Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Pelton nozzles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 17657 KB  
Article
Effect of Electrical Load and Operating Conditions on the Hydraulic Performance of a 10 kW Pelton Turbine Micro Hydropower Plant
by Raúl R. Delgado-Currín, Williams R. Calderón-Muñoz, J. C. Elicer-Cortés and Renato Hunter-Alarcón
Energies 2025, 18(16), 4413; https://doi.org/10.3390/en18164413 - 19 Aug 2025
Viewed by 1291
Abstract
Micro-hydroelectric power plants play a fundamental role in microgrid systems and rural electrification projects based on non-conventional renewable energies, where the stability of the electricity supply and load variability are critical factors for efficient operation. This work focuses on analyzing the impact of [...] Read more.
Micro-hydroelectric power plants play a fundamental role in microgrid systems and rural electrification projects based on non-conventional renewable energies, where the stability of the electricity supply and load variability are critical factors for efficient operation. This work focuses on analyzing the impact of electrical load variation on the performance of a 10 kW micro hydroelectric power plant equipped with a Pelton turbine coupled to an electric generator. The main objective is to characterize the behavior of the turbine–generator system under different operating conditions, evaluating the hydraulic performance of the turbine, the electrical performance of the generator, and the overall performance of the micro power plant. Key variables such as flow rate, pressure, shaft speed, mechanical torque, current, and electrical voltage are monitored, considering the effect of electrical consumption on each of them. The experimental methodology includes tests at different electrical loads connected to the generator, using the spear system, which allows the flow rate in the injector to be modulated. The results indicate that reducing the flow rate using the spear increases the torque on the shaft, as well as the electrical current and voltage, for the same energy demand. Likewise, it is observed that the electrical efficiency of the generator remains stable for shaft speeds above 400 rpm, while the overall efficiency of the turbine–generator improves by up to 25% at this same speed. However, a voltage drop of more than 8% is recorded when the electrical power consumption increases from 3 kW to 9 kW, which demonstrates the sensitivity of the system to load variations. This work provides a comprehensive view of the dynamic behavior of micro-hydraulic power plants under realistic operating conditions, proposing an experimental methodology that can be applied to the design, optimization, and control of small-scale hydroelectric systems. These results provide novel experimental evidence on how electrical load variations affect the global performance of P -based micro hydropower systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

11 pages, 3451 KB  
Article
Efficiency Testing of Pelton Turbines with Artificial Defects—Part 2: Needles and Seat Rings
by Florian Fahrni, Thomas Staubli and Ernesto Casartelli
Energies 2025, 18(11), 2725; https://doi.org/10.3390/en18112725 - 23 May 2025
Viewed by 1060
Abstract
The erosion of Pelton turbine components in mountainous areas with high sediment input is a major challenge for energy- and cost-efficient operation. Quantitative data on possible efficiency losses associated with local damage are needed. A systematic experimental study was carried out on a [...] Read more.
The erosion of Pelton turbine components in mountainous areas with high sediment input is a major challenge for energy- and cost-efficient operation. Quantitative data on possible efficiency losses associated with local damage are needed. A systematic experimental study was carried out on a model turbine to determine the efficiency losses caused by damaged needles and seat rings. For this purpose, artificial patterns of erosion-like damage were generated on the surfaces of needles and seat rings. These patterns were gradually deepened, and hill charts were measured repeatedly. The combination of needle and seat ring defects was also studied, and the finding is that superimposing the individual efficiency losses of the needle and seat ring resulted in the same efficiency loss measured for both damaged parts. The results of the measurement campaign show that damaged needles should be replaced at an early stage of deterioration, as efficiency losses can quickly add up to several percent and become unacceptable at partial load operations of the turbines. Full article
Show Figures

Figure 1

13 pages, 8209 KB  
Article
Effect of Injector Needle Tip Shape on Jet Flow for Pelton Turbine
by Chun Zhang, Chao Wang, Qianhe Tian, Quanwei Liang, Yilin Zhu, Yexiang Xiao, Yong Bai, Zhaoning Wang, Hengte Zhou and Xianwu Luo
Energies 2025, 18(1), 102; https://doi.org/10.3390/en18010102 - 30 Dec 2024
Cited by 1 | Viewed by 1543
Abstract
The Pelton turbine has been widely applied for the advantages of its simple structure, flexible mass flow rate, wide range of applicable heads and high efficiency. The nozzle and needle are a core part of the Pelton turbine injector. In this paper, the [...] Read more.
The Pelton turbine has been widely applied for the advantages of its simple structure, flexible mass flow rate, wide range of applicable heads and high efficiency. The nozzle and needle are a core part of the Pelton turbine injector. In this paper, the VOF (Volume of Fluid) model was used to simulate the jet flow behaviors and hydraulic performance for a Pelton injector with a needle tip with different breakage losses. Three types of needle tip breakage loss combined with normal needle tip were selected for numerical calculation and analysis, focusing on the influence of needle tip on the high-speed jet flow characteristics. An injector with normal needle tip hydraulic performance is compared with the model test. Finally, the injector hydraulic performance and the jet flow behavior changes with the needle tip shape were comprehensively analyzed. Results show that the needle tip shape almost does not affect the flow rate; when the tip breakage loss is larger than 0.1 of nozzle diameter, the jet efficiency will decrease rapidly and the jet will diffuse rapidly after outflow from the injector. The investigation provides a basis for the operation, maintenance and stability of the Pelton turbine. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

28 pages, 10431 KB  
Article
Numerical Assessment of the Hydrodynamic Excitation Characteristics of a Pelton Turbine
by Longgang Sun, Wenrui Fan, Hengte Zhou, Zhaoning Wang and Pengcheng Guo
Sustainability 2024, 16(23), 10667; https://doi.org/10.3390/su162310667 - 5 Dec 2024
Cited by 7 | Viewed by 2279
Abstract
The Pelton turbine is an ideal choice for developing high-head hydropower resources. However, its cantilever-beam structure exposes the runner to intense alternating loads from high-velocity jets, causing localized high stresses, structural vibrations, and potential bucket fractures, all of which compromise safe operation. This [...] Read more.
The Pelton turbine is an ideal choice for developing high-head hydropower resources. However, its cantilever-beam structure exposes the runner to intense alternating loads from high-velocity jets, causing localized high stresses, structural vibrations, and potential bucket fractures, all of which compromise safe operation. This study employs fluid–structure interaction analysis for the numerical investigation of a six-nozzle Pelton turbine to examine its unstable flow characteristics and hydrodynamic excitation under high-velocity jets. Our findings indicate that low-order frequencies primarily induce overall runner oscillations, while high-order frequencies result in oscillation, torsional displacement, and localized vibrations. Torsional displacement at the free end of the bucket induces stress concentrations at the root of the bucket and the splitter, the outflow edge, and the cut-out. The amplitudes of stress and displacement are correlated with the nozzle opening, with displacement typically in phase with torque, while stress fluctuations exhibit a phase lag. The stress and displacement values are higher on the bucket’s front, with maximum stress occurring at the bucket root and maximum displacement at the outflow edge, particularly in regions subjected to prolonged jet impact. The dominant frequency of the stress pulsations matches the number of nozzles. This study elucidates the dynamic response of Pelton turbines under high-velocity jets, correlating fluid load with runner dynamics, identifying maximum stress and deformation points, and providing technical support for performance evaluation. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 8853 KB  
Article
Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size
by Jie Liu, Yilin Zhu, Quanwei Liang, Yexiang Xiao, Zhengshu Liu, Haijun Li, Jian Ye, Nianhao Yang, Haifeng Deng and Qingpin Du
Energies 2024, 17(7), 1635; https://doi.org/10.3390/en17071635 - 28 Mar 2024
Cited by 6 | Viewed by 2235
Abstract
The sediment erosion of Pelton turbine components is a major challenge in the operation and development of high-head water resources, especially in mountainous areas with high sediment yield. In this paper, a study using numerical simulation was conducted with different sediment particle sizes [...] Read more.
The sediment erosion of Pelton turbine components is a major challenge in the operation and development of high-head water resources, especially in mountainous areas with high sediment yield. In this paper, a study using numerical simulation was conducted with different sediment particle sizes in the fine sand range. And the erosion mechanism of the Pelton turbine injector was analyzed. The Eulerian Lagrange method was adopted to simulate the gas–liquid–solid flow. The Mansouri’s model was applied to estimate the injector erosion. The predicted erosion results were in accord with field erosion photographs. In particular, the asymmetrical erosion distribution on the needle surface was physically reproduced. With the sediment particle size increasing from 0.05 mm, the needle erosion rate decreased, while the nozzle casing erosion rate increased dramatically. In order to clarify this tendency, the characteristics of the three-phase flow were analyzed. Interestingly, the results show that with the rise in particle size, the separation of particles and water streamlines became more serious in the contraction section of the nozzle mouth. Consequently, it caused the enhancement of erosion of the nozzle surfaces and weakened the erosion of the needle surfaces. Significant engineering insights may be provided for weakening Pelton injector erosion with needle guides in the current study. Full article
(This article belongs to the Special Issue Recent Advances in Hydro-Mechanical Turbines: Powering the Future)
Show Figures

Figure 1

33 pages, 10761 KB  
Article
Measurements and Modelling of the Discharge Cycle of a Grid-Connected Hydro-Pneumatic Energy Storage System
by Luke Aquilina, Tonio Sant, Robert N. Farrugia, John Licari, Cyril Spiteri Staines and Daniel Buhagiar
Energies 2024, 17(7), 1597; https://doi.org/10.3390/en17071597 - 27 Mar 2024
Cited by 2 | Viewed by 1421
Abstract
Hydro-pneumatic energy storage is a form of compressed-air energy storage that can provide the long-duration storage required for integrating intermittent renewable energies into electrical power grids. This paper presents results based on numerical modelling and laboratory tests for a kilowatt-scale HPES system tested [...] Read more.
Hydro-pneumatic energy storage is a form of compressed-air energy storage that can provide the long-duration storage required for integrating intermittent renewable energies into electrical power grids. This paper presents results based on numerical modelling and laboratory tests for a kilowatt-scale HPES system tested at the University of Malta. This paper presents measurements of the discharge cycle, in which energy stored in compressed air within a pressure vessel is hydro-pneumatically converted back into electricity via a Pelton turbine and fed into the national electricity grid. The tests were conducted using a hydraulic turbine operated under different fixed-turbine rotational speed settings, with the pressure being allowed to decrease gradually during the HPES system’s discharge cycle. The system’s overall efficiency accounted for flow losses, turbine inefficiencies, and electrical losses. The tests showed that this efficiency was practically independent of the compressed-air pressure of specific water turbine runner speeds, despite the water turbine operating at fixed speeds. A numerical model developed in MATLAB Simulink (R2022a) was also presented for use simulating the hydraulic performance of the system during the discharge cycle. The model used secondary loss coefficients for the hydraulic circuit and derived velocity coefficients from computational fluid dynamics (CFD) for the Pelton turbine nozzle. We achieved very good agreement between the predictions based on numerical modelling and the measurements taken during laboratory testing. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 12429 KB  
Article
Study on Internal Flow Characteristics and Abrasive Wear of Pelton Turbine in Sand Laden Water
by Yu Huang, Fangxiong Deng, Huiming Deng, Qiwei Qing, Mengjun Qin, Jitao Liu, Zhishun Yu, Jiayang Pang and Xiaobing Liu
Processes 2023, 11(5), 1570; https://doi.org/10.3390/pr11051570 - 21 May 2023
Cited by 16 | Viewed by 2797
Abstract
When a Pelton turbine operates in sand laden water, the abrasive wear of its overflow components by high-speed jets is serious. Based on the VOF (volume of fluid) multiphase flow model, the SST (shear stress transfer) k-ω turbulence model, the particle [...] Read more.
When a Pelton turbine operates in sand laden water, the abrasive wear of its overflow components by high-speed jets is serious. Based on the VOF (volume of fluid) multiphase flow model, the SST (shear stress transfer) k-ω turbulence model, the particle motion Lagrangian model, the generic wear model, and the SIMPLEC (Semi-Implicit Method for Pressure Linked Equations Consistent) algorithm, the liquid–air–solid three-phase flow in the key overflow components of a Pelton turbine were simulated, the abrasive wear was predicted, and the internal sand-water flow characteristics and the abrasive wear of the overflow components were analyzed. The results show that the trailing edge at the root of the runner bucket, the leading face of the bucket near the root, the notch, and the splitter are severely worn. The abrasive wear of the splitter and the notch is more severe than that of the leading face of the bucket. The wear rate from the splitter to the trailing edge increases first and then decreases. The wear pattern of the needle tip is mainly “dotted”, while that of the nozzle opening is “flaky”, and the abrasive wear of the nozzle opening is more severe than that of the needle. The predicted results are consistent with the actual conditions at the site of the power station. This study provides a technical method for the prediction of abrasive wear of the Pelton turbine and a technical basis for the operation and maintenance of the power station. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 10388 KB  
Article
Nozzle Jet Deviation from Bucket Pitch Circle’s Effect on the Stability and Efficiency of Pelton Turbine
by Huiming Deng, Ke Song, Fangxiong Deng, Yu Huang, Tao Luo, Yijin Zhou, Bei Qin, Yongzhong Zeng, Zhishun Yu, Jiayang Pang and Xiaobing Liu
Processes 2023, 11(5), 1342; https://doi.org/10.3390/pr11051342 - 26 Apr 2023
Cited by 16 | Viewed by 3137
Abstract
During the operation of a Pelton turbine, the centerline of the nozzle jet may deviate from the bucket pitch circle due to the low installation and maintenance accuracy, which will reduce the operating efficiency and the stability of the turbine and even cause [...] Read more.
During the operation of a Pelton turbine, the centerline of the nozzle jet may deviate from the bucket pitch circle due to the low installation and maintenance accuracy, which will reduce the operating efficiency and the stability of the turbine and even cause severe vibrations and damages. Based on the VOF (Volume of Fluid) two-phase flow model and the SST k-ω turbulence model, the flow characteristics of a Pelton turbine were simulated with the nozzle jet deviating from the bucket pitch circle. The pressure pulsation inside the bucket and the force distribution of the runner were obtained, the turbine oscillation and efficiency were measured before and after the jet deviation, and the effects of the radial and axial deviations on the stability and efficiency of the Pelton turbine were analyzed. The results show that both the radial and axial deviations of the jet cause a significant increase in the axial force and the pressure pulsation amplitude of the turbine; the radial and tangential forces on the runner are slightly reduced; the maximum axial force on the runner is increased by 4 times and 2 times, respectively, after the axial and radial deviations within the maximum value allowed by the industry standard; and the efficiency of the turbine is reduced by 0.4% and 0.3%, respectively. The maximum relative amplitude of pressure pulsation in the radial offset case appears in the center of the bucket blade, while the axial offset case causes uneven pressure distribution on both sides of the diverter blade, uneven force on the bucket blade of the runner, and fatigue damage. By comparing the operation of the runner under the two offset cases, we can find that the axial offset of the jet has a greater impact on the stability of the runner than the radial offset, and the unit is more prone to vibration, increasing the risk of the unit lifting. Full article
Show Figures

Figure 1

13 pages, 11560 KB  
Article
Analysis of Sediment and Water Flow and Erosion Characteristics of Large Pelton Turbine Injector
by Jitao Liu, Jiayang Pang, Xiaobing Liu, Yu Huang and Huiming Deng
Processes 2023, 11(4), 1011; https://doi.org/10.3390/pr11041011 - 27 Mar 2023
Cited by 25 | Viewed by 2900
Abstract
Based on the solid–liquid two-phase flow model, SST k-ω model, and Lagrangian equation model of particle motion, numerical simulations of the sediment–water flow in the injector of a large Pelton turbine were conducted. The distribution rules of pressure, velocity, erosion rate, and erosion [...] Read more.
Based on the solid–liquid two-phase flow model, SST k-ω model, and Lagrangian equation model of particle motion, numerical simulations of the sediment–water flow in the injector of a large Pelton turbine were conducted. The distribution rules of pressure, velocity, erosion rate, and erosion location of the injector were obtained by analyzing the sediment–water flow characteristics and sediment erosion distribution characteristics of the injector. The results revealed that the velocity distribution trend of the water inside the cylindrical jet exhibited a nonlinear distribution, and the phenomenon of “velocity deficit” occurred at the end of the needle guide and needle tip, resulting in a decrease in the jet quality of the injector. The sediment particle diameter affected the erosion rate of the needle and erosion location of the needle and nozzle port ring. This study provided guidance for sediment erosion analysis and the prediction of the utility of large Pelton turbines. Full article
Show Figures

Figure 1

20 pages, 4879 KB  
Article
Numerical Investigation of Pelton Turbine Distributor Systems with Axial Inflow
by Franz Josef Johann Hahn, Anton Maly, Bernhard Semlitsch and Christian Bauer
Energies 2023, 16(6), 2737; https://doi.org/10.3390/en16062737 - 15 Mar 2023
Cited by 7 | Viewed by 3793
Abstract
In an agile power grid environment, hydroelectric power plants must operate flexibly to follow the demand. Their wide operating range and high part-load efficiencies allow for multi-injector Pelton turbines to fulfil these demands as long as the water jet quality is maintained. The [...] Read more.
In an agile power grid environment, hydroelectric power plants must operate flexibly to follow the demand. Their wide operating range and high part-load efficiencies allow for multi-injector Pelton turbines to fulfil these demands as long as the water jet quality is maintained. The water jet shape is governed by the flow in the distributor system. Pelton distributor systems with axial feed can potentially reduce the costs of the power station. Providing the flow quality at the nozzle outlet challenges the design of such Pelton distributors. Therefore, numerical simulations are performed to optimise a parameterised Pelton distributor system with axial feed. The effects of geometric parameter variations on its performance are studied. The criteria to evaluate the flow in distributor systems are presented, which are applied to quantify the power losses and secondary flows. Additionally, the second law analysis illustrates where the losses are generated. Due to various pipe bends, all designs exhibit a distinct S-shaped secondary flow pattern at the nozzle inlet. The simulations reveal that the power losses are greatly reduced by shaping the initial part of the branch line as a conical frustum. Deviation angles of the branch line close to 90° allow for lower secondary flow magnitudes at the nozzle inlet. Full article
(This article belongs to the Special Issue Selected Contributions of the ViennaHydro 2022)
Show Figures

Figure 1

15 pages, 8504 KB  
Article
Transient 3D CFD Simulation of a Pelton Turbine—A State-of-the-Art Approach for Pelton Development and Optimisation
by Lukas Sandmaier, Peter Meusburger and Helmut Benigni
Int. J. Turbomach. Propuls. Power 2023, 8(1), 10; https://doi.org/10.3390/ijtpp8010010 - 9 Mar 2023
Cited by 12 | Viewed by 6446
Abstract
The complex flow conditions in Pelton turbines make it challenging to gain detailed insight into the local flow processes. However, CFD methods offer vast potential for developing and optimising Pelton turbines due to these flow conditions. In a comprehensive examination, a six-nozzle prototype [...] Read more.
The complex flow conditions in Pelton turbines make it challenging to gain detailed insight into the local flow processes. However, CFD methods offer vast potential for developing and optimising Pelton turbines due to these flow conditions. In a comprehensive examination, a six-nozzle prototype Pelton turbine with 19 buckets has been investigated using 3D CFD simulations. First, the steady simulations of the manifold and the unsteady runner simulation have been performed with a mesh-based, commercial CFD code, whereby a two-equation turbulence model and the homogeneous two-phase model were used. Then, to limit the simulation time, symmetry was applied in the runner simulation, and also a strategic definition of the mesh element size in selected blocks of higher interest. Subsequently, the simulation results were analysed. Based on the first simulation results, the geometry of the distributor was modified in an iterative process to reduce losses and improve the jet shape. For the improvement of the latter, a characteristic number was introduced to quantify the secondary flows upstream of the nozzles, which act negatively on the jet shape. Furthermore, the results of the runner simulation were analysed with special regard to the jet-bucket interaction from the start to the end of the impingement cycle of a particular bucket. Finally, a potential efficiency increase could be derived from the summary. Full article
Show Figures

Figure 1

30 pages, 32626 KB  
Article
A New Control Algorithm to Increase the Stability of Wind–Hydro Power Plants in Isolated Systems: El Hierro as a Case Study
by Agustín Marrero, Jaime González, José A. Carta and Pedro Cabrera
J. Mar. Sci. Eng. 2023, 11(2), 335; https://doi.org/10.3390/jmse11020335 - 3 Feb 2023
Cited by 8 | Viewed by 4049
Abstract
The present paper proposes the implementation of a new algorithm for the control of the speed regulators of Pelton wheel turbines, used in many of the pumped hydroelectric energy storage systems that operate in isolated electrical systems with high renewable energy participation. This [...] Read more.
The present paper proposes the implementation of a new algorithm for the control of the speed regulators of Pelton wheel turbines, used in many of the pumped hydroelectric energy storage systems that operate in isolated electrical systems with high renewable energy participation. This algorithm differs substantially from the standard developments which use PID or PI governors in that, in addition to acting on the nozzle needles and deflectors, it incorporates a new inner-loop pressure stabilization circuit to improve frequency regulation and dampen the effects of the pressure waves that are generated when regulating needle position. The proposed algorithm has been implemented in the Gorona del Viento wind–hydro power plant, an installation which supplies the primary energy needs of the island of El Hierro (Canary Islands, Spain). Although, as well as its wind and hydro generation systems, the plant also has a diesel engine based generation system, the validation of the results of the study presented here focuses on situations in which frequency control is provided exclusively by the hydroelectric plant. It is shown that implementation of the proposed algorithm, which replaces the previous control system based on a classical PI governor, is able to damp the pressure wave that originates in the long penstock of the plant in the face of variations in non-dispatchable renewable generation, a situation which occurred with a high degree of relative frequency in the case study. The damper has enabled a substantial reduction in the cumulative time and the number of times that frequency exceeded different safety margins. Damper incorporation also reduced the number of under-frequency pump unit load shedding events by 93%. Full article
(This article belongs to the Special Issue The Use of Hybrid Renewable Energy Systems for Water Desalination)
Show Figures

Figure 1

13 pages, 4509 KB  
Article
Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox
by Jean Decaix and Cécile Münch-Alligné
Energies 2022, 15(19), 7451; https://doi.org/10.3390/en15197451 - 10 Oct 2022
Cited by 7 | Viewed by 2541
Abstract
Hydropower is a key source of electricity production for allowing the integration of intermittent renewable energy resources. Among the various hydraulic power plants around the world, the ones equipped with Pelton turbines already provide large flexibility that is still enhanced with the development, [...] Read more.
Hydropower is a key source of electricity production for allowing the integration of intermittent renewable energy resources. Among the various hydraulic power plants around the world, the ones equipped with Pelton turbines already provide large flexibility that is still enhanced with the development, for instance, of the hydraulic short circuit operating mode. However, the knowledge of the flow inside Pelton turbines is still a challenging task, both numerically and experimentally, despite progress in the last two decades. One key feature of the Pelton efficiency is the jet quality, i.e., the jet velocity needs to be uniform, not perturbed by secondary flows and compact. The compactness of the jet is mainly dependent o nthe location of the jet detachment at the nozzle outlet, which is challenging for computational fluid dynamics simulations mainly due to numerical diffusion. Even if this point has already been mentioned in previous papers, the present paper focuses on all the parameters that can influence the jet detachment: the nozzle geometry, the mesh and the numerical scheme used to discretize the convective fluxes. The simulations of an existing Pelton injector are performed using the OpenFOAM toolbox. It is noticed that, in addition to the nozzle geometry and the mesh resolution at the nozzle outlet, the choice of the numerical schemes influences the jet detachment and, consequently, the jet diameter and discharge. The use of an anti-diffusive scheme such as the “SUPERBEE” limiter improves the prediction of the jet in accordance with the on-site measurements. Full article
(This article belongs to the Special Issue Experimental and Numerical Investigations of Hydraulic Machines)
Show Figures

Figure 1

17 pages, 2934 KB  
Article
Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids
by Leonardo Peña-Pupo, Herminio Martínez-García, Encarna García-Vílchez, Ernesto Y. Fariñas-Wong and José R. Núñez-Álvarez
Energies 2021, 14(23), 8059; https://doi.org/10.3390/en14238059 - 2 Dec 2021
Cited by 5 | Viewed by 3260
Abstract
Nowadays, microgrids (MGs) play a crucial role in modern power systems due to possibility of integrating renewable energies into grid-connected or islanded power systems. The Load Frequency Control (LFC) is an issue of paramount importance to ensure MGs reliable and safe operation. Specifically, [...] Read more.
Nowadays, microgrids (MGs) play a crucial role in modern power systems due to possibility of integrating renewable energies into grid-connected or islanded power systems. The Load Frequency Control (LFC) is an issue of paramount importance to ensure MGs reliable and safe operation. Specifically, in AC MGs, primary frequency control of each energy source can be guaranteed in order to integrate other energy sources. This paper proposes a micro-hydro frequency control scheme, combining the control of a reduced dump load and the nozzle flow control of Pelton turbines operating in autonomous regime. Some works have reported the integration of dump load and flow control methods, but they did not reduce the dump load value and adjust the nozzle flow linearly to the power value demanded by users, causing the inefficient use of water. Simulation results were obtained in Matlab®/Simulink® using models obtained from previous research and proven by means of experimental studies. The simulation of the proposed scheme shows that the frequency control in this plant is done in correspondence with the Cuban NC62-04 norm of power energy quality. In addition, it is possible to increase energy efficiency by reducing the value of the resistive dump load by up to 7.5% in a case study. The validation result shows a 60% reduction of overshoot and settling time of frequency temporal behavior of the autonomous micro-hydro. Full article
Show Figures

Figure 1

15 pages, 9913 KB  
Article
Numerical Investigation of Nozzle Jet Flow in a Pelton Microturbine
by Dorian Nedelcu, Vasile Cojocaru and Raoul-Cristian Avasiloaie
Machines 2021, 9(8), 158; https://doi.org/10.3390/machines9080158 - 8 Aug 2021
Cited by 11 | Viewed by 5528
Abstract
The characterization of flow through Pelton hydro turbines allows the optimization of their operation and maximization of energy performance. The flow in the injector of Pelton turbines and in the free jet area (the area from the injector outlet surface to the runner [...] Read more.
The characterization of flow through Pelton hydro turbines allows the optimization of their operation and maximization of energy performance. The flow in the injector of Pelton turbines and in the free jet area (the area from the injector outlet surface to the runner bucket inlet surface) is influenced by several parameters: the geometry of injector components (nozzle and injector spear), the injector opening, and the turbine head. The parameters of the free jet flow (velocity distribution, pressure distribution, and jet spread) are reflected in the turbine efficiency. The research presented in this paper focuses on the numerical characterization of flow in the injector and the free jet of a Pelton microturbine. Three injector geometries were considered, with different nozzle diameters: 13.3 mm, 14.4 mm, and 16.3 mm. For each of these geometries, the flow was analyzed for five values of turbine head (H = 15 m, H = 20 m, H = 25 m, H = 30 m, H = 35 m) and six values of injector opening (S = 3 mm, S = 6 mm, S = 9 mm, S = 12 mm, S = 15 mm, S = 18 mm). The results of numerical simulations were used to plot injector flow-rate characteristics and injector force characteristics (the resultant force on the injector spear and the resultant force on the injector nozzle). The highest influence on the flow rate variation is given by the variation of turbine head, followed by the variation of the injector opening and the variation of the nozzle diameter. Increasing the nozzle diameter accentuates the variation of the flow rate versus the turbine head. The variation of axial velocity and pressure in the free jet is presented for four sections parallel to the outlet section of the injector. The injector openings that generate the highest values of velocity/pressure on the runner inlet surface are highlighted. The results allow optimization of functional parameters for increasing turbine efficiency and optimizing the design process of Pelton microturbines. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

Back to TopTop