, BnaDFR, BnaANS, BnaUGTs, and the transcription factor (TF) genes BnaHY5, BnaBBX22, BnaPIL1, BnaPAP2, BnaTT8, BnaTTG2, and BnaMYBL2. Furthermore, we found that three main factors affecting the relative content of anthocyanins in petals were likely responsible for the fading of ‘OrP’ petals, namely the significantly down-regulated expression of genes (BnaDFR, BnaANS, BnaPAP2, BnaTT8, and BnaTTG2) related to anthocyanin biosynthesis, the significantly up-regulated expression of genes (Bna.BGLUs, Bna.PRXs, and BnaMYBL2) related to anthocyanin degradation or the negative regulation of anthocyanin biosynthesis, and the rapidly increasing petals area. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
A Recyclable, Adhesive, and Self-Healing Ionogel Based on Zinc–Halogen Coordination Anion Crosslinked Poly(ionic Liquid)/Ionic Liquid Networks for High-Performance Microwave Absorption
by Lei Wang, Jie Liu, Meng Zong, Yi Liu and Jianfeng Zhu
Gels 2025, 11(6), 436; https://doi.org/10.3390/gels11060436 - 5 Jun 2025
Viewed by 805
Abstract
In the past, powder-like microwave absorbers have made notable breakthroughs in performance enhancements, but complicated processes and undesirable properties have limited their practical application. Herein, a novel poly(ionic liquid) (PIL)-based ionic gel with excellent microwave absorption properties was prepared via a facile UV-initiated [...] Read more.
In the past, powder-like microwave absorbers have made notable breakthroughs in performance enhancements, but complicated processes and undesirable properties have limited their practical application. Herein, a novel poly(ionic liquid) (PIL)-based ionic gel with excellent microwave absorption properties was prepared via a facile UV-initiated polymerization method. By simply adjusting the mole ratio of the polymerizable ionic liquid (IL)monomer and the IL dispersion medium, the microwave absorption properties of the obtained ionic gels can be tuned. A maximum reflection loss (RLmax) of −45.7 dB and an effective absorption bandwidth (EAB) of 8.08 GHz were achieved, which was mainly ascribed to high ionic conduction loss induced by the high content of the dispersion medium. Furthermore, it displayed recyclable, adhesive, and self-healing properties, thus providing a new candidate for developing efficient microwave absorbers for practical applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

20 pages, 4470 KiB  
Article
Cellulose Nanocrystal/Zinc Oxide Bio-Nanocomposite Activity on Planktonic and Biofilm Producing Pan Drug-Resistant Clostridium perfringens Isolated from Chickens and Turkeys
by Ismail Amin, Adel Abdelkhalek, Azza S. El-Demerdash, Ioan Pet, Mirela Ahmadi and Norhan K. Abd El-Aziz
Antibiotics 2025, 14(6), 575; https://doi.org/10.3390/antibiotics14060575 - 3 Jun 2025
Viewed by 801
Abstract
Background/Objectives: Clostridium perfringens is a normal inhabitant of the intestinal tract of poultry, and it has the potential to induce cholangiohepatitis and necrotic enteritis (NE). The poultry industry suffers significant financial losses because of NE, and treatment becomes more challenging due to [...] Read more.
Background/Objectives: Clostridium perfringens is a normal inhabitant of the intestinal tract of poultry, and it has the potential to induce cholangiohepatitis and necrotic enteritis (NE). The poultry industry suffers significant financial losses because of NE, and treatment becomes more challenging due to resistant C. perfringens strains. Methods: The antimicrobial and antibiofilm activities of cellulose nanocrystals/zinc oxide nanocomposite (CNCs/ZnO) were assesses against pan drug-resistant (PDR) C. perfringens isolated from chickens and turkeys using phenotypic and molecular assays. Results: The overall prevalence rate of C. perfringens was 44.8% (43.75% in chickens and 58.33% in turkeys). Interestingly, the antimicrobial susceptibility testing of C. perfringens isolates revealed the alarming PDR (29.9%), extensively drug-resistant (XDR, 54.5%), and multidrug-resistant (MDR, 15.6%) isolates, with multiple antimicrobial resistance (MAR) indices ranging from 0.84 to 1. All PDR C. perfringens isolates could synthesize biofilms; among them, 21.7% were strong biofilm producers. The antimicrobial potentials of CNCs/ZnO against PDR C. perfringens isolates were evaluated by the agar well diffusion and broth microdilution techniques, and the results showed strong antimicrobial activity of the green nanocomposite with inhibition zones’ diameters of 20–40 mm and MIC value of 0.125 µg/mL. Moreover, the nanocomposite exhibited a great antibiofilm effect against the pre-existent biofilms of PDR C. perfringens isolates in a dose-dependent manner [MBIC50 up to 83.43 ± 1.98 for the CNCs/ZnO MBC concentration (0.25 μg/mL)]. The transcript levels of agrB quorum sensing gene and pilA2 type IV pili gene responsible for biofilm formation were determined by the quantitative real time-PCR technique, pre- and post-treatment with the CNCs/ZnO nanocomposite. The expression of both genes downregulated (0.099 ± 0.012–0.454 ± 0.031 and 0.104 ± 0.006–0.403 ± 0.035, respectively) when compared to the non-treated isolates. Conclusions: To the best of our knowledge, this is the first report of CNCs/ZnO nanocomposite’s antimicrobial and antibiofilm activities against PDR C. perfringens isolated from chickens and turkeys. Full article
(This article belongs to the Special Issue Antimicrobial and Antibiofilm Activity by Natural Compounds)
Show Figures

Figure 1

13 pages, 3162 KiB  
Article
Crystallization of Small Molecules in Microgravity Using Pharmaceutical In-Space Laboratory–Biocrystal Optimization eXperiment (PIL-BOX)
by Lillian Miller, Molly K. Mulligan, Kenneth A. Savin, Stephen Tuma and Anne M. Wilson
Crystals 2025, 15(6), 527; https://doi.org/10.3390/cryst15060527 - 30 May 2025
Viewed by 824
Abstract
Crystallization in microgravity has measurable benefits, from molecules as simple as sodium chloride to elaborate protein complexes. However, small organic molecules have not been reported. The small organic molecules glycine, famoxadone, carbamazepine, and 5-methyl-2-((2-nitrophenyl)amino)thiophene-3-carbonitrile (ROY) were crystallized on Earth under microgravity conditions. When [...] Read more.
Crystallization in microgravity has measurable benefits, from molecules as simple as sodium chloride to elaborate protein complexes. However, small organic molecules have not been reported. The small organic molecules glycine, famoxadone, carbamazepine, and 5-methyl-2-((2-nitrophenyl)amino)thiophene-3-carbonitrile (ROY) were crystallized on Earth under microgravity conditions. When comparing these different gravity crystallization conditions, we found the formation of different polymorphs and/or habits for glycine, carbamazepine, and ROY. The crystallization of famoxadone occurred more slowly in microgravity. The differences in size, appearance, and, in the case of ROY, color, are detailed in this report. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Graphical abstract

12 pages, 586 KiB  
Article
The Comprehension, Cosmetics, Convenience, Content, and Credibility of Infographic Patient Information Leaflets (iPILs) Compared to Existing PILs (ePILs)
by Xin Pan, Eunhee Kim, Jose Zamora, Micah Hata, Andrea Wooley, Radhika Devraj, Hyma P. Gogineni and Anandi V. Law
Healthcare 2025, 13(11), 1227; https://doi.org/10.3390/healthcare13111227 - 23 May 2025
Viewed by 319
Abstract
Background/Objectives: Existing patient information leaflets (ePILs), mandated by the FDA to accompany new prescriptions, are difficult to read and understand due to their complexity and poor visual design, especially for populations with low health literacy and low English proficiency. In this study, [...] Read more.
Background/Objectives: Existing patient information leaflets (ePILs), mandated by the FDA to accompany new prescriptions, are difficult to read and understand due to their complexity and poor visual design, especially for populations with low health literacy and low English proficiency. In this study, we developed infographic-based PILs (iPILs) with a concise question-and-answer format, emphasizing essential information, as specified by the FDA. This study compared iPILs and ePILs using the 5C factors: comprehension, cosmetics, convenience, content, and credibility, as perceived by English-speaking and Spanish-speaking populations. Methods: This multicenter, experimental survey study assessed the 5C factors. English and Spanish-speaking adults on ≥1 chronic medication were recruited from community pharmacies in California (CA) and Illinois (IL). They were stratified to review either an ePIL or an iPIL for one of four common medications. They completed a Medication Knowledge Quiz (MKQ) to show their comprehension using six open-ended questions. Subsequently, they received both PIL versions and answered preference questions about the 4C and media format and, lastly, about demographic and health literacy questions. Results: A total of 235 participants completed the surveys at three sites (CA-English, CA-Spanish, and IL-English), with differing participant characteristics. The CA-Spanish participants scored the lowest on health literacy and the number of health conditions. The MKQ scores for those using the iPILs were significantly higher than for those using the ePILs across all groups. They significantly correlated with health literacy results for the ePILs (r = 0.394, p < 0.001). The participants preferred the iPILs over the ePILs for four of the C factors, barring one content question. Regardless of age, printed formats were preferred (64.7%)—alone or with digital formats (21.3%)—over digital formats alone (3.4%). Overall, 79.1% of the participants preferred iPILs, 11.9% preferred ePILs, and 8.9% preferred either version. Conclusions: The infographic-based patient information leaflets (iPILs) were easier to read, navigate, and understand, making them more accessible to individuals with varying levels of health literacy. Infographic-based leaflets outperformed existing ones in user comprehension and were preferred due to their simple layout, ease of navigation, and helpfulness. Full article
(This article belongs to the Special Issue The Contribution of Health Education to Chronic Disease Management)
Show Figures

Figure 1

25 pages, 3893 KiB  
Article
Electro-Thermal Model-Based Design of a Smart Latch in Automotive Systems for Performance and Reliability Evaluations
by Damiano Nardi, Pierpaolo Dini and Sergio Saponara
Electronics 2025, 14(10), 1962; https://doi.org/10.3390/electronics14101962 - 12 May 2025
Viewed by 397
Abstract
Industry 5.0 places growing emphasis on intelligent and efficient design methodologies aiming to reduce development times, accelerate the time-to-market, and enhance human–machine collaboration in creating new products. This article proposes the use of a model-based design (MBD) approach to developing a detailed electro-thermal [...] Read more.
Industry 5.0 places growing emphasis on intelligent and efficient design methodologies aiming to reduce development times, accelerate the time-to-market, and enhance human–machine collaboration in creating new products. This article proposes the use of a model-based design (MBD) approach to developing a detailed electro-thermal model (ETDM) of a Smart Latch Mechanism (SLM) used in automotive door automation systems. The proposed ETDM enhances the accuracy of the design and verification processes and enables the simulation of specific scenarios, such as fault conditions, within a virtual environment. The simulation-based framework presented in this article leverages partial knowledge of the system to enable rapid estimations of the performance and functional validation. It encompasses the injection of disturbances, the analysis of failure scenarios, and the use of processor-in-the-loop (PIL) procedures for validation purposes. This work aims to employ detailed modeling and simulation techniques and use publicly available technical data and work from the literature to eliminate the need for physical testing and instrumentation, enabling the development of models that accurately reflect the real-world behavior under defined operating conditions. The proposed framework has the potential to facilitate rapid prototyping and system reconfiguration, contributing to shorter development cycles and improved industrial efficiency by reducing both production times and the associated costs for established automotive subsystems where high precision is nonessential. Full article
(This article belongs to the Special Issue Collaborative Intelligence in the Era of Industry 5.0)
Show Figures

Figure 1

23 pages, 4284 KiB  
Article
Embedded Processor-in-the-Loop Implementation of ANFIS-Based Nonlinear MPPT Strategies for Photovoltaic Systems
by Khalil Chnini, Mahamadou Abdou Tankari, Houda Jouini, Hatem Allagui, Mostafa Ahmed Ibrahim and Ezzeddine Touti
Energies 2025, 18(10), 2470; https://doi.org/10.3390/en18102470 - 12 May 2025
Cited by 1 | Viewed by 569
Abstract
The integration of photovoltaic (PV) systems into global energy production is rapidly expanding. However, achieving maximum power extraction remains a significant challenge due to the nonlinear electrical characteristics of PV modules, which are highly sensitive to environmental variations such as temperature fluctuations and [...] Read more.
The integration of photovoltaic (PV) systems into global energy production is rapidly expanding. However, achieving maximum power extraction remains a significant challenge due to the nonlinear electrical characteristics of PV modules, which are highly sensitive to environmental variations such as temperature fluctuations and irradiance changes. This study presents a structured design, testing, and quasi-experimental validation methodology for robust Maximum Power Point Tracking (MPPT) control in PV systems. We propose two advanced AI-based nonlinear control strategies: an Adaptive Neuro-Fuzzy Inference System combined with Fast Terminal Synergetic Control (ANFIS-FTSC) for a boost converter and ANFIS with Backstepping (ANFIS-BS) for a Single-Ended Primary Inductor Converter (SEPIC), both of which have demonstrated tracking efficiencies exceeding 99.6%. To evaluate real-time performance, a Processor-in-the-Loop (PIL) validation is conducted using an ARM-based STM32F407VG microcontroller. The methodology adheres to a Model-Based Design (MBD) framework, ensuring systematic development, implementation, and verification of the MPPT algorithms in an embedded environment. Experimental results demonstrate that the proposed controllers achieve high efficiency, rapid convergence, and robust maximum power point tracking under varying operating conditions. The successful PIL-based validation confirms the feasibility of these intelligent control techniques for real-world deployment in PV energy systems, paving the way for more efficient and adaptive renewable energy solutions. Full article
(This article belongs to the Special Issue Micro-grid Energy Management)
Show Figures

Figure 1

18 pages, 5771 KiB  
Article
Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm
by Houssam Eddine Ghadbane and Ahmed F. Mohamed
Mathematics 2025, 13(9), 1504; https://doi.org/10.3390/math13091504 - 2 May 2025
Cited by 1 | Viewed by 602
Abstract
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various [...] Read more.
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various energy sources. This method addresses concerns regarding hydrogen utilization and efficiency. The Arithmetic Optimization Algorithm is employed in the proposed energy management system to enhance the strategy of maximizing external energy, leading to decreased hydrogen consumption and increased system efficiency. The performance of the proposed EMS is evaluated using the Federal Test Procedure (FTP-75) to replicate city driving situations and is compared with existing algorithms through a comparison co-simulation. The co-simulation findings indicate that the suggested EMS surpasses current approaches in reducing fuel consumption, potentially decreasing it by 59.28%. The proposed energy management strategy demonstrates an 8.43% improvement in system efficiency. This enhancement may reduce dependence on fossil fuels and mitigate the adverse environmental effects associated with automobile emissions. To assess the feasibility and effectiveness of the proposed EMS, the system is tested within a Processor-in-the-Loop (PIL) co-simulation environment using the C2000 launchxl-f28379d Digital Signal Processing (DSP) board. Full article
(This article belongs to the Special Issue Intelligence Optimization Algorithms and Applications)
Show Figures

Figure 1

10 pages, 542 KiB  
Article
First Report of Streptococcus agalactiae Meningitis in a Non-Pregnant Adult in Italy
by Giorgia Borriello, Giovanna Fusco, Francesca Greco, Maria Vittoria Mauro, Lorella Barca, Antonio Limone, Maria Garzi Cosentino, Agata Campione, Antonio Rinaldi, Saveria Dodaro, Esterina De Carlo, Sonia Greco, Valeria Vangeli, Rubina Paradiso and Antonio Mastroianni
Microorganisms 2025, 13(5), 978; https://doi.org/10.3390/microorganisms13050978 - 24 Apr 2025
Viewed by 572
Abstract
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular [...] Read more.
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular characterization evidenced the presence of resistance genes to tetracycline and macrolide (tet(M) and mre(A)) and several virulence genes coding for adhesion and immune evasion factors (bca, cps family, neu family, scpB, gbs family, pil family and hylB), toxins (cfa/cfb, cyl family), pro-inflammatory factors (lepA), and two homologous genes that contributed to bacterial escape from the host immune system (lmb, luxS). SNP analysis showed 18 different alleles, with 9 missense SNP mutations related to genes involved in cellular metabolism (dhaS, ftsE, ligA, nrdD and secA), virulence (bgrR and galE) and antimicrobial resistance (glpK and mutL). SNPs in glpK and mutL genes might reduce susceptibility to drugs. The SNP analysis highlighted the presence of mutations conferring pathogenicity to the strain. The evidence in this study could explain the development of Meningitis in a healthy patient. This case highlights the importance of using molecular methods to characterize the complete genome of a bacterial species that could seriously affect human health. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 19552 KiB  
Article
Facile Synthesis of Binuclear Imidazole-Based Poly(ionic liquid) via Monomer Self-Polymerization: Unlocking High-Efficiency CO2 Conversion to Cyclic Carbonate
by Ranran Li, Yuqiao Jiang, Linyan Cheng, Cheng Fang, Hongping Li, Jing Ding, Hui Wan and Guofeng Guan
Catalysts 2025, 15(5), 406; https://doi.org/10.3390/catal15050406 - 22 Apr 2025
Viewed by 635
Abstract
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic [...] Read more.
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic density and limited accessibility of active sites. Herein, we reported a binuclear imidazolium-functionalized PIL catalyst (P-BVIMCl), synthesized through a simple self-polymerization process, derived from rationally designed ionic liquid monomers formed by quaternization of 1,4-bis(chloromethyl)benzene with N-vinylimidazole. The dual active sites in P-BVIMCl-quaternary ammonium cation (N+) and nucleophilic chloride anion (Cl) synergistically enhanced CO2 adsorption/activation and epoxide ring-opening. Under optimal catalyst preparation conditions (100 °C, 24 h, water/ethanol = 1:3 (v/v), 10 wt% AIBN initiator) and reaction conditions (100 °C, 2.0 MPa CO2, 10 mmol epichlorohydrin, 6.7 wt% catalyst loading, 3.0 h), P-BVIMCl catalyzed the synthesis of glycerol carbonate (GLC) with a yield of up to 93.4% and selectivity of 99.6%, maintaining activity close to 90% after five cycles. Systematic characterization and density functional theory (DFT) calculations confirmed the synergistic activation mechanism. This work established a paradigm for constructing high-ionic-density catalysts through molecular engineering, advancing the development of high-performance PILs for industrial CO2 valorization. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Graphical abstract

16 pages, 4212 KiB  
Article
Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids
by Zhiqiang Gao, Fengmao Liu, Qingrong Peng and Wenzhuo Wang
Molecules 2025, 30(7), 1641; https://doi.org/10.3390/molecules30071641 - 7 Apr 2025
Viewed by 475
Abstract
Converting pesticides into ionic liquids by designing counterions can modulate their physicochemical properties, thus improving their efficacy and environmental safety. In this study, eight prochloraz-based ionic liquids (PILs) were synthesized using natural organic acids, and their physicochemical properties, toxicity, antifungal activity, and efficacy [...] Read more.
Converting pesticides into ionic liquids by designing counterions can modulate their physicochemical properties, thus improving their efficacy and environmental safety. In this study, eight prochloraz-based ionic liquids (PILs) were synthesized using natural organic acids, and their physicochemical properties, toxicity, antifungal activity, and efficacy in postharvest mango preservation were evaluated. The results showed that the physicochemical properties of propiconazole, including water solubility, logKow, surface activity, and light stability, could be adjusted by selecting counterions with varying structures. These properties were correlated with toxicity to zebrafish embryos and antifungal activity against Colletotrichum gloeosporioides. Notably, except for the benzoate PIL, the photostability of the other seven PILs was enhanced under UV irradiation, with the cinnamate PIL exhibiting a half-life 2.28 times longer than prochloraz. Spectral analysis indicated that the anions influenced photostability by shielding or interacting with the cations. Furthermore, the three selected PILs improved pesticide deposition on the mango surface during preservation, and the salicylate PIL enhanced pesticide penetration into the fruit, potentially contributing to its therapeutic activity. In conclusion, the ionic liquid strategy offers an effective method to modify pesticide properties, improve photostability, reduce losses, and optimize pesticide formulation. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

23 pages, 6557 KiB  
Article
How Urban–Rural Integration Symbiosis Can Ameliorate the Socioeconomic Inequity in Ecological Space: Evidence from Yunnan, China
by Xianjuan An, Lijun Meng, Xueting Zeng and Lixuan Ma
Sustainability 2025, 17(7), 2895; https://doi.org/10.3390/su17072895 - 25 Mar 2025
Cited by 2 | Viewed by 540
Abstract
The excessive occupation of ecological space (ES) due to city expansion and construction can reduce a variety of natural values and socioeconomic benefits, which would also bring challenges associated with ecological rights and justice between urban areas (with economic impetus) and rural areas [...] Read more.
The excessive occupation of ecological space (ES) due to city expansion and construction can reduce a variety of natural values and socioeconomic benefits, which would also bring challenges associated with ecological rights and justice between urban areas (with economic impetus) and rural areas (with rich ecological endowments). A more sustainable development mode is required to shift population–industry–land (PIL) allocation from urban-led commensalism (ULC) to PIL interaction by urban–rural mutualism (URM). Thus, an urban–rural integration six-step symbiotic framework (UISS) was built to reflect how the change in urban–rural integration symbiotic mode (the ULC to URM transformation process) can ameliorate socioeconomic inequity in ecological space (IES). Moreover, the two-way fixed-effects model and heterogeneity analysis are used to discuss how the improvement of urban–rural integration symbiotic development level (URI) ameliorates the IES under socioeconomic development to reduce the unfairness, differences between regions, and mismatch of gravity centers from the perspective of spatiotemporal and dynamic changes under various symbiotic environments. The comprehensive multi-perspective analysis of IES based on the symbiotic framework (MEU) was applied to reflect the effect of dynamic PIL interaction changes from ULC mode to URM mode on IES in Yunnan Province, China. The results can be obtained as follows: (1) The URI including symbiotic units of PIL shows a steady rise in growth, with a maximum growth rate of 22.89%, which indicates that the URI has changed from the urban-led commensalism development mode to the urban–rural mutualism development mode. (2) The IES in temporal unfairness has been steadily alleviated, but the spatial differences remain obvious due to the unique symbiotic environment. The dynamic changes in the distance of the gravity centers between ES and PO-IN reflect an increasing mismatch in some regions (e.g., Kunming), while decreasing in others (e.g., Qujing). (3) URI generates a significant symbiotic effect on IES to reduce unfairness, differences, and mismatch, especially through the integration of industrial and population symbiotic units. The heterogeneity analysis shows that a good symbiotic environment, including business environment, industrial structure, transportation conditions, and government size, is conducive to ameliorating IES through the environmental adaptability of symbiotic units. All the results can provide a scientific reference for regional sustainable planning and management under mutualistic population–industry–land interaction between urban and rural areas. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop