Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = PV rooftop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2738 KiB  
Article
Mitigation of Solar PV Impact in Four-Wire LV Radial Distribution Feeders Through Reactive Power Management Using STATCOMs
by Obaidur Rahman, Duane Robinson and Sean Elphick
Electronics 2025, 14(15), 3063; https://doi.org/10.3390/electronics14153063 (registering DOI) - 31 Jul 2025
Abstract
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar [...] Read more.
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar systems can exacerbate voltage unbalance in these networks. This paper investigates the application of a Static Synchronous Compensator (STATCOM) for the improvement of voltage regulation in four-wire LV distribution feeders through reactive power management as a means of mitigating voltage regulation and unbalance challenges. To demonstrate the performance of the STATCOM with varying loads and PV output, a Q-V droop curve is applied to specify the level of reactive power injection/absorption required to maintain appropriate voltage regulation. A practical four-wire feeder from New South Wales, Australia, has been used as a case study network to analyse improvements in system performance through the use of the STATCOM. The outcomes indicate that the STATCOM has a high degree of efficacy in mitigating voltage regulation and unbalance excursions. In addition, compared to other solutions identified in the existing literature, the STATCOM-based solution requires no sophisticated communication infrastructure. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

38 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 (registering DOI) - 30 Jul 2025
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 140
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 163
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 289
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

19 pages, 3805 KiB  
Article
Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan
by Yu Zhang, Wei He, Jinyan Hu, Chaohui Zhou, Bo Ren, Huiheng Luo, Zhiyong Tian and Weili Liu
Buildings 2025, 15(15), 2607; https://doi.org/10.3390/buildings15152607 - 23 Jul 2025
Viewed by 288
Abstract
Accurate assessment of urban rooftop solar photovoltaic (PV) potential is critical for the low-carbon energy transition. This study presents a deep learning-based approach using high-resolution (0.5 m) aerial imagery to automatically identify building rooftops in the central urban area of Wuhan, China (covering [...] Read more.
Accurate assessment of urban rooftop solar photovoltaic (PV) potential is critical for the low-carbon energy transition. This study presents a deep learning-based approach using high-resolution (0.5 m) aerial imagery to automatically identify building rooftops in the central urban area of Wuhan, China (covering seven districts), and to estimate their PV installation potential. Two state-of-the-art semantic segmentation models (DeepLabv3+ and U-Net) were trained and evaluated on a local rooftop dataset; U-Net with a ResNet50 backbone achieved the best performance with an overall segmentation accuracy of ~94%. Using this optimized model, we extracted approximately 130 km2 of suitable rooftop area, which could support an estimated 18.18 GW of PV capacity. These results demonstrate the effectiveness of deep learning for city-scale rooftop mapping and provide a data-driven basis for strategic planning of distributed PV installations to support carbon neutrality goals. The proposed framework can be generalized to facilitate large-scale solar energy assessments in other cities. Full article
(This article belongs to the Special Issue Smart Technologies for Climate-Responsive Building Envelopes)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 357
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Viewed by 569
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

26 pages, 8474 KiB  
Article
Centralised Smart EV Charging in PV-Powered Parking Lots: A Techno-Economic Analysis
by Mattia Secchi, Jan Martin Zepter and Mattia Marinelli
Smart Cities 2025, 8(4), 112; https://doi.org/10.3390/smartcities8040112 - 4 Jul 2025
Viewed by 550
Abstract
The increased uptake of Electric Vehicles (EVs) requires the installation of charging stations in parking lots, both to facilitate charging while running daily errands and to support EV owners with no access to home charging. Photovoltaic (PV) generation is ideal for powering up [...] Read more.
The increased uptake of Electric Vehicles (EVs) requires the installation of charging stations in parking lots, both to facilitate charging while running daily errands and to support EV owners with no access to home charging. Photovoltaic (PV) generation is ideal for powering up EVs, both for environmental reasons and for the benefit it creates for Charging Point Operators (CPOs). In this paper, we propose a centralised V1G Smart Charging (SC) algorithm for EV parking lots, considering real EV charging dynamics, which minimises both the EV charging costs for their owners and the CPO electricity provision costs or the related CO2 emissions. We also introduce an innovative SC benefit-splitting algorithm that makes sure SC savings are fairly split between EV owners. Eight scenarios are described, considering costs or emissions minimisation, with and without a PV system. The centralised algorithm is benchmarked against a decentralised one, and tested in an exemplary workplace parking lot in Denmark, that includes includes 12 charging stations and one PV system, owned by the same entity. Reductions of up to 11% in EV charging costs, 67% in electricity provision costs for the CPO, and 8% in CO2 emissions are achieved by making smart use of a 35 kWp rooftop PV system. Additionally, the SC benefit-splitting algorithm successfully ensures that EV owners save money when adopting SC. Full article
(This article belongs to the Section Energy and ICT)
Show Figures

Figure 1

24 pages, 3345 KiB  
Article
Enhancing Energy Efficiency in Egyptian Middle-Income Housing: A Study of PV System Integration and Building Envelope Optimization in Sakan Masr
by Ehsan Raslan, Samah Elkhateeb and Ramy Ahmed
Buildings 2025, 15(13), 2326; https://doi.org/10.3390/buildings15132326 - 2 Jul 2025
Viewed by 447
Abstract
Facing rapid urbanization, rising temperatures, and a residential sector that accounted for 38% of Egypt’s electricity use in 2022, middle-income housing presents a critical yet underexplored opportunity for energy efficiency improvements. This study investigates how the integration of passive design strategies and rooftop [...] Read more.
Facing rapid urbanization, rising temperatures, and a residential sector that accounted for 38% of Egypt’s electricity use in 2022, middle-income housing presents a critical yet underexplored opportunity for energy efficiency improvements. This study investigates how the integration of passive design strategies and rooftop photovoltaic (PV) systems can enhance energy performance in this segment, using the Sakan Masr housing project in New Cairo as a case study. Addressing a research gap—namely the limited analysis of combined strategies in Egypt’s middle-income housing—the study follows a four-phase methodology: identifying dominant building orientations; simulating electricity demand and thermal comfort using DesignBuilder; optimizing the building envelope with passive measures; and evaluating PV system performance across south-facing and east–west configurations using PV-SOL. Results reveal that passive strategies such as improved glazing and shading can enhance thermal comfort by up to 10% and reduce cooling loads. Also, east–west PV arrays outperform south-facing ones, producing over 14% more electricity, reducing costs by up to 50%, and avoiding up to 168 tons of CO2 emissions annually. The findings highlight that passive improvements with smart PV integration—offer a cost-effective pathway toward Net Zero Energy goals, with significant implications for national housing policy and Egypt’s renewable energy transition. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 3291 KiB  
Article
Experimental Work to Investigate the Effect of Rooftop PV Panel Shading on Building Thermal Performance
by Saad Odeh and Luke Pearling
Energies 2025, 18(13), 3429; https://doi.org/10.3390/en18133429 - 30 Jun 2025
Viewed by 332
Abstract
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their [...] Read more.
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their overall thermal performance. This paper presents a long-term experimental investigation into the changes in roof temperature caused by PV panels. The experiment was conducted over the course of a year, with measurements taken on four sample days each month. The study is based on measurements of the covered roof temperature, the uncovered roof temperature, PV surface temperature, ambient air temperature, as well as solar irradiation, wind speed, and rainfall. The results reveal that the annual energy savings (MJ/m2) in the cooling load due to the covered roof are about 26% higher than the energy loss from the heating load due to shading. The study shows that the effect of the rooftop PV panels on the house’s total heating and cooling load savings is between 5.3 to 6.1%. This difference is significant in thermal performance analyses, especially if most of the roof is covered by PV panels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

25 pages, 27045 KiB  
Article
Photovoltaic Strings on Large, Flat Roofs: Experimental Wind Loads on Representative Configurations
by Giacomo Scrinzi, Enrico Sergio Mazzucchelli and Sara Muggiasca
Sustainability 2025, 17(13), 5914; https://doi.org/10.3390/su17135914 - 27 Jun 2025
Viewed by 323
Abstract
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under [...] Read more.
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under various representative configurations and the correlation between characteristic geometric parameters such as tilt angle, bottom clearance, row spacing, and wind direction. Following a literature review, a detailed 1:10 scaled model with geometric adjustment capabilities was developed and eventually tested in a boundary-layer wind tunnel. High-resolution pressure measurements were processed to derive force and moment resultants normalised by reference wind pressure. Envelopes of force/moment resultants are presented for each representative geometric configuration and for each wind exposure angle. The results present severe variations in local wind actions, particularly significant at the strings’ free ends and for oblique wind angles. The severe underestimation of local wind loads by standard codes is discussed. The findings underline the importance of detailed wind-load assessment for both new constructions and retrofits, suggesting that reliance solely on code provisions might result in unsafe designs. Full article
Show Figures

Figure 1

21 pages, 7412 KiB  
Article
Analysis of Rooftop Photovoltaic Potential and Electricity Planning in Lanzhou Urban Areas
by Yifu Chen, Shidong Wang and Tao Li
Buildings 2025, 15(13), 2207; https://doi.org/10.3390/buildings15132207 - 24 Jun 2025
Viewed by 347
Abstract
With the rapid development of science and technology, the global demand for renewable energy is increasing. In the urban context, solar energy has become one of the key ways to increase urban energy self-sufficiency and reduce carbon emissions due to its flexibility in [...] Read more.
With the rapid development of science and technology, the global demand for renewable energy is increasing. In the urban context, solar energy has become one of the key ways to increase urban energy self-sufficiency and reduce carbon emissions due to its flexibility in installation and ease of expansion of applications. Therefore, based on Geographic Information System (GIS) and deep learning modeling, this paper proposes a method to efficiently assess the potential of urban rooftop solar photovoltaic (PV), which is analyzed in a typical area of Lanzhou New District, which is divided into 8774 units with an area of 87.74 km2. The results show that the method has a high accuracy for the identification of the roof area, with a maximum maxFβ of 0.889. The annual solar PV potential of industrial and residential buildings reached 293.602 GWh and 223.198 GWh, respectively, by using the PV panel simulation filling method for the calculation of the area of roofs where the PV panels can be installed. Furthermore, the rooftop PV potential of the industrial buildings in the research area provided can cover 75.17% of the industrial electricity consumption. This approach can provide scientific guidance and data support for regional solar PV planning, which should prioritize the development of solar potential of industrial buildings in the actual consideration of rooftop PV deployment planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 3192 KiB  
Article
Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency
by Seyed Azim Hosseini, Seyed Alireza Mansoori Al-yasin, Mohammad Gheibi and Reza Moezzi
Eng 2025, 6(7), 137; https://doi.org/10.3390/eng6070137 - 24 Jun 2025
Viewed by 525
Abstract
This study explores the optimization of solar energy harvesting in Truro City in the UK using PVSyst simulations integrated with real-time meteorological data. Focusing on panel orientation, tilt angle, shading, and albedo, the research aimed to enhance both energy efficiency and economic viability [...] Read more.
This study explores the optimization of solar energy harvesting in Truro City in the UK using PVSyst simulations integrated with real-time meteorological data. Focusing on panel orientation, tilt angle, shading, and albedo, the research aimed to enhance both energy efficiency and economic viability of photovoltaic (PV) systems in green buildings. A 100 kWp rooftop solar installation served as the case study. Energy outputs derived from spreadsheet-based models and PVSyst simulations were compared to validate results. Optimal tilt angles were identified between 35° and 39°, and the azimuth angle of 0° yielded the highest energy gain without requiring solar tracking. Fixed configurations with a 5 m pitch showed only a 10% shading loss, requiring 1680 m2 of space and generating an average of 646.83 kWh/m2 monthly. Compared to recent works, our integration of real-time climate data improved simulation accuracy by 6–9%, refining operational planning and decision-making processes. This included better timing of high-load activities and enhanced prediction for grid feedback. The study demonstrates that data-driven optimization significantly improves performance reliability and system design, offering practical insights for solar infrastructure in similar temperate climates. These results provide a benchmark for urban energy planners seeking to balance performance and spatial constraints in PV deployment. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

24 pages, 6043 KiB  
Article
Coordinated Control of Photovoltaic Resources and Electric Vehicles in a Power Distribution System to Balance Technical, Environmental, and Energy Justice Objectives
by Abdulrahman Almazroui and Salman Mohagheghi
Processes 2025, 13(7), 1979; https://doi.org/10.3390/pr13071979 - 23 Jun 2025
Viewed by 534
Abstract
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to [...] Read more.
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to sustainable energy systems, they also introduce operational challenges, including voltage fluctuations, increased system losses, and voltage regulation issues under high penetration levels. Traditional Voltage and Var Control (VVC) strategies, which rely on substation on-load tap changers, voltage regulators, and shunt capacitors, are insufficient to fully manage these challenges. This study proposes a novel Voltage, Var, and Watt Control (VVWC) framework that coordinates the operation of PV and EV resources, conventional devices, and demand responsive loads. A mixed-integer nonlinear multi-objective optimization model is developed, applying a Chebyshev goal programming approach to balance objectives that include minimizing PV curtailment, reducing system losses, flattening voltage profile, and minimizing demand not met. Unserved demand has, in particular, been modeled while incorporating the concepts of distributional and recognition energy justice. The proposed method is validated using a modified version of the IEEE 123-bus test distribution system. The results indicate that the proposed framework allows for high levels of PV and EV integration in the grid, while ensuring that EV demand is met and PV curtailment is negligible. This demonstrates an equitable access to energy, while maximizing renewable energy usage. Full article
Show Figures

Figure 1

Back to TopTop