
Citation: Pankevičiūtė-Bukauskienė,
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Abstract: A pipeline for metabolomics, based on UPLC-ESI-MS, was tested on two malignant breast
cancer cell lines of the sub-types ER(+), PR(+), and HER2(3+) (MCF-7 and BCC), and one non-
malignant epithelial cancer cell line (MCF-10A). This allowed us to quantify 33 internal metabolites,
10 of which showed a concentration profile associated with malignancy. Whole-transcriptome RNA-
seq was also carried out for the three mentioned cell lines. An integrated analysis of metabolomics
and transcriptomics was carried out using a genome-scale metabolic model. Metabolomics revealed
the depletion of several metabolites that have homocysteine as a precursor, which was consistent
with the lower activity of the methionine cycle caused by lower expression of the AHCY gene in
cancer cell lines. Increased intracellular serine pools in cancer cell lines appeared to result from the
over-expression of PHGDH and PSPH, which are involved in intracellular serine biosynthesis. An
increased concentration of pyroglutamic acid in malignant cells was linked to the overexpression of
the gene CHAC1.

Keywords: breast cancer; genome-scale metabolic model; drug target

1. Introduction

The deregulation of metabolism has been known to be a characteristic of cancer cells
since the work of Warburg, almost a century ago [1]. In their influential review, Hanahan
and Weinberg [2] listed “deregulation of cellular energetics” among the emerging hallmarks
of cancer. In a recent update by Hanahan [3], this hallmark was renamed “deregulation of
cellular metabolism”. This change of name illustrates the fact that the metabolic changes
that characterize cancer cells go well beyond the Warburg effect [4–7].

Metabolism is a complex system that emerges from the interplay of metabolic en-
zymes and the small molecules (metabolites) transformed by these enzymes. Metabolism
can be studied from different angles, depending on which experimental techniques are
used. Proteomics and transcriptomics enable the measurement of changes in enzyme
concentrations (directly, using proteomics, or indirectly, using transcriptomics), fluxomics
enables the measurement of reaction rates (for example, using 13C-labeled substrates) and
metabolomics enables measurement of the concentrations of intracellular metabolites. The
relationships between these three types of variables (enzyme levels, metabolic fluxes and
metabolite concentrations) can be represented using so called genome-scale metabolic mod-
els (GSMMs) [8]. These models have been used to identify putative drug targets specific
to different cancer cell lines [9,10], and, in combination with gene expression data, have
revealed higher activity of the enzymes involved in the degradation of branched-chain
amino acids, which was confirmed at the protein level for two cancer cell lines: MCF-7 and
BCC [11].
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However, to date, it is not possible to establish a direct relationship between enzyme
levels, metabolic fluxes and metabolite concentrations. It has been shown that most of
the changes in the expression levels of metabolic genes (those coding metabolic enzymes)
do not result in concomitant changes in metabolic fluxes [12], and the transcriptional
changes in just a few enzymes are enough to explain the rearrangement of metabolic fluxes
within the cell [13,14]. A theoretical explanation for the mentioned observations was also
proposed [15]. As perturbations in metabolic fluxes cannot be fully inferred from observed
changes in enzyme concentrations, direct measurements of metabolic fluxes are necessary
in order to understand the metabolism of cancer cells. In previous articles, we have focused
on studying the metabolism of breast cancer cell lines (MCF-7 and BCC) from the point
of view of metabolic fluxes, using 13C-labeled substrates and mass spectroscopy. These
studies revealed a key role of lipid metabolism in fighting oxidative stress [16], and the
fact that leucine degradation is at the source of a large fraction of the mevalonate that fuels
cholesterol synthesis in malignant breast cancer cells [17].

There is also no direct relationship between metabolic fluxes and internal metabolite
concentrations. Indeed, the methods used to infer metabolic flux distributions in steady
state [18] do not require the quantification of metabolite concentrations, but just their
mass spectra (reflecting their 13C labeling pattern). The same metabolic flux distribution
(characterized by the steady state of each internal metabolite) could be achieved at different
steady state concentrations of internal metabolites.

Internal concentrations of metabolites could have a key role in cancer progression by
interacting with signaling pathways, and could also be used as informative biomarkers to
assess malignancy [19]. The first oncometabolite discovered was 2-hydroxyglutarate [20],
a rare metabolite found in high concentrations in gliomas. Since 2010, metabolomics has
revealed a rapidly growing number of metabolites that show concentration alterations
in different cancers. The Human Metabolome Database (HMDB) keeps an up-to-date
repository of cancer-associated metabolites and their roles in different cancer types [19].

The objective of this work is to identify perturbed metabolic processes characteristic
of breast cancer cell lines of the subtypes ER(+), PR(+), and HER2(3+), which could form
the basis of the identification of new markers for diagnosis and drug targets.

2. Results
2.1. Clustering of Cell Types Based on Metabolite Concentrations

First of all, we assessed whether the panel of 33 internal metabolites, quantified using
the described analytical pipeline, can be used to cluster different cell types. The metabolite
concentration data, in relative area units, are available in Supplementary File S1.

Principal Component Analysis (PCA) was carried out (Figure 1) and showed that 97.6%
of the total variability in the data can be assigned to the first two principal components,
with the first component accounting for 61.6% of the variability and the second for 36%.
As shown in Figure 1, the second component clearly separates the non-malignant cell line
MCF-10A from MCF-7 and BCC, while the first component captures variation across the
three cell lines.
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Figure 1. PCA plot showing the differences between the three tested cell lines. Shadowed areas show
95% confidence ellipses.

2.2. Clustering of Metabolites Based on Their Concentration Patterns

The results of PCA indicate that 36% of the variation in metabolite concentrations
observed between the three cell lines is associated with malignancy. In order to identify the
metabolites that contribute the most to separating the non-malignant MCF-10A cell line
from the two others, the data are represented in the form of a heat-map (Figure 2). The six
metabolites in the upper cluster of the graph (tyrosine, methionine, mannitol, hypotaurine,
choline and taurine) are characterized by a higher concentration in MCF-10A compared
to MCF-7 and BCC. Four metabolites (betaine, acetyl-carnitine, serine and pyroglutamic
acid) form a cluster characterized by higher concentrations in MCF-7 and BCC compared
to MCF-10A.

As discussed later, six perturbed metabolites are related to the methionine cycle or have
homocysteine (an intermediate of the methionine cycle) as a metabolic precursor. These
metabolites are: methionine, taurine, hypotaurine, choline, betaine and pyroglutamic acid.

Box plots showing the concentration distribution of some of the discussed metabolites
are shown in Figure 3.
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Figure 2. Heat map showing the relative abundances of each metabolite in each sample. The
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with similar concentration patterns across samples.

2.3. Differential Gene Expression of the Three Breast-Derived Cell Lines

Differentially expressed genes were identified using a false discovery rate of 0.01 and
a fold change of 2 as cut-off values. A total of 1495 genes showed significant up-regulation
in MCF-7 compared MCF-10A and 1335, in which they were significantly down-regulated.
For BCC, 1926 genes were up-regulated and 1669 down-regulated. Among the up-regulated
genes, 274 were common to both cancer cell lines, and 563 of the down-regulated genes
were observed in both cancer cell lines. The complete list of differentially expressed
genes can be found in Supplementary File S2. Volcano plots summarizing the results of
differential expression analysis are shown in Figure 4. A KEGG pathway enrichment test
was carried out using webgestalt.org. No significantly enriched pathways among the
consensus up-regulated genes (with a cut-off false discovery rate of 0.05). Among the
consensus down-regulated genes, 10 KEGG pathways were identified (see Supplementary
Figure S1). Half of these pathways are associated with the response to pathologies, and the
rest are related to signaling receptors, such as IL-17 signaling, or cell adhesion pathways. In
general, this reveals that cancer cells tend to become insensitive to extracellular signaling
and detach from the extracellular matrix. No metabolic processes, which are the focus of
this article, were identified with this kind of gene set analysis, which stresses the need to
use GSMMs as scaffolds for the analysis and interpretation of transcriptomic data.
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Figure 4. Volcano plots showing the distribution of up-regulated (red) and down-regulated (blue)
genes and genes with no differential expression (black) in cancer cells vs. MCF-10A. The selected cut-
off values to select differentially expressed genes were a false discovery rate of 0.01 and a fold-change
of 2.

Among the 274 genes up-regulated in both cancer cell lines, 44 were metabolic genes,
involved in 131 metabolic reactions. Among the 663 consensus down-regulated genes,
130 were metabolic genes, which are associated with 832 metabolic reactions. The large
number of reactions affected by the down-regulated genes comes from the fact that many
of these down-regulated genes are involved in cross-membrane transport. For example, the
solute carrier family 36 member 4 gene, SLC36A4 (ENSG00000180773), is involved in four
transport reactions (of glycine, alanine, proline and serine). The transporter SLC6A15, also
down-regulated in both cancer cell lines, is involved in the transport of 11 amino acids. A
full list of the metabolic reactions linked to up- and down-regulated genes can be found in
Supplementary File S3. In this paper, we aim to find correlations between transcriptomics
and metabolomics, so in further sections, we will focus on finding relationships between
changes at the transcriptomic and metabolomic levels.

2.4. Relationships between Perturbed Metabolites and Expression of Metabolic Genes

Among the perturbed metabolites that were identified in the previous analysis, three
of them (methionine, taurine and hypotaurine) can be traced back to a common metabolic
precursor (homocysteine), which is an intermediate in the methionine cycle. Pyroglutamic
acid is formed from the break-down of glutathione, which also can be traced back to
homocysteine; however, its carbon atoms come from glutamine, which was incorporated
during the synthesis of glutathione.

The gene AHCY, coding the enzyme adenosylhomocysteinase, which breaks down
S-adenosylhomocysteine into adenosine and L-homocysteine, showed significantly lower
expression in MCF-7 and BCC cell lines compared to MCF-10A. AHCY has been previously
identified as a tumor suppressor gene involved in p53-induced cell cycle arrest [21]. To-
gether with the lower concentration of methionine, the decreased expression of AHCY in
malignant cell lines suggests lower activity of the methionine cycle.

Two more of the perturbed metabolites are linked to the methionine cycle (choline and
betaine). As shown in Figure 5, betaine is synthesized from choline (a vitamin obtained
from the diet) and provides methyl groups to the methionine cycle, which are used in
DNA and protein methylation, using S-adenosyl methionine (SAM) as a methyl donor [22].
The internal pool of choline appeared to be smaller in both cancer cell lines compared to
MCF-10A. This could be explained by the down-regulation of SLC44A5, which codes a
choline transporter. Adversely, betaine shows a higher concentration in malignant cell
lines. Betaine (produced from choline) can only be consumed by betaine-homocysteine
methyl transferase, a step in the methionine cycle. The lower activity of the methionine
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cycle can explain the reduced consumption rate of betaine, resulting in its accumulation
within the cells.
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and transcriptomics. Metabolites and genes with lower concentrations and expression levels in
malignant cells are marked in blue, and metabolites with higher concentrations and genes with higher
expression levels in malignant cells are marked in red.

The RNA-seq data revealed that two genes involved in serine biosynthesis from the
glycolytic intermediate 3-phosphoglycerate (PHGDH and PSPH) are more expressed in the
MCF-7 and BCC cell lines compared to MCF-10A. The gene PHGDH codes phosphoglyc-
erate dehydrogenase and has been shown to be overexpressed in several cancers [23]. It
has been shown [24] that the overexpression of PHGDH in the cell line MCF-10A causes
phenotypic alterations that predispose the cells to malignant transformation.

Pyroglutamic acid is a metabolic dead end that results from the degradation of glu-
tathione. Our transcriptomic analysis revealed the overexpression of the gene CHAC1
in both cancer cell lines, which show increased intracellular pools of pyroglutamic acid.
The function of this gene product in breaking down glutathione into cysteinyl-glycine and
pyroglutamic acid was characterized in 2012 [25]. The knock-down of this gene has been
shown to reduce cell migration and proliferation, while its overexpression has the opposite
effect. The expression level of CHAC1 is also correlated with a more advanced stage and
poorer prognosis in breast and ovarian tumors [26].

Other perturbed metabolites are metabolically unrelated to the previously discussed
metabolic processes. For example, increased acetyl-carnitine points to higher activity of
the carnitine shuttle, which is responsible for the transfer of fatty acids from the cytosol
to the mitochondria. The relationship between the carnitine shuttle and cancer is well
established [27]. Finally, the lower concentrations of mannitol can only be explained by the
lower activity of transporters, as mannitol is a metabolically inert compound in humans.
Indeed, the gene SLC26A6, which codes a mannitol transporter, has lower expression levels
in both BCC and MCF-7 compared to MCF-10A.

The expression levels of genes that could be directly linked to perturbations in intra-
cellular metabolic pools are shown in Figure 6.
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reads (RPKM). Error bars represent standard deviations (n = 3).

2.5. Results of Flux Balance Analysis (FBA)

The obtained gene expression data were used to constrain a genome-scale metabolic
model using the python library pyTARG [10]. FBA was used to obtain predictions of the dis-
tribution of metabolic fluxes in each of the studied cell lines. The most relevant observation
was clear down-regulation of the respiratory chain in cancer cell lines, which is consistent
with Warburgs’s effect and had been previously observed in a large panel of different cancer
cell lines [10]. The reaction rate of ATP-synthase decreased in both cancer cells, and the
genes ATP1B3 and ATP6V1H were down-regulated. Complex III of the respiratory chain
also showed a lower rate, concomitantly with the down-regulation of two of the genes
involved: UQCRH and UQCR1. Complex II of the respiratory chain also showed a lower
metabolic flux, as a result of the down-regulation of the gene NDUFB8. Extracellular serine
uptake was also lower in both malignant cell lines, as a result of the down-regulation of
SLC36A4, which codes a serine/proton symporter. Lower transformation rates of CO2 into
bicarbonate are also predicted in malignant cells, as a result of the down-regulation of two
carbonic anhydrases (CA6 and CA2). A list of the perturbed metabolic reactions and their
associated genes can be found in Supplementary File S4.

3. Discussion

There is high metabolic heterogeneity between different breast cancer cell lines, even
between those belonging to the same molecular sub-types, (ER(+), PR(+), and HER2(3+)).
However, some internal metabolites can be linked to malignancy. Transcriptomic data
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allowed us to establish relationships between the observed perturbations in internal metabo-
lites and changes in the expression levels of key enzymes.

Two main conclusions could be obtained from the integrated analysis of transcriptomic
and metabolomic data. First of all, the MCF-7 and BCC cell lines showed lower internal
methionine, taurine and hypotaurine levels, which, together with the down-regulation of
AHCY (adenosylhomocysteinase), reveals decreased activity of the methionine cycle in
cancer cells. On the other hand, a higher concentration of serine and higher expression of the
genes PSPH and PHGDH are consistent with higher serine intracellular biosynthesis (which
compensates for the lower extracellular serine uptake caused by the down-regulation of
SLC36A4). Both methionine and serine are closely related to one-carbon metabolism.

The methionine cycle is involved in the regeneration of the methyl donor SAM, while
serine is involved in the regeneration of 5-methyl-tetrahydrofolate. SAM acts within the
cell as a donor of methyl groups for the methylation of histones and DNA. High SAM
concentrations have been shown to have anti-cancer effects (promoting apoptosis or down-
regulating oncogenes through methylation); in particular, this effect has been shown on
the MCF-7 cell line [28]. 5-methyl-tetrahydrofolate, which uses serine instead of betaine as
a donor of methyl groups, is involved in purine biosynthesis. The relationship between
one-carbon metabolism and cancer is not new [23]. Indeed, the relationship between dietary
folate and cancer development was already noticed in the 1940s, and led to the discovery
of the anticancer drugs known as antifolates [29]. More recently, other clinical implications
of intracellular serine synthesis have been discovered. For example, serine synthesis has
been shown to be activated by the G9A epigenetic program, and G9A inhibitors, such as
BIX01294, can exhibit anti-cancer activity [30].

Besides its role as methyl donor, serine is also a precursor to the synthesis of glycine
and other compounds, such as glutathione, involved in cellular resistance to oxidative
stress. Serine can be synthesized de novo or uptaken from the exterior, and both processes
have been shown to have an impact on cancer proliferation [24,31]. Serine and glycine
starvation have been shown to decrease tumor growth and improve survival [32]. RNA-seq
data indicate that MCF-7 and BCC cell lines both rely on de novo synthesis to keep a
high intracellular concentration of serine. This feature of relying on intracellular synthesis
instead of importing extracellular metabolites has also been observed in the case of choles-
terol [17]. The reliance of cancer cells on the de novo synthesis of serine makes enzymes
involved in serine biosynthesis potential drug targets. Protein kinase C zeta (PKCζ) inhibits
the transcription of PHGDH and PSAT1 and also phosphorylates PHGDH, decreasing its
catalytic activity [33]. Other small molecules inhibiting PHGDH have proven effective at
reducing cell proliferation rates in vitro, and also xenografts in vivo [34,35].

4. Materials and Methods
4.1. Cell Lines and Culture Medium

MCF-7 (human breast adenocarcinoma cell line; CLS—Cell Lines Service, Eppelheim,
Germany) and BCC cells [11] were cultured in Dulbecco’s Modified Eagle Medium: Ham’s
F-12 (1:1; DMEM/F-12) (Life technologies, Carlsbad, CA, USA) medium, supplemented
with 10% fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO, USA), 100 U/mL peni-
cillin and 100 µg/mL streptomycin (pen-strep) (Sigma-Aldrich, St. Louis, MO, USA).
MCF-10A cells (ATCC, Wesel, Germany) were cultured in DMEM/F-12, supplemented
with 5% donor equine serum (GE Healthcare Life Sciences, Logan, UT, USA), pen-strep,
10 µg/mL human recombinant insulin (Life Technologies, Carlsbad, CA, USA), 100 ng/mL
cholera toxin (Sigma-Aldrich, St. Louis, MO, USA), 20 ng/mL recombinant human epi-
dermal growth factor (Thermo Fisher Scientific, Frederick, MD, USA) and 500 ng/mL
hydrocortisone (Sigma-Aldrich, St. Louis, MO, USA). Cells were maintained at 37 ◦C in a
humidified incubator with 5% CO2. Cells were incubated for 24 h. Metabolite extraction
was performed as described earlier by Sellick and co-workers [36].
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4.2. UPLC-ESI-MS Conditions

The samples were analyzed following the protocol published by Virgiliou and co-
workers [37], which allowed su to identify 100 different polar compounds. The Acquity
H-Class UPLC system (Waters, Milford, MA, USA) was used to analyze polar compounds
in cell extracts. The chromatograph was equipped with a YMC-Triart C18 (100 × 2.0 mm,
1.9 µm) column (YMC, Kyoto, Japan). Mass spectrometry (MS) data were obtained in
negative mode in the 50 m/z to 250 m/z range with a Xevo TQD triple quadrupole tandem
mass spectrometer (Waters, Milford, MA, USA) coupled with an electrospray ionization
(ESI) ion source. The column was set at 40 ◦C. Elution was applied with a mobile phase
of 0.1% formic acid water solution (solvent A) and acetonitrile (solvent B). Flow rate was
set to 0.4 mL/min. The starting conditions were set to 95% of solvent A. Gradient elution
was applied with the following proportions of solvent A: 0 to 0.2 min was set to 95%, 0.2 to
1.5 min was set to 10%, 1.5 min to 1.8 min was maintained at 90%, and 1.8 to 2 min was
set back to the starting conditions. The settings for the mass spectrometer were as follows:
capillary voltage was set to negative 2 kV, source temperature to 150 ◦C, desolvation gas
(nitrogen) temperature to 400 ◦C, gas flow to 700 L/h and cone gas flow to −20 L/h. Cone
voltage was set to 25 V.

4.3. Analysis of Metabolomics Data

Based on the retention times reported by Virgiliou and co-workers [37,38] different
metabolites were identified, which were present in all the samples. Three biological
replicates were carried out. The data were further analyzed using MetaboAnalyst [33]
for the statistical tests, and the plots are discussed in the following section. Pathway
enrichment with MetaboAnalyst did not allow us to identify clear metabolic relationships
between perturbed metabolites (beyond the obvious ones such as taurine and hypotaurine).

4.4. RNA Sequencing

Three biological replicates from each of the three cell lines (MCF-7, MCF-10A and BCC)
were sent to Zymo Research for next-gen RNA sequencing. The samples were prepared
for shipment using DNA/RNA ShieldTM (Zymo Research, Irvine, CA USA) by mixing
1 million cells with 500 µL of Shield stabilization solution. The company constructed RNA-
Seq libraries from 500 ng of total RNA using the Zymo-Seq RiboFree Total RNA Library
Prep Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions,
before sequencing on an Illumina NovaSeq (Illumina, San Diego, CA, USA) to a sequencing
depth of at least 30 million read pairs (150 bp paired-end sequencing) per sample.

4.5. Analysis of RNA-Seq Data

The obtained pair-ended reads were aligned on a reference sequence (the complete
list of human transcripts was obtained from Ensembl BioMart) using Bowtie2 [39]. The
resulting SAM files were analyzed using customized python scripts based on the HTSeq
library [40] (provided in the Supplementary File Code1). The expression of each gene was
calculated in reads per kilobase per million reads (RPKM). Student’s t-test was used to
identify up-regulated and down-regulated genes comparing malignant and non-malignant
cell lines. The obtained values were corrected for multiple testing as described in previous
work [11] (the python code used for the differential expression analysis is provided in
the Supplementary File Code2). Raw and processed data were submitted to NCBI’s Gene
Expression Omnibus (GEO) database with the accession number GSE223718.

4.6. Integrated Data Analysis Using pyTARG

In order to obtain meaningful relationships between metabolomics and transcrip-
tomics, we used a GSMM [10] in order to correlate the observed perturbations in metabolite
levels with concomitant changes in gene expression. The python library pyTARG, de-
veloped previously [10], was used to estimate metabolic fluxes from the obtained gene
expression data. The pyTARG library works as follows: Each of the reactions in the model,
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which are catalyzed by metabolic enzymes, is bound to have a maximal rate proportional to
the expression level of the gene coding the enzyme (which is obtained from RNA-seq data).
Once the model is constrained, a metabolic flux distribution is simulated by optimizing
the rate of biomass production. As there are three experimental replicas for each cell
line, three metabolic flux distributions are obtained, which enables the identification of
reactions that have statistically different rates in different cell lines. Metabolic reactions
that were differentially used between malignant and non-malignant cells were identified
using a t-test and a false discovery rate of 0.05 after correction for multiple testing. It was
also required to have an average difference in flux higher than 0.001 mmol h−1 g-DW−1

(millimoles per hour per gram of dry weight). It is known that broad changes in metabolic
flux distributions are typically driven by changes in the expression levels of a relatively
small number of metabolic genes. In order to identify these flux-controlling genes, reactions
showing a significant change in both the estimated reaction rate and the expression level of
at least one of their associated genes were identified.

5. Conclusions

The described analytical pipeline allowed us to quantify enough metabolites to obtain
a clear metabolic footprint of each of the tested cell lines. Among the identified metabolites,
10 of them appeared to be associated with malignancy. The intracellular concentration
of methionine was significantly lower in both malignant cell lines compared to the non-
malignant MCF-10A. Together with the down-regulation of the metabolic gene AHCY
and the depletion of taurine and hypotaurine (which originate from homocysteine), this
observation suggests lower activity of the methionine cycle in cancer cell lines, which
would cause a lower re-methylation rate of SAM. The pro-apoptotic effects of SAM sup-
plementation in breast cancer cells have already been shown. Our data suggest that the
supplementation of methionine and betaine, leading to higher flux in the methionine cycle
and the higher production of SAM, could also have the same effects. This is an interesting
hypothesis that should be tested in the future. An increased intracellular pool of serine
was observed, which is consistent with the increased intracellular synthesis rate caused by
the over-expression of the genes PHGDH and PSPH. The targeting of serine biosynthesis
could be a potential alternative for the treatment of breast cancer. Finally, the recently
discovered relationship between the gene CHAC1 and the production of pyroglutamic acid
was confirmed. The results of this work point to a possible role of pyroglutamic acid as a
biomarker, and an oncogenic role of the gene CHAC1, which remains to be explored further.
All the presented conclusions are based on two breast cancer cell lines, and whether they
apply to other cell lines and cancer types remains to be tested.
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Supplementary File S4: Perturbed metabolic fluxes (predicted by pyTARG) and their associated genes.
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