Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Phgdh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5945 KB  
Article
The Inhibitory Effects of NCT503 and Exogenous Serine on High-Selenium Induced Insulin Resistance in Mice
by Shuo Zhan, Jianrong Wang, Mingyu Zhu, Yiqun Liu, Feng Han, Licui Sun, Qin Wang and Zhenwu Huang
Nutrients 2025, 17(2), 311; https://doi.org/10.3390/nu17020311 - 16 Jan 2025
Viewed by 1566
Abstract
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) [...] Read more.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice. Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.8 mgSe/kg), high-Se +serine (240 mg/kg/day), and high-Se +NCT503 (30 mg/kg, twice a week) for 5 months. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were used to confirm the development of IR in mice with high-Se intake, and fasting blood glucose levels were measured monthly. The Se contents in plasma and tissues were detected by ICP-MS. The levels of insulin (INS), homocysteine (HCY), and serine in plasma were tested by ELISA. Western blot analyses were conducted to evaluate the protein expressions of glutathione peroxidase 1 (GPX1), selenoprotein P (SELENOP) and PHGDH, the PI3K-AKT-mTOR pathway, folate cycle (SHMT1, MTHFR), and methionine cycle (MS). Results: An IR model was developed in mice from the high-Se group with elevated fasting blood glucose and INS levels, impaired glucose tolerance, and reduced insulin sensitivity, but not in both the high-Se +serine group and the high-Se +NCT503 group. Compared with the high-Se and high-Se +serine groups, the expressions of GPX1 and SELENOP significantly decreased for the high-Se +NCT503 group in the liver, muscle, and pancreas tissues. The expression of PHGDH of high-Se group was significantly higher than that of the adequate-Se group in the liver (p < 0.05) and pancreas (p < 0.001). Also, the expected high expression of PHGDH was effectively inhibited in mice from the high-Se +serine group but not from the high-Se +NCT503 group. The expression of p-AKT (Ser-473) for the high-Se group was significantly lower than that of the adequate-Se group in the liver, muscle, and pancreas. Conclusions: The IR induced by high-Se intake in the body has been confirmed to be partially due to serine deficiency, which led to the initiation of SSP to produce endogenous serine. The supplementations of exogenous serine or inhibitors of PHGDH in this metabolic pathway could be used for the intervention. Full article
Show Figures

Figure 1

20 pages, 2485 KB  
Article
Supplementation of Oocytes by Microinjection with Extra Copies of mtDNA Alters Metabolite Profiles and Interactions with Expressed Genes in a Tissue-Specific Manner
by Eryk Andreas, Alexander Penn, Takashi Okada and Justin C. St. John
Biomolecules 2024, 14(11), 1477; https://doi.org/10.3390/biom14111477 - 20 Nov 2024
Cited by 1 | Viewed by 1534
Abstract
Mitochondrial DNA (mtDNA) supplementation can rescue poor oocyte quality and overcome embryonic arrest. Here, we investigated a series of sexually mature pigs generated through autologous and heterologous mtDNA supplementation. Brain, liver and heart tissues underwent metabolite profiling using gas chromatography–mass spectrometry and gene [...] Read more.
Mitochondrial DNA (mtDNA) supplementation can rescue poor oocyte quality and overcome embryonic arrest. Here, we investigated a series of sexually mature pigs generated through autologous and heterologous mtDNA supplementation. Brain, liver and heart tissues underwent metabolite profiling using gas chromatography–mass spectrometry and gene expression analysis through RNA-seq. They were then assessed for mRNA–metabolite interactions. The comparison between overall mtDNA supplemented and control pigs revealed that mtDNA supplementation reduced the lipids stearic acid and elaidic acid in heart tissue. However, heterologous mtDNA supplemented-derived pigs exhibited lower levels of abundance of metabolites when compared with autologous-derived pigs. In the brain, these included mannose, mannose 6-phosphate and fructose 6-phosphate. In the liver, maltose and cellobiose, and in the heart, glycine and glutamate were affected. mRNA–metabolite pathway analysis revealed a correlation between malate and CS, ACLY, IDH2 and PKLR in the liver and glutamate and PSAT1, PHGDH, CDO1 and ANPEP in the heart. Our outcomes demonstrate that mtDNA supplementation, especially heterologous supplementation, alters the metabolite and transcriptome profiles of brain, liver, and heart tissues. This is likely due to the extensive resetting of the balance between the nuclear and mitochondrial genomes in the preimplantation embryo, which induces a series of downstream effects. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

15 pages, 4213 KB  
Article
Metabolic Transcriptional Activation in Ulcerative Colitis Identified Through scRNA-seq Analysis
by Christophe Desterke, Yuanji Fu, Raquel Francés and Jorge Mata-Garrido
Genes 2024, 15(11), 1412; https://doi.org/10.3390/genes15111412 - 31 Oct 2024
Cited by 1 | Viewed by 2112
Abstract
Background: Ulcerative colitis is a chronic inflammatory disease affecting the colon. During chronic inflammation of epithelial cells, lipid metabolism via pro-inflammatory eicosanoids is known to modify the immune response. Methods: Starting from the Mammalian Metabolic Database, the expression of metabolic enzymes was investigated [...] Read more.
Background: Ulcerative colitis is a chronic inflammatory disease affecting the colon. During chronic inflammation of epithelial cells, lipid metabolism via pro-inflammatory eicosanoids is known to modify the immune response. Methods: Starting from the Mammalian Metabolic Database, the expression of metabolic enzymes was investigated in two independent cohorts from transcriptome datasets GSE38713 and GSE11223, which analyzed ulcerative colitis tissue samples from the digestive tract. Results: In the first cohort, 145 differentially expressed enzymes were identified as significantly regulated between ulcerative colitis tissues and normal controls. Overexpressed enzymes were selected to tune an Elastic Net model in the second cohort. Using the best parameters, the model achieved a prediction accuracy for ulcerative colitis with an area under the curve (AUC) of 0.79. Twenty-two metabolic enzymes were found to be commonly overexpressed in both independent cohorts, with decreasing Elastic Net predictive coefficients as follows: LIPG (3.98), PSAT1 (3.69), PGM3 (2.74), CD38 (2.28), BLVRA (1.99), CBR3 (1.94), NT5DC2 (1.76), PHGDH (1.71), GPX7 (1.58), CASP1 (1.56), ASRGL1 (1.4), SOD3 (1.25), CHST2 (0.965), CHST11 (0.95), KYNU (0.94), PLAG2G7 (0.92), SRM (0.87), PTGS2 (0.80), LPIN1 (0.47), ME1 (0.31), PTGDS (0.14), and ADA (0.13). Functional enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database highlighted the main implications of these enzymes in cysteine and methionine metabolism (adjusted p-value = 0.01), arachidonic acid and prostaglandin metabolism (adjusted p-value = 0.01), and carbon metabolism (adjusted p-value = 0.04). A metabolic score based on the transcriptional activation of the validated twenty-two enzymes was found to be significantly greater in Ulcerative colitis samples compared to healthy donor samples (p-value = 1.52 × 10−8). Conclusions: A metabolic expression score was established and reflects the implications of heterogeneous metabolic pathway deregulations in the digestive tract of patients with ulcerative colitis. Full article
(This article belongs to the Special Issue Clinical Epigenetics in Gastroenterology)
Show Figures

Graphical abstract

20 pages, 1996 KB  
Article
Cellular Responses Induced by NCT-503 Treatment on Triple-Negative Breast Cancer Cell Lines: A Proteomics Approach
by Ioana-Ecaterina Pralea, Radu-Cristian Moldovan, Adrian-Bogdan Țigu, Cristian-Silviu Moldovan, Eva Fischer-Fodor and Cristina-Adela Iuga
Biomedicines 2024, 12(5), 1087; https://doi.org/10.3390/biomedicines12051087 - 14 May 2024
Cited by 5 | Viewed by 2760
Abstract
Breast cancer (BC) remains one of the leading causes of mortality among women, with triple-negative breast cancer (TNBC) standing out for its aggressive nature and limited treatment options. Metabolic reprogramming, one of cancer’s hallmarks, underscores the importance of targeting metabolic vulnerabilities for therapeutic [...] Read more.
Breast cancer (BC) remains one of the leading causes of mortality among women, with triple-negative breast cancer (TNBC) standing out for its aggressive nature and limited treatment options. Metabolic reprogramming, one of cancer’s hallmarks, underscores the importance of targeting metabolic vulnerabilities for therapeutic intervention. This study aimed to investigate the impact of de novo serine biosynthetic pathway (SSP) inhibition, specifically targeting phosphoglycerate dehydrogenase (PHGDH) with NCT-503, on three TNBC cell lines: MDA-MB-231, MDA-MB-468 and Hs 578T. First, MS-based proteomics was used to confirm the distinct expression of PHGDH and other SSP enzymes using the intracellular proteome profiles of untreated cells. Furthermore, to characterize the response of the TNBC cell lines to the inhibitor, both in vitro assays and label-free, bottom-up proteomics were employed. NCT-503 exhibited significant cytotoxic effects on all three cell lines, with MDA-MB-468 being the most susceptible (IC50 20.2 ± 2.8 µM), while MDA-MB-231 and Hs 578T showed higher, comparable IC50s. Notably, differentially expressed proteins (DEPs) induced by NCT-503 treatment were mostly cell line-specific, both in terms of the intracellular and secreted proteins. Through overrepresentation and Reactome GSEA analysis, modifications of the intracellular proteins associated with cell cycle pathways were observed in the MDA-MBs following treatment. Distinctive dysregulation of signaling pathways were seen in all TNBC cell lines, while modifications of proteins associated with the extracellular matrix organization characterizing both MDA-MB-231 and Hs 578T cell lines were highlighted through the treatment-induced modifications of the secreted proteins. Lastly, an analysis was conducted on the DEPs that exhibited greater abundance in the NCT-503 treatment groups to evaluate the potential chemo-sensitizing properties of NCT-503 and the druggability of these promising targets. Full article
Show Figures

Figure 1

13 pages, 1369 KB  
Article
Integration of Computational Pipeline to Streamline Efficacious Drug Nomination and Biomarker Discovery in Glioblastoma
by Danielle Maeser, Robert F. Gruener, Robert Galvin, Adam Lee, Tomoyuki Koga, Florina-Nicoleta Grigore, Yuta Suzuki, Frank B. Furnari, Clark Chen and R. Stephanie Huang
Cancers 2024, 16(9), 1723; https://doi.org/10.3390/cancers16091723 - 28 Apr 2024
Cited by 2 | Viewed by 2066
Abstract
Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor [...] Read more.
Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to the right patient populations. We built patient drug response models by integrating patient tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks to infer relationships between patient gene expression and drug response. Through these discovery pipelines, we identified agents of interest for GBM to be effective across five independent patient cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power of integrating computational approaches. In doing so, we quickly nominated several drugs with varying known mechanisms of action that can efficaciously target GBM. By simultaneously identifying biomarkers with these drugs, we also provide tools to select the right patient populations for subsequent evaluation. Full article
(This article belongs to the Collection Oncology: State-of-the-Art Research in the USA)
Show Figures

Figure 1

15 pages, 14698 KB  
Article
Serine Metabolism Regulates the Replicative Senescence of Human Dental Pulp Cells through Histone Methylation
by Shuhan Zhou, Jingyao Cui and Yu Shi
Curr. Issues Mol. Biol. 2024, 46(4), 2856-2870; https://doi.org/10.3390/cimb46040179 - 24 Mar 2024
Cited by 4 | Viewed by 2157
Abstract
Tissue regeneration therapy based on human dental pulp cells (hDPCs) faces the distinct challenge of cellular senescence during massive expansion in vitro. To further explore the regulatory mechanism of cellular senescence in hDPCs, we conduct experiments on young cells (Passage 5, P5) and [...] Read more.
Tissue regeneration therapy based on human dental pulp cells (hDPCs) faces the distinct challenge of cellular senescence during massive expansion in vitro. To further explore the regulatory mechanism of cellular senescence in hDPCs, we conduct experiments on young cells (Passage 5, P5) and replicative senescent (Passage 12, P12) hDPCs. The results confirm that hDPCs undergo replicative senescence with passaging, during which their ability to proliferate and osteogenic differentiation decreases. Notably, during replicative senescence, phosphoglycerate dehydrogenase (PHGDH), the key enzyme of the serine synthesis pathway (SSP), is significantly downregulated, as well as S-adenosylmethionine (SAM) levels, resulting in reduced H3K36me3 modification on Sirtuin 1 (SIRT1)and Runt-related transcription factor 2 (RUNX2) promoters. Inhibition of PHGDH leads to the same phenotype as replicative senescence. Serine supplementation fails to rescue the senescence phenotype caused by replicative senescence and inhibitors, in which folate metabolism-related genes, including serine hydroxymethyl transferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase 1(MTHFD1), methylenetetrahydrofolate dehydrogenase 2(MTHFD2), are notably decreased. Our research raised a possibility that PHGDH may be involved in cellular senescence by affecting folate metabolism and histone methylation in addition to serine biosynthesis, providing potential targets to prevent senescence. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 12152 KB  
Article
Time-Course Transcriptome Analysis Reveals Distinct Phases and Identifies Two Key Genes during Severe Fever with Thrombocytopenia Syndrome Virus Infection in PMA-Induced THP-1 Cells
by Tao Huang, Xueqi Wang, Yuqian Mi, Wei Wu, Xiao Xu, Chuan Li, Yanhan Wen, Boyang Li, Yang Li, Lina Sun, Jiandong Li, Mengxuan Wang, Tiezhu Liu, Shiwen Wang and Mifang Liang
Viruses 2024, 16(1), 59; https://doi.org/10.3390/v16010059 - 29 Dec 2023
Cited by 2 | Viewed by 2482
Abstract
In recent years, there have been significant advancements in the research of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV). However, several limitations and challenges still exist. For instance, researchers face constraints regarding experimental conditions and the feasibility of sample acquisition for studying SFTSV. [...] Read more.
In recent years, there have been significant advancements in the research of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV). However, several limitations and challenges still exist. For instance, researchers face constraints regarding experimental conditions and the feasibility of sample acquisition for studying SFTSV. To enhance the quality and comprehensiveness of SFTSV research, we opted to employ PMA-induced THP-1 cells as a model for SFTSV infection. Multiple time points of SFTSV infection were designed to capture the dynamic nature of the virus–host interaction. Through a comprehensive analysis utilizing various bioinformatics approaches, including diverse clustering methods, MUfzz analysis, and LASSO/Cox machine learning, we performed dynamic analysis and identified key genes associated with SFTSV infection at the host cell transcriptomic level. Notably, successful clustering was achieved for samples infected at different time points, leading to the identification of two important genes, PHGDH and NLRP12. And these findings may provide valuable insights into the pathogenesis of SFTSV and contribute to our understanding of host–virus interactions. Full article
(This article belongs to the Special Issue Severe Fever with Thrombocytopenia Syndrome Virus 3.0)
Show Figures

Figure 1

20 pages, 7612 KB  
Article
Integrative Analysis of Transcriptomic and Lipidomic Profiles Reveals a Differential Subcutaneous Adipose Tissue Mechanism among Ningxiang Pig and Berkshires, and Their Offspring
by Xiaoxiao Deng, Yuebo Zhang, Gang Song, Yawei Fu, Yue Chen, Hu Gao, Qian Wang, Zhao Jin, Yulong Yin and Kang Xu
Animals 2023, 13(21), 3321; https://doi.org/10.3390/ani13213321 - 25 Oct 2023
Cited by 2 | Viewed by 2264
Abstract
Adipose tissue composition contributes greatly to the quality and nutritional value of meat. Transcriptomic and lipidomic techniques were used to investigate the molecular mechanisms of the differences in fat deposition in Ningxiang pigs, Berkshires and F1 offspring. Transcriptomic analysis identified 680, 592, [...] Read more.
Adipose tissue composition contributes greatly to the quality and nutritional value of meat. Transcriptomic and lipidomic techniques were used to investigate the molecular mechanisms of the differences in fat deposition in Ningxiang pigs, Berkshires and F1 offspring. Transcriptomic analysis identified 680, 592, and 380 DEGs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. The lipidomic analysis screened 423, 252, and 50 SCLs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. Lycine, serine, and the threonine metabolism pathway, fatty acid biosynthesis and metabolism-related pathways were significantly enriched in comparisons of Berkshires vs. Ningxiang pigs and Berkshires vs. F1 offspring. The DEGs (PHGDH, LOC110256000) and the SCLs (phosphatidylserines) may have a great impact on the glycine, serine, and the threonine metabolism pathway. Moreover, the DEGs (FASN, ACACA, CBR4, SCD, ELOV6, HACD2, CYP3A46, CYP2B22, GPX1, and GPX3) and the SCLs (palmitoleic acid, linoleic acid, arachidonic acid, and icosadienoic acid) play important roles in the fatty acid biosynthesis and metabolism of fatty acids. Thus, the difference in fat deposition among Ningxiang pig, Berkshires, and F1 offspring may be caused by differences in the expression patterns of key genes in multiple enriched KEGG pathways. This research revealed multiple lipids that are potentially available biological indicators and screened key genes that are potential targets for molecular design breeding. The research also explored the molecular mechanisms of the difference in fat deposition among Ningxiang pig, Berkshires, and F1 pigs, and provided an insight into selection for backfat thickness and the fat composition of adipose tissue for future breeding strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms Affecting Important Traits of Pigs)
Show Figures

Figure 1

16 pages, 1716 KB  
Article
Designing Cyclic-Constrained Peptides to Inhibit Human Phosphoglycerate Dehydrogenase
by Xiaoyu Qing, Qian Wang, Hanyu Xu, Pei Liu and Luhua Lai
Molecules 2023, 28(17), 6430; https://doi.org/10.3390/molecules28176430 - 4 Sep 2023
Cited by 1 | Viewed by 2309
Abstract
Although loop epitopes at protein-protein binding interfaces often play key roles in mediating oligomer formation and interaction specificity, their binding sites are underexplored as drug targets owing to their high flexibility, relatively few hot spots, and solvent accessibility. Prior attempts to develop molecules [...] Read more.
Although loop epitopes at protein-protein binding interfaces often play key roles in mediating oligomer formation and interaction specificity, their binding sites are underexplored as drug targets owing to their high flexibility, relatively few hot spots, and solvent accessibility. Prior attempts to develop molecules that mimic loop epitopes to disrupt protein oligomers have had limited success. In this study, we used structure-based approaches to design and optimize cyclic-constrained peptides based on loop epitopes at the human phosphoglycerate dehydrogenase (PHGDH) dimer interface, which is an obligate homo-dimer with activity strongly dependent on the oligomeric state. The experimental validations showed that these cyclic peptides inhibit PHGDH activity by directly binding to the dimer interface and disrupting the obligate homo-oligomer formation. Our results demonstrate that loop epitope derived cyclic peptides with rationally designed affinity-enhancing substitutions can modulate obligate protein homo-oligomers, which can be used to design peptide inhibitors for other seemingly intractable oligomeric proteins. Full article
(This article belongs to the Special Issue Peptide and Protein Chemistry: Design, Synthesis, and Applications)
Show Figures

Graphical abstract

10 pages, 2036 KB  
Article
The Dipeptide Gly-Pro (GP), Derived from Hibiscus sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-β1-ATF4-Serine/Glycine Biosynthesis Pathway
by HaiVin Kim, YoungSu Jang, JaeSang Ryu, DaHye Seo, Sak Lee, SungSoo Choi, DongHyun Kim, SangHyun Moh and JungU Shin
Int. J. Mol. Sci. 2023, 24(17), 13616; https://doi.org/10.3390/ijms241713616 - 3 Sep 2023
Cited by 4 | Viewed by 2585
Abstract
TGF-β1, a key fibrotic cytokine, enhances both the expression and translocation of the activating transcriptional factor 4 (ATF4) and activates the serine/glycine biosynthesis pathway, which is crucial for augmenting collagen production. Targeting the TGF-β1-ATF4-serine/glycine biosynthesis pathway might offer a promising therapeutic approach for [...] Read more.
TGF-β1, a key fibrotic cytokine, enhances both the expression and translocation of the activating transcriptional factor 4 (ATF4) and activates the serine/glycine biosynthesis pathway, which is crucial for augmenting collagen production. Targeting the TGF-β1-ATF4-serine/glycine biosynthesis pathway might offer a promising therapeutic approach for fibrotic diseases. In this study, we aimed to identify a proline-containing dipeptide in Hibiscus sabdariffa plant cells that modulates collagen synthesis. We induced Hibiscus sabdariffa plant cells and screened for a proline-containing dipeptide that can suppress TGF-β1-induced collagen synthesis in fibroblasts. Analyses were conducted using LC-MS/MS, RT-qPCR, Western blot analysis, and immunocytochemistry. We identified Gly-Pro (GP) from the extract of Hibiscus sabdariffa plant cells as a dipeptide capable of suppressing TGF-β1-induced collagen production. GP inhibited the phosphorylation of Smad2/3 and reduced the expression of ATF4, which is upregulated by TGF-β1. Notably, GP also decreased the expression of enzymes involved in the serine/glycine biosynthesis and glucose metabolism pathways, such as PHGDH, PSAT1, PSPH, SHMT2, and SLC2A1. Our findings indicate that the peptide GP, derived from Hibiscus sabdariffa plant cells, exhibits potent anti-fibrotic effects, potentially through its regulation of the TGF-β1-ATF4-serine/glycine biosynthesis pathway. Full article
(This article belongs to the Special Issue Biosynthesis and Application of Natural Compound)
Show Figures

Figure 1

18 pages, 5122 KB  
Article
Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr–Trp Dipeptide in Brains Treated with the Amyloid-β Peptide
by Momoko Hamano, Takashi Ichinose, Tokio Yasuda, Tomoko Ishijima, Shinji Okada, Keiko Abe, Kosuke Tashiro and Shigeki Furuya
Nutrients 2023, 15(12), 2731; https://doi.org/10.3390/nu15122731 - 13 Jun 2023
Cited by 3 | Viewed by 2235
Abstract
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr–Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the [...] Read more.
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr–Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the brain and ameliorates the working-memory deficits induced by the β-amyloid 25–35 peptide (Aβ25–35). In the current study, we performed multiple bioinformatics analyses of microarray data from Aβ25–35/YW-treated brains to determine the mechanism underlying the action of YW in the brain and to infer the molecular mechanisms and networks involved in the protective effect of YW in the brain. We found that YW not only reversed inflammation-related responses but also activated various molecular networks involving a transcriptional regulatory system, which is mediated by the CREB binding protein (CBP), EGR-family proteins, ELK1, and PPAR, and the calcium-signaling pathway, oxidative stress tolerance, and an enzyme involved in de novo l-serine synthesis in brains treated with Aβ25–35. This study revealed that YW has a neuroprotective effect against Aβ25–35 neuropathy, suggesting that YW is a new functional-food-material peptide. Full article
Show Figures

Figure 1

13 pages, 2244 KB  
Article
Multi-Omics Analysis Revealed Increased De Novo Synthesis of Serine and Lower Activity of the Methionine Cycle in Breast Cancer Cell Lines
by Monika Pankevičiūtė-Bukauskienė, Valeryia Mikalayeva, Vaidotas Žvikas, V. Arvydas Skeberdis and Sergio Bordel
Molecules 2023, 28(11), 4535; https://doi.org/10.3390/molecules28114535 - 3 Jun 2023
Cited by 4 | Viewed by 2414
Abstract
A pipeline for metabolomics, based on UPLC-ESI-MS, was tested on two malignant breast cancer cell lines of the sub-types ER(+), PR(+), and HER2(3+) (MCF-7 and BCC), and one non-malignant epithelial cancer cell line (MCF-10A). This allowed us to quantify 33 internal metabolites, 10 [...] Read more.
A pipeline for metabolomics, based on UPLC-ESI-MS, was tested on two malignant breast cancer cell lines of the sub-types ER(+), PR(+), and HER2(3+) (MCF-7 and BCC), and one non-malignant epithelial cancer cell line (MCF-10A). This allowed us to quantify 33 internal metabolites, 10 of which showed a concentration profile associated with malignancy. Whole-transcriptome RNA-seq was also carried out for the three mentioned cell lines. An integrated analysis of metabolomics and transcriptomics was carried out using a genome-scale metabolic model. Metabolomics revealed the depletion of several metabolites that have homocysteine as a precursor, which was consistent with the lower activity of the methionine cycle caused by lower expression of the AHCY gene in cancer cell lines. Increased intracellular serine pools in cancer cell lines appeared to result from the over-expression of PHGDH and PSPH, which are involved in intracellular serine biosynthesis. An increased concentration of pyroglutamic acid in malignant cells was linked to the overexpression of the gene CHAC1. Full article
Show Figures

Figure 1

19 pages, 1302 KB  
Article
Genome Analysis Using Whole-Exome Sequencing of Non-Syndromic Cleft Lip and/or Palate from Malagasy Trios Identifies Variants Associated with Cilium-Related Pathways and Asian Genetic Ancestry
by Zarko Manojlovic, Allyn Auslander, Yuxin Jin, Ryan J. Schmidt, Yili Xu, Sharon Chang, Ruocen Song, Sue A. Ingles, Alana Nunes, KC Vavra, Devin Feigelson, Sylvia Rakotoarison, Melissa DiBona, Kathy Magee, Operation Smile, Anjaramamy Ramamonjisoa and William Magee III
Genes 2023, 14(3), 665; https://doi.org/10.3390/genes14030665 - 7 Mar 2023
Cited by 3 | Viewed by 3476
Abstract
Background: Orofacial clefts (OFCs) are common congenital disabilities that can occur as isolated non-syndromic events or as part of Mendelian syndromes. OFC risk factors vary due to differences in regional environmental exposures, genetic variants, and ethnicities. In recent years, significant progress has been [...] Read more.
Background: Orofacial clefts (OFCs) are common congenital disabilities that can occur as isolated non-syndromic events or as part of Mendelian syndromes. OFC risk factors vary due to differences in regional environmental exposures, genetic variants, and ethnicities. In recent years, significant progress has been made in understanding OFCs, due to advances in sequencing and genotyping technologies. Despite these advances, very little is known about the genetic interplay in the Malagasy population. Methods: Here, we performed high-resolution whole-exome sequencing (WES) on non-syndromic cleft lip with or without palate (nCL/P) trios in the Malagasy population (78 individuals from 26 families (trios)). To integrate the impact of genetic ancestry admixture, we computed both global and local ancestries. Results: Participants demonstrated a high percentage of both African and Asian admixture. We identified damaging variants in primary cilium-mediated pathway genes WNT5B (one family), GPC4 (one family), co-occurrence in MSX1 (five families), WDR11 (one family), and tubulin stabilizer SEPTIN9 (one family). Furthermore, we identified an autosomal homozygous damaging variant in PHGDH (one family) gene that may impact metabiotic activity. Lastly, all variants were predicted to reside on local Asian genetic ancestry admixed alleles. Conclusion: Our results from examining the Malagasy genome provide limited support for the hypothesis that germline variants in primary cilia may be risk factors for nCL/P, and outline the importance of integrating local ancestry components better to understand the multi-ethnic impact on nCL/P. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 6096 KB  
Article
A Transcriptomic Regulatory Network among miRNAs, lncRNAs, circRNAs, and mRNAs Associated with L-leucine-induced Proliferation of Equine Satellite Cells
by Jingya Xing, Xingzhen Qi, Guiqin Liu, Xinyu Li, Xing Gao, Gerelchimeg Bou, Dongyi Bai, Yiping Zhao, Ming Du, Manglai Dugarjaviin and Xinzhuang Zhang
Animals 2023, 13(2), 208; https://doi.org/10.3390/ani13020208 - 6 Jan 2023
Cited by 10 | Viewed by 2988
Abstract
In response to muscle injury, muscle stem cells are stimulated by environmental signals to integrate into damaged tissue to mediate regeneration. L-leucine (L-leu), a branched-chain amino acid (BCAA) that belongs to the essential amino acids (AAs) of the animal, has gained global interest [...] Read more.
In response to muscle injury, muscle stem cells are stimulated by environmental signals to integrate into damaged tissue to mediate regeneration. L-leucine (L-leu), a branched-chain amino acid (BCAA) that belongs to the essential amino acids (AAs) of the animal, has gained global interest on account of its muscle-building and regenerating effects. The present study was designed to investigate the impact of L-leu exposure to promote the proliferation of equine skeletal muscle satellite cells (SCs) on the regulation of RNA networks, including mRNA, long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA), and microRNA (miRNA) in skeletal muscles. Equine SCs were used as a cell model and cultured in different concentrations of L-leu medium. The cell proliferation assay found that the optimal concentration of L-leu was 2 mM, so we selected cells cultured with L-leu concentrations of 0 mM and 2 mM for whole-transcriptiome sequencing, respectively. By high-throughput sequencing analysis, 2470 differentially expressed mRNAs (dif-mRNAs), 363 differentially expressed lncRNAs (dif-lncRNAs), 634 differentially expressed circRNAs (dif-circRNAs), and 49 differentially expressed miRNAs (dif-miRNAs) were significantly altered in equine SCs treated with L-leu. To identify the function of autoimmunity and anti-inflammatory responses after L-leu exposure, enrichment analysis was conducted on those differentially expressed genes (DEGs) related to lncRNA, circRNA, and miRNA. The hub genes were selected from PPI Network, including ACACB, HMGCR, IDI1, HAO1, SHMT2, PSPH, PSAT1, ASS1, PHGDH, MTHFD2, and DPYD, and were further identified as candidate biomarkers to regulate the L-leu-induced proliferation of equine SCs. The up-regulated novel 699_star, down-regulated novel 170_star, and novel 360_mature were significantly involved in the competing endogenous RNA (ceRNA) complex network. The hub genes involved in cell metabolism and dif-miRNAs may play fundamental roles in the L-leu-induced proliferation of equine SCs. Our findings suggested that the potential network regulation of miRNAs, circ-RNAs, lncRNAs, and mRNAs plays an important role in the proliferation of equine SCs, so as to build up new perspectives on improving equine performance and treatment strategies for the muscle injuries of horses. Full article
(This article belongs to the Special Issue Nutrigenomics in Animal Sciences)
Show Figures

Figure 1

23 pages, 10385 KB  
Article
Probing Folate-Responsive and Stage-Sensitive Metabolomics and Transcriptional Co-Expression Network Markers to Predict Prognosis of Non-Small Cell Lung Cancer Patients
by Yu-Shun Lin, Yen-Chu Chen, Tzu-En Chen, Mei-Ling Cheng, Ke-Shiuan Lynn, Pramod Shah, Jin-Shing Chen and Rwei-Fen S. Huang
Nutrients 2023, 15(1), 3; https://doi.org/10.3390/nu15010003 - 20 Dec 2022
Cited by 6 | Viewed by 4336
Abstract
Tumour metabolomics and transcriptomics co-expression network as related to biological folate alteration and cancer malignancy remains unexplored in human non-small cell lung cancers (NSCLC). To probe the diagnostic biomarkers, tumour and pair lung tissue samples (n = 56) from 97 NSCLC patients were [...] Read more.
Tumour metabolomics and transcriptomics co-expression network as related to biological folate alteration and cancer malignancy remains unexplored in human non-small cell lung cancers (NSCLC). To probe the diagnostic biomarkers, tumour and pair lung tissue samples (n = 56) from 97 NSCLC patients were profiled for ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS)-analysed metabolomics, targeted transcriptionomics, and clinical folate traits. Weighted Gene Co-expression Network Analysis (WGCNA) was performed. Tumour lactate was identified as the top VIP marker to predict advance NSCLC (AUC = 0.765, Sig = 0.017, CI 0.58–0.95). Low folate (LF)-tumours vs. adjacent lungs displayed higher glycolytic index of lactate and glutamine-associated amino acids in enriched biological pathways of amino sugar and glutathione metabolism specific to advance NSCLCs. WGCNA classified the green module for hub serine-navigated glutamine metabolites inversely associated with tumour and RBC folate, which module metabolites co-expressed with a predominant up-regulation of LF-responsive metabolic genes in glucose transport (GLUT1), de no serine synthesis (PHGDH, PSPH, and PSAT1), folate cycle (SHMT1/2 and PCFR), and down-regulation in glutaminolysis (SLC1A5, SLC7A5, GLS, and GLUD1). The LF-responsive WGCNA markers predicted poor survival rates in lung cancer patients, which could aid in optimizing folate intervention for better prognosis of NSCLCs susceptible to folate malnutrition. Full article
(This article belongs to the Special Issue Nutritional Metabolomics in Cancer Epidemiology)
Show Figures

Figure 1

Back to TopTop