Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = Pheromones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3465 KiB  
Article
Chromosome-Level Genome Announcement of the Monokaryotic Pleurotus ostreatus Strain PC80
by Jie Wu, Wenhua Sun, Jingkang Zheng, Jinling Liu, Xuedi Liang, Qin Liu and Weili Kong
J. Fungi 2025, 11(8), 563; https://doi.org/10.3390/jof11080563 - 29 Jul 2025
Viewed by 349
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In [...] Read more.
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In this study, we conducted a chromosome-level genome assembly of the monokaryotic basidiospore strain PC80. The assembled genome spanned 40.6 Mb and consisted of 15 scaffolds. Ten of these scaffolds contained complete telomere-to-telomere structures. The scaffold N50 value was 3.6 Mb. Genome annotation revealed 634 carbohydrate-active enzyme (CAZyme) family genes. Through collinearity analysis, we further confirmed that the PC80 genome exhibited higher completeness and greater accuracy compared to the currently published genomes of P. ostreatus. At the matA locus of PC80, three hd1 genes and one hd2 gene were identified. At the matB locus, seven pheromone receptor genes and two pheromone precursor genes were detected. Further phylogenetic analysis indicated that three of these pheromone receptor genes are likely to have mating-specific functions. This complete genome assembly could provide a foundation for future genomic and genetic studies, facilitate the identification of key genes related to growth and developmental regulation, and promote technological innovations in P. ostreatus breeding and efficient utilization. Full article
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Flight Phenology of Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) in Its Native Range: A Baseline for Managing an Emerging Invasive Pest
by Claudia Alzate, Eduardo Soares Calixto and Silvana V. Paula-Moraes
Insects 2025, 16(8), 779; https://doi.org/10.3390/insects16080779 - 29 Jul 2025
Viewed by 288
Abstract
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology [...] Read more.
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology and seasonal dynamics in the Florida Panhandle, using pheromone trapping data to evaluate population trends and environmental drivers. Moths were collected year-round, showing consistent patterns across six consecutive years, including two distinct annual flight peaks: an early crop season flight around March, and a more prominent flight peak during September–October. Moth abundance followed a negative quadratic relationship with temperature, with peak activity occurring between 15 °C and 26 °C. No significant relationship was found with precipitation or wind. These results underscore the strong influence of abiotic factors, particularly temperature, on seasonal abundance patterns of this species. Our findings offer key insights by identifying predictable periods of high pest pressure and the environmental conditions that drive population increases. Understanding the flight phenology and behavior of this species provides an ultimate contribution to the development of effective IPM and insect resistance management (IRM) programs, promoting the development of forecasting tools for more effective, timely pest management interventions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

17 pages, 3837 KiB  
Article
Functional Analysis of NPC2 in Alarm Pheromone Recognition by the Red Imported Fire Ant, Solenopsis invicta (Formicidae: Solenopsis)
by Peng Lin, Jiacheng Shen, Xinyi Jiang, Fenghao Liu and Youming Hou
Insects 2025, 16(8), 766; https://doi.org/10.3390/insects16080766 - 25 Jul 2025
Viewed by 444
Abstract
The red imported fire ant (Solenopsis invicta) is a dangerous invasive insect. These ants rely on releasing an alarm pheromone, mainly composed of 2-ethyl-3,6-dimethylptrazine (EDMP), to warn nestmates of danger and trigger group defense or escape behaviors. This study found two [...] Read more.
The red imported fire ant (Solenopsis invicta) is a dangerous invasive insect. These ants rely on releasing an alarm pheromone, mainly composed of 2-ethyl-3,6-dimethylptrazine (EDMP), to warn nestmates of danger and trigger group defense or escape behaviors. This study found two NPC2 proteins in the ant antennae: SinvNPC2a and SinvNPC2b. SinvNPC2a was highly expressed in the antennae; phylogenetic analysis also suggests that SinvNPC2 likely possesses conserved olfactory recognition functions. By knocking down the SinvNPC2a gene, we found that the electrophysiological response of ant antennae to EDMP became weaker. More importantly, ants lacking SinvNPC2a showed significantly reduced movement range and speed when exposed to EDMP, compared to normal ants not treated with RNAi. These ants did not spread out quickly. Furthermore, tests showed that the purified SinvNPC2a protein could directly bind to EDMP molecules. Computer modeling also showed that they fit together tightly. These findings provide direct evidence that the SinvNPC2a protein plays a key role in helping fire ants detect the EDMP alarm pheromone. It enables the ants to sense this chemical signal, allowing ant colonies to respond quickly. Understanding this mechanism improves our knowledge of how insects smell things. It also suggests a potential molecular target for developing new methods to control fire ants, such as using RNAi to block its function. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 798 KiB  
Study Protocol
Prejudice, Proxemic Space, and Social Odor: The Representation of the ‘Outsider’ Through an Evolutionary Metaverse Psychology Perspective
by Sara Invitto, Francesca Ferraioli, Andrea Schito, Giulia Costanzo, Chiara Lucifora, Assunta Pompili, Carmelo Mario Vicario and Giuseppe Curcio
Brain Sci. 2025, 15(8), 779; https://doi.org/10.3390/brainsci15080779 - 22 Jul 2025
Viewed by 261
Abstract
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact [...] Read more.
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact of five different odors on proxemic behavior when interacting with individuals from stigmatized social groups. Experiment 2 integrates electroencephalography (EEG) to analyze the neural correlates of prejudice-related responses to olfactory stimuli. Experiment 3 explores implicit biases through the Implicit Association Test (IAT) in relation to different fragrances, without employing virtual reality. The proposed protocol is expected to demonstrate a significant relationship between olfactory cues, linked to social relationships, and implicit or explicit prejudices, with variations based on individual differences. These insights will contribute to psychological, neuroscientific, and social interventions, offering new perspectives on the unconscious mechanisms of bias formation. Additionally, this study highlights the potential of virtual reality and olfactory stimuli as innovative tools for studying and addressing social biases in controlled environments. Full article
(This article belongs to the Special Issue New Horizons in Multisensory Perception and Processing—2nd Edition)
Show Figures

Figure 1

12 pages, 2137 KiB  
Article
Electrophysiology and Behavior of Tomicus yunnanensis to Pinus yunnanensis Volatile Organic Compounds Across Infestation Stages in Southwest China
by Jinlin Liu, Mengdie Zhang, Lubing Qian, Zhenji Wang and Zongbo Li
Forests 2025, 16(7), 1178; https://doi.org/10.3390/f16071178 - 17 Jul 2025
Viewed by 281
Abstract
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four [...] Read more.
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four infestation stages (healthy, early-infested, weakened, near-dead) using dynamic headspace sampling. Chemical profiling via gas chromatography–mass spectrometry (GC-MS) identified 51 terpenoids, with α-pinene as the most abundant component. VOC profiles differed markedly between healthy and early-infested trees, while gradual shifts in compound diversity and abundance occurred from the weakened to near-dead stages. Bioactive compounds were screened using gas chromatography–electroantennographic detection (GC-EAD) and a Y-tube olfactometer. Electrophysiological responses in T. yunnanensis were triggered by α-pinene, β-pinene, 3-carene, 2-thujene, and 4-allylanisole. Behavioral tests revealed that α-pinene, 3-carene, and 2-thujene acted as attractants, whereas β-pinene and 4-allylanisole functioned as repellents. These results indicate that infestation-induced VOC dynamics guide beetle behavior, with attractants likely promoting host colonization during early infestation and repellents signaling deteriorating host suitability in later stages. By mapping these chemical interactions, our study identifies potential plant-derived semiochemicals for targeted pest management. Integrating these compounds with pheromones could enhance the monitoring and control strategies for T. yunnanensis, offering ecologically sustainable solutions for pine ecosystems. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

29 pages, 2090 KiB  
Review
Nematode Pheromones as Key Mediators of Behavior, Development, and Ecological Interactions
by Xi Zheng, Junjie Liu and Xin Wang
Biomolecules 2025, 15(7), 981; https://doi.org/10.3390/biom15070981 - 9 Jul 2025
Viewed by 525
Abstract
Plant parasitic nematodes cause huge economic losses to agriculture and forestry every year, and chemical insecticides destroy the ecological environment. Researching the mechanism by which small-molecule signaling substances regulate nematode behavior and development is important for developing environmentally friendly biological control agents. Nematode [...] Read more.
Plant parasitic nematodes cause huge economic losses to agriculture and forestry every year, and chemical insecticides destroy the ecological environment. Researching the mechanism by which small-molecule signaling substances regulate nematode behavior and development is important for developing environmentally friendly biological control agents. Nematode pheromones are essential chemicals signaling intraspecies and interspecies communication, regulating development, reproduction, and social behavior. Their structural diversity enables ecological adaptation and cross-kingdom interactions, influencing fungal predation and plant immunity. This review focuses on the classification, function, and regulatory mechanisms of nematode pheromones, interspecific signal transmission, and biosynthesis pathways. We pay special attention to their potential as environmentally friendly biological control agents as well as the challenges currently encountered in their application. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

47 pages, 1839 KiB  
Review
Behavioral, Endocrine, and Neuronal Responses to Odors in Lampreys
by Philippe-Antoine Beauséjour, Barbara S. Zielinski and Réjean Dubuc
Animals 2025, 15(14), 2012; https://doi.org/10.3390/ani15142012 - 8 Jul 2025
Viewed by 454
Abstract
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating [...] Read more.
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating individual compounds from sea lampreys that can replicate natural behavior when artificially applied in the wild. In no other aquatic vertebrate has the olfactory ecology been described in such extensive detail. In the first section, we provide a comprehensive review of olfactory behaviors induced by specific, individual odorants during every major developmental stage of the sea lamprey in behavioral contexts such as feeding, predator avoidance, and reproduction. Moreover, pheromonal inputs have been shown to induce neuroendocrine responses through the hypothalamic-pituitary-gonadal axis, triggering remarkable developmental and physiological effects, such as gametogenesis and increased pheromone release. In the second section of this review, we describe a hypothetical endocrine signaling pathway through which reproductive fitness is increased following pheromone detection. In the final section of this review, we focus on the neuronal circuits that transform olfactory inputs into motor output. We describe specific brain signaling pathways that underlie odor-evoked locomotion. Furthermore, we consider possible modulatory inputs to these pathways that may induce plasticity in olfactory behavior following changes in the external or internal environment. As a whole, this review synthesizes previous and recent progress in understanding the behavioral, endocrine, and neuronal responses of lampreys to chemosensory signals. Full article
Show Figures

Figure 1

18 pages, 7356 KiB  
Review
Applied Chemical Ecology of Spruce Beetle in Western North America
by Christopher J. Fettig, Jackson P. Audley and Allen Steven Munson
Forests 2025, 16(7), 1103; https://doi.org/10.3390/f16071103 - 3 Jul 2025
Viewed by 287
Abstract
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back [...] Read more.
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back to the mid-20th century and focuses on spruce beetle populations in Alaska, U.S., western Canada, and the central and southern Rocky Mountains, U.S. Spruce beetle aggregation pheromone components include frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane), seudenol (3-methyl-2-cyclohexen-1-ol), MCOL (1-methyl-2-cyclohexen-1-ol), and verbenene (4-methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene). The attraction of spruce beetle to one aggregation pheromone component is enhanced by the co-release of other aggregation pheromones and host compounds (e.g., α-pinene). Several baits that attract spruce beetles are commercially available and are used for survey and detection, population suppression, snag creation, and experimental purposes. The antiaggregation pheromone is MCH (3-methyl-2-cyclohexen-1-one), which has been evaluated for reducing colonization of felled spruce since the 1970s. Beginning in the early 2000s, MCH has been evaluated for protecting live, standing spruce from colonization by and mortality attributed to spruce beetle. With a few exceptions, significant reductions in levels of spruce beetle colonization and/or spruce mortality were reported. More recent efforts have combined MCH with other repellents (e.g., nonhost compounds) in hope of increasing levels of tree protection. Today, several formulations of MCH are registered for tree protection purposes in the U.S. and Canada. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

20 pages, 2408 KiB  
Article
Evaluation of Mating Disruption for Suppression of Plodia interpunctella Populations in Retail Stores
by James F. Campbell, James Miller, James Petersen and Bill Lingren
Insects 2025, 16(7), 691; https://doi.org/10.3390/insects16070691 - 3 Jul 2025
Viewed by 713
Abstract
Mating disruption is a commercially available management tactic for pyralid moths, which are pests of stored products. However, evaluations of efficacy have had limited replication, which limits the ability to draw conclusions about its effectiveness or the impact of different variables on its [...] Read more.
Mating disruption is a commercially available management tactic for pyralid moths, which are pests of stored products. However, evaluations of efficacy have had limited replication, which limits the ability to draw conclusions about its effectiveness or the impact of different variables on its efficacy. We evaluated the mating disruption of Plodia interpunctella in 33 retail pet supply stores (6415 to 17,384 m3) and the impact of factors such as insect density and application rate on efficacy. Prior to starting MD, the average capture of P. interpunctella was 40.2 ± 3.6 moths/trap/month. Immediately after starting treatment, there was a sharp drop in captures (67.8 ± 4.8%) and then a more gradual overall downward. Overall, under mating disruption, the average reduction was 85.0 ± 3.0%. Geographic location, initial moth density, and pheromone application rate did not significantly impact efficacy. Analysis of the relationships between moth captures and mating disruption dispenser density indicated that competitive mechanisms were the primary mechanisms involved. This was the largest replicated assessment of MD for the management of a post-harvest pest and provides valuable foundational and applied insights into the process. Our results show that a standardized MD program can provide pest suppression in retail stores, but it takes time to be fully effective. Finally, identifying the primary mechanism for efficacy provides important information needed for further refinement of MD programs. Full article
Show Figures

Figure 1

24 pages, 1449 KiB  
Review
Heortia vitessoides Infests Aquilaria sinensis: A Systematic Review of Climate Drivers, Management Strategies, and Molecular Mechanisms
by Zongyu Yin, Yingying Chen, Huanrong Xue, Xiaofei Li, Baocai Li, Jiaming Liang, Yongjin Zhu, Keyu Long, Jinming Yang, Jiao Pang, Kaixiang Li and Shaoming Ye
Insects 2025, 16(7), 690; https://doi.org/10.3390/insects16070690 - 2 Jul 2025
Viewed by 600
Abstract
Heortia vitessoides Moore (Lepidoptera: Pyralidae), the dominant outbreak defoliator of Aquilaria sinensis (Myrtales: Thymelaeaceae, the agarwood-producing tree), poses a severe threat to the sustainable development of the agarwood industry. Current research has preliminarily revealed its biological traits and gene functions. However, significant gaps [...] Read more.
Heortia vitessoides Moore (Lepidoptera: Pyralidae), the dominant outbreak defoliator of Aquilaria sinensis (Myrtales: Thymelaeaceae, the agarwood-producing tree), poses a severe threat to the sustainable development of the agarwood industry. Current research has preliminarily revealed its biological traits and gene functions. However, significant gaps persist in integrating climate adaptation mechanisms, control technologies, and host interaction networks across disciplines. This review systematically synthesizes the multidimensional mechanisms underlying H. vitessoides outbreaks through the logical framework of “Fundamental Biology of Outbreaks—Environmental Drivers—Control Strategies—Molecular Regulation—Host Defense.” First, we integrate the biological characteristics of H. vitessoides with its climatic response patterns, elucidating the ecological pathways through which temperature and humidity drive population outbreaks by regulating development duration and host resource availability. Subsequently, we assess the efficacy and limitations of existing control techniques (e.g., pheromone trapping, Beauveria bassiana application), highlighting the critical bottleneck of insufficient mechanistic understanding at the molecular level. Building on this, we delve into the molecular adaptation mechanisms of H. vitessoides. Specifically, detoxification genes (e.g., HvGSTs1) and temperature stress-responsive genes (e.g., HvCAT, HvGP) synergistically enhance stress tolerance, while chemosensory genes mediate mating and host location behaviors. Concurrently, we reveal the host defense strategy of A. sinensis, involving activation of secondary metabolite defenses via the jasmonic acid signaling pathway and emission of volatile organic compounds that attract natural enemies—an “induced resistance–natural enemy collaboration” mechanism. Finally, we propose future research directions: deep integration of gene editing to validate key targets, multi-omics analysis to decipher the host–pest–natural enemy interaction network, and development of climate–gene–population dynamics models. These approaches aim to achieve precision control by bridging molecular mechanisms with environmental regulation. This review not only provides innovative pathways for managing H. vitessoides but also establishes a paradigm for cross-scale research on pests affecting high-value economic forests. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 301 KiB  
Article
Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico
by Raúl Alejandro Atriano Briano, Nallely S. Badillo-Larios, Perla Niño-Moreno, Luis Fernando Pérez-González and Edgar A. Turrubiartes-Martínez
Antibiotics 2025, 14(7), 663; https://doi.org/10.3390/antibiotics14070663 - 30 Jun 2025
Viewed by 459
Abstract
Background:Enterococcus spp. is the third leading cause of healthcare-associated infections in the American continent, often because of the virulence factors that protect the bacterium against host defenses and facilitate tissue attachment and genetic material exchange. In addition, vancomycin, considered a last-resort treatment, [...] Read more.
Background:Enterococcus spp. is the third leading cause of healthcare-associated infections in the American continent, often because of the virulence factors that protect the bacterium against host defenses and facilitate tissue attachment and genetic material exchange. In addition, vancomycin, considered a last-resort treatment, has shown reduced efficacy in Enterococcus spp. strains. However, the relationship between bacterial resistance and virulence factors remains unclear. This study intends to evaluate the prevalence of glycopeptide-resistant genotypes and virulence factors in Enterococcus spp. strains. Methods: Over six months, 159 Enterococcus spp. strains causing nosocomial infections were analyzed. Multiplex PCR was performed to identify species, glycopeptide-resistant genotypes, and 12 virulence factors. Results: The most abundant species identified were Enterococcus faecalis and E. faecium. Vancomycin resistance was observed in 10.7% of the isolates, and the vanA genotype was present in 47% of resistant samples. The main virulence factors detected were acm (54%), which is related to cell adhesion; gel E (66%), a metalloproteinase linked to tissue damage; and the sex pheromones cpd (64%) and ccf (84%), which are involved in horizontal gene transfer. A significant association was found between the prevalence of acm, ccf, and cpd in VRE isolates, indicating the potential dissemination of genes to emerging strains via horizontal gene transfer. In addition, a new E. faecium, which displayed five virulence factors and harbored the vanA sequence type, was identified and registered as ST2700. Conclusions:Enterococcus faecalis and E. faecium are clinically critical due to multidrug resistance and virulence factors like acm, which aids host colonization. Genes ccf and cpd promote resistance spread via horizontal transfer, while the emerging ST2700 strain requires urgent monitoring to curb its virulent, drug-resistant spread. Full article
31 pages, 3670 KiB  
Article
Enhanced Ant Colony Algorithm Based on Islands for Mobile Robot Path Planning
by Qian Li, Qipeng Li and Baoling Cui
Appl. Sci. 2025, 15(13), 7023; https://doi.org/10.3390/app15137023 - 22 Jun 2025
Viewed by 285
Abstract
Path planning in complex environments presents a substantial research challenge for mobile robots. This study introduces an enhanced ant colony algorithm based on islands (EACI) for mobile robot path planning. First, the original map’s grid cells—which could potentially cause ants to become trapped [...] Read more.
Path planning in complex environments presents a substantial research challenge for mobile robots. This study introduces an enhanced ant colony algorithm based on islands (EACI) for mobile robot path planning. First, the original map’s grid cells—which could potentially cause ants to become trapped in deadlocks—are transformed into obstacles. This process generates an auxiliary map, where a specified number of islands are evenly distributed between the starting and end grids. Second, an irregular pheromone initialization strategy is employed to enhance the information transmission between neighboring islands. Concurrently, the heuristic function is refined, and an adaptive evaporation coefficient is incorporated to facilitate dynamic adjustments in pheromone updates. These modifications effectively reduce the number of iterations required and decrease the incidence of deadlock among the ants. Third, the performance and advantages of the EACI are validated in various grid maps. Simulation results demonstrate that, compared to other optimization algorithms, the EACI method provides superior path solutions, achieves faster convergence, and reduces the number of lost ants. In 20 × 20, 30 × 30, 40 × 40, and 50 × 50 environments, the average numbers of iterations are 1, 1.4, 6.2, and 7.1, respectively, while the average numbers of lost ants are 9.85, 27.5, 47.6, and 99.2, respectively—demonstrating strong stability and adaptability. Finally, real-world experiments validate the algorithm’s effectiveness. Full article
Show Figures

Figure 1

25 pages, 6846 KiB  
Article
DGA-ACO: Enhanced Dynamic Genetic Algorithm—Ant Colony Optimization Path Planning for Agribots
by Zhenpeng Zhang, Pengyu Li, Shanglei Chai, Yukang Cui and Yibin Tian
Agriculture 2025, 15(12), 1321; https://doi.org/10.3390/agriculture15121321 - 19 Jun 2025
Viewed by 483
Abstract
Recent advancements in agricultural mobile robots (agribots) have enabled the execution of critical tasks such as crop inspection, precision spraying, and selective harvesting. While agribots show significant potential, conventional path-planning algorithms suffer from three limitations: (1) inadequate dynamic obstacle avoidance, which may compromise [...] Read more.
Recent advancements in agricultural mobile robots (agribots) have enabled the execution of critical tasks such as crop inspection, precision spraying, and selective harvesting. While agribots show significant potential, conventional path-planning algorithms suffer from three limitations: (1) inadequate dynamic obstacle avoidance, which may compromise operational safety, (2) premature convergence to local optima, and (3) excessive energy consumption due to suboptimal trajectories. To overcome these challenges, this study proposes an enhanced Dynamic Genetic Algorithm—Ant Colony Optimization (DGA-ACO) framework. It integrates a 2D risk-penalty mapping model with dynamic obstacle avoidance mechanisms, improves max–min ant system pheromone allocation through adaptive crossover-mutation operators, and incorporates a hidden Markov model for accurately forecasting obstacle trajectories. A multi-objective fitness function simultaneously optimizes path length, energy efficiency, and safety metrics, while genetic operators prevent algorithmic stagnation. Simulations in different scenarios show that DGA-ACO outperforms Dijkstra, A*, genetic algorithm, ant colony optimization, and other state-of-the-art methods. It achieves shortened path lengths and improved motion smoothness while achieving a certain degree of dynamic obstacle avoidance in the global path-planning process. Full article
(This article belongs to the Special Issue Research Advances in Perception for Agricultural Robots)
Show Figures

Figure 1

13 pages, 2783 KiB  
Article
Optimization of Traps Used in the Management of Monochamus galloprovincialis (Coleoptera: Cerambycidae), the Insect-Vector of Pinewood Nematode, to Reduce By-Catches of Non-Target Insects
by Luís Bonifácio and Edmundo Sousa
Forests 2025, 16(6), 1017; https://doi.org/10.3390/f16061017 - 17 Jun 2025
Cited by 1 | Viewed by 382
Abstract
A possible tactic to survey and control Pine Wilt Disease is the use of semiochemical-baited traps to capture the insect-vector, the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). The most common chemical lure used is the Galloprotect Pack, which includes the aggregation pheromone [...] Read more.
A possible tactic to survey and control Pine Wilt Disease is the use of semiochemical-baited traps to capture the insect-vector, the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). The most common chemical lure used is the Galloprotect Pack, which includes the aggregation pheromone ([2-undecyloxy] ethanol), a host monoterpene (α-pinene), and bark-beetle pheromones (ipsenol and 2-methyl-3-buten-1-ol). This lure also attracts non-target species, including bark beetles (Coleoptera: Curculionidae: Scolytinae) that use ipsenol (Ips sexdentatus (Boerner)) and 2-methyl-3-buten-1-ol (Orthotomicus erosus (Wollaston)) as pheromones, but also large numbers of their natural enemies, Temnoscheila caerulea (Olivier) (Coleoptera: Trogossitidae), Aulonium ruficorne (Olivier) (Coleoptera: Colydiidae), and Thanasimus formicarius (L.) (Coleoptera: Cleridae), and other saproxylic insects (Coleoptera: Cerambycidae). These catches cause a decrease in biodiversity of the forest insect communities, and the removal of predatory insects may favour bark beetle outbreaks. Thus, our project objective was to test trap modifications to try to reduce catches of non-target insects. Modifying the multifunnel trap’s collection cup by placing a 0.5 cm mesh in the drainage hole allowed the escape of all predator beetles (Cleridae, Trogossitidae, Colydiidae, and Histeridae) in 2020, and retained only two Trogossitidae in 2021, against 249 specimens caught in the non-modified collection cup. This simple modification thus allowed the escape of almost all predators, while maintaining the traps’ efficiency at catching the target species, M. galloprovincialis. Full article
(This article belongs to the Special Issue Advance in Pine Wilt Disease)
Show Figures

Figure 1

20 pages, 6031 KiB  
Article
Identification and Expression Profiles of Chemosensory Genes in the Antennal Transcriptome of Protaetia brevitarsis (Coleoptera: Scarabaeidae)
by Shi-Hang Zhao, Yang Yue, Qi Gao, Rui-Tao Yu, Zhao-Hui Yang, Nan Zhou and Guo-Liang Xu
Insects 2025, 16(6), 607; https://doi.org/10.3390/insects16060607 - 9 Jun 2025
Viewed by 1435
Abstract
Chemosensory systems play a pivotal role in insect survival and reproduction by mediating the detection of volatile organic compounds in the environment. Protaetia brevitarsis (Coleoptera: Scarabaeidae), a phytophagous pest widely distributed across East Asia, poses a significant threat to agro-horticultural systems through crop [...] Read more.
Chemosensory systems play a pivotal role in insect survival and reproduction by mediating the detection of volatile organic compounds in the environment. Protaetia brevitarsis (Coleoptera: Scarabaeidae), a phytophagous pest widely distributed across East Asia, poses a significant threat to agro-horticultural systems through crop damage. We conducted antennal transcriptome sequencing of adult beetles and identified 117 chemosensory-related genes, including 66 odorant receptors (ORs), 20 ionotropic receptors, 10 gustatory receptors, 13 odorant-binding proteins (OBPs), four chemosensory proteins, and four sensory neuron membrane proteins. Tissue-specific expression profiling revealed the antennal enrichment of five PbreOBP genes and twenty-three ORs. Notably, sexual dimorphism was observed in OR expression patterns. PbreOR1/6/17/18/21/22/30/32 exhibited male-biased antennal expression, whereas PbreOR25/26/29/38/41/44/61 demonstrated female-biased antennal expression, indicating their potential involvement in sex-specific behaviors, such as pheromone detection and oviposition site selection. A comprehensive description of the antenna chemosensory-related genes of P. brevitarsis has deepened our understanding of the olfactory mechanisms in coleopteran insects. This study also provides a basis for understanding the molecular mechanisms underlying olfaction in P. brevitarsis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop