Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (628)

Search Parameters:
Keywords = PLGA nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2562 KiB  
Article
Enhancing the Solubility and Oral Bioavailability of Trimethoprim Through PEG-PLGA Nanoparticles: A Comprehensive Evaluation of In Vitro and In Vivo Performance
by Yaxin Zhou, Guonian Dai, Jing Xu, Weibing Xu, Bing Li, Shulin Chen and Jiyu Zhang
Pharmaceutics 2025, 17(8), 957; https://doi.org/10.3390/pharmaceutics17080957 - 24 Jul 2025
Viewed by 138
Abstract
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life [...] Read more.
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life (t1/2), and low bioavailability. In this study, we proposed TMP loaded by PEG-PLGA polymer nanoparticles (NPs) to increase its efficacy. Methods: We synthesized and thoroughly characterized PEG-PLGA NPs loaded with TMP using an oil-in-water (O/W) emulsion solvent evaporation method, denoted as PEG-PLGA/TMP NPs. Drug loading capacity (LC) and encapsulation efficiency (EE) were quantified by ultra-performance liquid chromatography (UPLC). Comprehensive investigations were conducted on the stability of PEG-PLGA/TMP NPs, in vitro drug release profiles, and in vivo pharmacokinetics. Results: The optimized PEG-PLGA/TMP NPs displayed a high LC of 34.0 ± 1.6%, a particle size of 245 ± 40 nm, a polydispersity index (PDI) of 0.103 ± 0.019, a zeta potential of −23.8 ± 1.2 mV, and an EE of 88.2 ± 4.3%. The NPs remained stable at 4 °C for 30 days and under acidic conditions. In vitro release showed sustained biphasic kinetics and enhanced cumulative release, 86% at pH 6.8, aligning with first-order models. Pharmacokinetics in rats revealed a 2.82-fold bioavailability increase, prolonged half-life 2.47 ± 0.19 h versus 0.72 ± 0.08 h for free TMP, and extended MRT 3.10 ± 0.11 h versus 1.27 ± 0.11 h. Conclusions: PEG-PLGA NPs enhanced the solubility and oral bioavailability of TMP via high drug loading, stability, and sustained-release kinetics, validated by robust in vitro-in vivo correlation, offering a promising alternative for clinical antimicrobial therapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

34 pages, 4581 KiB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 - 14 Jul 2025
Viewed by 458
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

26 pages, 8710 KiB  
Article
MOFs—Combining Fully Synthetic Injectable Hydrogel Scaffolds Exhibiting Higher Skeletal Muscle Regenerative Efficiency than Matrigel
by Sobuj Shahidul Islam, Tatsuya Dode, Soma Kawashima, Myu Fukuoka, Takaaki Tsuruoka and Koji Nagahama
Gels 2025, 11(7), 514; https://doi.org/10.3390/gels11070514 - 2 Jul 2025
Viewed by 330
Abstract
Due to its sarcoma-derived origin and the associated carcinogenic risks, as well as its lack of tissue-specific extracellular matrix biochemical cues, the use of the injectable gel scaffold Matrigel is generally restricted to research applications. Therefore, the development of new fully synthetic injectable [...] Read more.
Due to its sarcoma-derived origin and the associated carcinogenic risks, as well as its lack of tissue-specific extracellular matrix biochemical cues, the use of the injectable gel scaffold Matrigel is generally restricted to research applications. Therefore, the development of new fully synthetic injectable gel scaffolds that exhibit performance comparable to Matrigel is a high priority. In this study, we developed a novel fully synthetic injectable gel scaffold by combining a biodegradable PLGA-PEG-PLGA copolymer, clay nanoparticle LAPONITE®, and L-arginine-loaded metal–organic frameworks (NU-1000) at the nano level. An aqueous solution of the developed hybrid scaffold (PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000) exhibited rapid sol–gel transition at body temperature following simple injection and formed a continuous bulk-sized gel, demonstrating good injectability. Long-term sustained slow release of L-arginine from the resultant gels can be achieved because NU-1000 is a suitable reservoir for L-arginine. PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000 hybrid gels exhibited good compatibility with and promoted the growth of human skeletal muscle satellite cells. Importantly, in vivo experiments using skeletal muscle injury model mice demonstrated that the tissue regeneration efficiency of PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000 gels is higher than that of Matrigel. Specifically, we judged the higher tissue regeneration efficacy of our gels by histological analysis, including MYH3 immunofluorescent staining, H&E staining, and Masson’s trichrome staining. Taken together, these data suggest that novel hybrid hydrogels could serve as injectable hydrogel scaffolds for in vivo tissue engineering and ultimately replace Matrigel. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Engineering a Polyacrylamide/Polydopamine Adhesive Hydrogel Patch for Sustained Transdermal Vitamin E Delivery
by Yejin Kim, Juhyeon Kim, Dongmin Yu, Taeho Kim, Jonghyun Park, Juyeon Lee, Sohyeon Yu, Dongseong Seo, Byoungsoo Kim, Simseok A. Yuk, Daekyung Sung and Hyungjun Kim
Cosmetics 2025, 12(4), 138; https://doi.org/10.3390/cosmetics12040138 - 1 Jul 2025
Viewed by 603
Abstract
A transdermal drug delivery system based on hydrogel patches was explored, leveraging their sustained release properties and biocompatibility. Despite these advantages, conventional hydrogels often lack proper adhesion to the skin, limiting their practical application. To address this issue, we designed a skin-adhesive hydrogel [...] Read more.
A transdermal drug delivery system based on hydrogel patches was explored, leveraging their sustained release properties and biocompatibility. Despite these advantages, conventional hydrogels often lack proper adhesion to the skin, limiting their practical application. To address this issue, we designed a skin-adhesive hydrogel using a polyacrylamide (PAM)/polydopamine (PDA) dual-network structure. The matrix combines the mechanical toughness of PAM with the strong adhesive properties of PDA, derived from mussel foot proteins, enabling firm tissue attachment and robust performance under physiological conditions. To demonstrate its applicability, the hydrogel was integrated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the hydrophobic antioxidant vitamin E as a model compound. The resulting PAM/PDA@VitE hydrogel system exhibited improved swelling behavior, high water retention, and prolonged release of α-tocopherol. These results suggest that the PAM/PDA hydrogel platform is a versatile vehicle not only for vitamin E, but also for the transdermal delivery of various cosmetic and therapeutic agents. Full article
Show Figures

Figure 1

21 pages, 2401 KiB  
Article
Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells
by Magdi Abobaker, Mershen Govender and Yahya E. Choonara
Pharmaceutics 2025, 17(7), 860; https://doi.org/10.3390/pharmaceutics17070860 - 30 Jun 2025
Viewed by 312
Abstract
Background/Objectives: Skin cancer remains a significant global health issue, driving the development of new treatment strategies to improve clinical outcomes and prevent recurrence. Traditional monotherapies often face obstacles such as bioactive resistance, prompting interest in combination therapies that enhance efficacy, while minimizing [...] Read more.
Background/Objectives: Skin cancer remains a significant global health issue, driving the development of new treatment strategies to improve clinical outcomes and prevent recurrence. Traditional monotherapies often face obstacles such as bioactive resistance, prompting interest in combination therapies that enhance efficacy, while minimizing side effects. This study investigated the use of a co-nanoparticle approach of iron oxide nanoparticles (NPs) surface-functionalized with curcumin (Cur-FeONPs) delivered with prolonged-release interferon alpha (IFNα)-loaded PLGA NPs (IFNα-PLGANPs) for the synergistic treatment of malignant melanoma tested in A375 cells. Methods: Extensive in vitro characterization studies of the Cur-FeONPs and IFNα-PLGANPs were performed, including zeta-size profiling, morphological studies, and structural validation, in addition to cytotoxicity assessments on A375 melanoma and NIH-3T3 fibroblast cells. Results: The Cur-FeONP and IFNα-PLGANPs synthesis processes yielded NPs with an average size of 111.0 nm and 97.0 nm, respectively. Morphological and structural validation studies determined the successful synthesis of the nanoparticulate systems, with cell viability analyses displaying significant cytotoxicity against A375 melanoma cells for the combination treatment, when compared to the individual platforms, with a minimal effect on NIH-3T3 fibroblast cells. Conclusions: The results of this study present a promising synergistic approach for enhanced anticancer activity in A375 melanoma skin cancer cells, providing a potential platform for future preclinical and clinical studies. Full article
Show Figures

Figure 1

21 pages, 1903 KiB  
Article
Unlocking Superior MFH Performance Below Hergt’s Biological Safety Limit: SPION-Based Magnetic Nanoplatforms Deliver High Heating Efficiency at Low AMF
by Atul Sudame and Dipak Maity
Bioengineering 2025, 12(7), 715; https://doi.org/10.3390/bioengineering12070715 - 30 Jun 2025
Viewed by 363
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention for Magnetic Fluid Hyperthermia (MFH)-based cancer therapy. However, achieving high heating efficiency under a biologically safe Alternating Magnetic Field (AMF) remains a challenge. This study investigates the synthesis and optimization of SPIONs encapsulated in [...] Read more.
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention for Magnetic Fluid Hyperthermia (MFH)-based cancer therapy. However, achieving high heating efficiency under a biologically safe Alternating Magnetic Field (AMF) remains a challenge. This study investigates the synthesis and optimization of SPIONs encapsulated in TPGS-stabilized PLGA nanoparticles (TPS-NPs) using a modified single emulsion solvent evaporation (M-SESE) method. The aim was to achieve efficient magnetic heating under biologically safe AMF conditions while maintaining biocompatibility and colloidal stability, making these magnetic nanoplatforms suitable for MFH-based cancer treatment. TPS-NPs were characterized using various techniques, including Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID) magnetometry, to evaluate their hydrodynamic size (Dh), zeta potential (ζ), encapsulation efficiency, and superparamagnetic properties. Calorimetric MFH studies demonstrated superior heating efficiency, with Specific Absorption Rate (SAR) and Intrinsic Loss Power (ILP) values optimized at an AMF of 4.1 GAm−1s−1, remaining within Hergt’s biological safety limit (~5 GAm−1s−1). These findings suggest that SPION-encapsulated TPS-NPs exhibit enhanced heat induction, making them promising candidates for MFH-based cancer therapy. The study highlights their potential as multifunctional nanoplatforms for magnetic hyperthermia therapy, paving the way for clinical translation in oncology for advanced cancer treatment. Full article
Show Figures

Figure 1

25 pages, 10277 KiB  
Article
Comparative Study of Free and Encapsulated Hypocrellin B on Photophysical-Chemical Properties, Cellular Uptake, Subcellular Distribution, and Phototoxicity
by Weiyan Kang, Feng Zhao, Jixing Cheng, Kaijie Feng, Liang Yan, Yue You, Jinxia Li and Jing Meng
Nanomaterials 2025, 15(12), 889; https://doi.org/10.3390/nano15120889 - 9 Jun 2025
Viewed by 508
Abstract
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted [...] Read more.
The present study compared the free and encapsulated photosensitizer hypocrellin B (HB) in terms of photophysical-chemical properties, cellular uptake, subcellular distribution, and phototoxicity. The hydrophobic HB was encapsulated into liposomes (HB@Lipo) or poly (lactic-co-glycolic acid) nanoparticles (HB@PLGA). Encapsulation into nanocarriers exerted no obvious influence on the photophysical-chemical properties of HB, including UV-visible absorbance, fluorescence spectra, singlet oxygen (1O2) production capacity, and photostability. Free and encapsulated HB revealed some disparities in cellular uptake and subcellular localization patterns. In 2D-cultured B16 cells and tumor spheroids, free HB exhibited the fastest cellular uptake, while HB@PLGA had the lowest, as evidenced. Subcellular localization analysis first revealed a significant colocalization of free HB, HB@Lipo, and HB@PLGA within lipid droplets, with minimal colocalization in mitochondria and the endoplasmic reticulum. Unlike free HB and HB@Lipo, HB@PLGA exhibited strong lysosomal colocalization, indicating a unique intracellular trafficking pathway for PLGA-encapsulated HB. Upon laser irradiation, both free and encapsulated HB induced pronounced phototoxicity with substantial ROS production, confirming the robust PDT effect of HB. The photodynamic killing effect correlated with the intracellular HB content. These findings highlighted the impact of nanoformulation on HB’s cellular behavior and therapeutic performance. Full article
Show Figures

Graphical abstract

25 pages, 1205 KiB  
Review
Antioxidant Naturally Occurring Pleiotropically Acting Bioactive Compounds, as Polymeric Nanotherapeutics Against Autoimmune Diseases Progression
by Panagiotis Theodosis-Nobelos, Fani-Niki Varra, Michail Varras, Georgios Papagiouvannis and Eleni A. Rekka
Curr. Issues Mol. Biol. 2025, 47(6), 411; https://doi.org/10.3390/cimb47060411 - 1 Jun 2025
Viewed by 613
Abstract
Autoimmune diseases are driven by chronic inflammation and oxidative stress, thus requiring innovative therapeutic approaches. Polymeric nanotherapeutics incorporating antioxidant bioactive compounds offer a promising strategy for immune modulation and enhanced drug delivery. This review explores the application of polymer-based nanocarriers for improving the [...] Read more.
Autoimmune diseases are driven by chronic inflammation and oxidative stress, thus requiring innovative therapeutic approaches. Polymeric nanotherapeutics incorporating antioxidant bioactive compounds offer a promising strategy for immune modulation and enhanced drug delivery. This review explores the application of polymer-based nanocarriers for improving the solubility, bioavailability, and targeted delivery of antioxidant compounds in autoimmune disease treatment. A comprehensive analysis of recent advancements in polymeric nanoformulations, including poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), chitosan, and hyaluronic acid, was conducted. The therapeutic efficacy of various antioxidant-loaded nanoparticles has been assessed in both preclinical and clinical studies. Phenolic antioxidants, such as resveratrol, curcumin, quercetin, and epigallocatechin-3-gallate, exhibit potent anti-inflammatory effects; however, their poor solubility limits their clinical application. Nanocarriers such as dendrosomes, tannic acid-based reactive oxygen species (ROS)-scavenging nanoparticles, and folic acid-functionalized systems enhance drug stability, controlled drug release, and macrophage targeting. Carotenoid and bilirubin nanoparticles further demonstrate immunomodulatory effects in multiple sclerosis, psoriasis, rheumatoid arthritis, and inflammatory bowel disease. Polymeric antioxidant nanotherapeutics provide targeted and sustained drug delivery, offering improved efficacy and reduced toxicity. Future research should focus on optimizing these nanocarriers for clinical translation and patient-centered therapeutic strategies. Full article
Show Figures

Graphical abstract

17 pages, 8085 KiB  
Article
Synthesis and Characterization of Poly(Lactic-Co-Glycolic Acid)–Paclitaxel (PLGA-PTX) Nanoparticles Evaluated in Ovarian Cancer Models
by Sylwia A. Dragulska, Maxier Acosta Santiago, Sabina Swierczek, Linus Chuang, Olga Camacho-Vanegas, Sandra Catalina Camacho, Maria M. Padron-Rhenals, John A. Martignetti and Aneta J. Mieszawska
Pharmaceutics 2025, 17(6), 689; https://doi.org/10.3390/pharmaceutics17060689 - 23 May 2025
Viewed by 722
Abstract
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer [...] Read more.
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer therapy. The primary mode of PTX’s action is the hyperstabilization of microtubules leading to cell growth arrest. Although highly potent, the drug is water insoluble and requires the Cremophor EL excipient. The toxic effects of the free drug (e.g., neurotoxicity) as well as its solubilizing agent are well established. Thus, there is strong clinical rationale and need for exploring alternative PTX delivery approaches, retaining biological activity and minimizing systemic effects. Methods: The PTX modification method features reacting the C-2′ and C-7 residues with a linker (succinic anhydride) to produce easily accessible carboxyl groups on the PTX for enhanced coupling to the hydroxyl group of PLGA. The PLGA-PTX hybrid, formed via esterification reaction, was used to formulate lipid-coated PLGA-PTX NPs. As proof of concept, the PLGA-PTX NPs were tested in ovarian cancer (OvCA) models, including several patient-derived cell lines (PDCLs), one of which was generated from a platinum-resistant patient. Results: The PLGA-PTX NPs critically remained stable in water and serum while enabling slow drug release. Importantly, PLGA-PTX NPs demonstrated biological activity. Conclusions: We suggest that this approach offers both a new and effective PTX formulation and a possible path towards the development of a new generation of OvCA treatment. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

21 pages, 1908 KiB  
Article
Docetaxel Administration via Novel Hierarchical Nanoparticle Reduces Proinflammatory Cytokine Levels in Prostate Cancer Cells
by Ravikumar Aalinkeel, Satish Sharma, Supriya D. Mahajan, Paras N. Prasad and Stanley A. Schwartz
Cancers 2025, 17(11), 1758; https://doi.org/10.3390/cancers17111758 - 23 May 2025
Viewed by 589
Abstract
Background: Docetaxel (Doc) resistance in prostate cancer (CaP) patients is associated with the secretion of proinflammatory cytokines that induce an interaction between tumor cells and macrophages. Tumor cell-derived cytokines released in response to increased intracellular concentrations of Doc attract monocytes and macrophages to [...] Read more.
Background: Docetaxel (Doc) resistance in prostate cancer (CaP) patients is associated with the secretion of proinflammatory cytokines that induce an interaction between tumor cells and macrophages. Tumor cell-derived cytokines released in response to increased intracellular concentrations of Doc attract monocytes and macrophages to the tumor site and induce Doc resistance. Objectives: To generate Doc-resistant CaP cell line LNCaP-Doc/R and determine if we could modulate/reduce proinflammatory signals by administering Doc, encapsulated in a PLGA: Chitosan core-shell hierarchical nanoparticle (HNP-Doc) in the resistant and naive CaP Cells. Methods: LNCaP-Doc/R cells were generated by intermittent increasing concentration of Doc, proliferation, growth curve and cytotoxicity of Doc and HNP-Doc were evaluated followed by LNCaP and LNCaP-Doc/R (Doc resistant) CaP cells co-cultured with U937 monocytes with either free Doc or HNP-Doc encapsulated Doc, and various cytokine levels were measured in the conditioned media to assess the cytokine levels. Results: Our results show that LNCaP-Doc-R cells had slower growth in the lag phase, needed a 90-fold increase in Doc concentration to achieve 50% killing. Basal levels of cytokines secreted by LNCaP and LNCaP-Doc/R cells in response to free Doc and HNP-encapsulated Doc differed considerably, with free Doc-treated cells demonstrating, on average, 2–7-fold higher pro-inflammatory cytokine levels as compared to HNP-encapsulated Doc. The levels of pro-inflammatory cytokines, such as IFNγ, IL-1α, and RANTES, were increased ~2.38, ~2.75, and ~5.75-fold, respectively, in free Doc-treated CaP cells and were significantly lower when Doc was delivered via HNP. Further, LNCaP-Doc/R cells co-cultured with U937 had significantly lower markers of macrophage differentiation in response to HNP-encapsulated Doc treatment as opposed to free Doc treatment. Conclusions: Based on this analysis, we conclude that Doc treatment in vitro is associated with a proinflammatory response involving cytokines linked to macrophage recruitment and activation, with a lesser proinflammatory response with HNP-encapsulated Doc treatment. Full article
Show Figures

Figure 1

20 pages, 2308 KiB  
Article
In Vitro Evaluation of the Efficient Passage of PLGA-Formulated Trastuzumab for Nose-to-Brain Delivery
by Léa Kengne Kamkui, Clémence Disdier, Amaury Herbet, Narciso Costa, Anne-Cécile Guyot, Didier Boquet and Aloïse Mabondzo
Pharmaceutics 2025, 17(6), 681; https://doi.org/10.3390/pharmaceutics17060681 - 22 May 2025
Viewed by 708
Abstract
Background/Objectives: The limited permeability of the blood–brain barrier (BBB) to biotherapeutics is a major challenge in the treatment of brain tumors. The nose-to-brain (N2B) delivery approach, which bypasses the BBB, offers a promising alternative way to treat these tumors. The aim of [...] Read more.
Background/Objectives: The limited permeability of the blood–brain barrier (BBB) to biotherapeutics is a major challenge in the treatment of brain tumors. The nose-to-brain (N2B) delivery approach, which bypasses the BBB, offers a promising alternative way to treat these tumors. The aim of this work was to develop PLGA nanoparticles for N2B delivery of biodrugs using trastuzumab (TZB) as a paradigm. Methods: An in vitro model was used to evaluate the ability of PLGA nanoparticles to enhance passage through the nasal epithelium. We also compared the passage of loaded TZB versus unencapsulated TZB across an in vitro BBB model simulating systemic administration of TZB. TZB-loaded PLGA nanoparticles (NP-TZBs) were prepared using a double emulsion method followed by solvent evaporation and characterized for various properties, including particle size, polydispersity index, zeta potential, morphology, encapsulation efficiency, and drug loading capacity and release kinetics. TZB functionality was assessed after release from NP or passage through an in vitro barrier model. The permeability of TZB and NP-TZBs through in vitro models of nasal epithelium and BBB was investigated. Results: NP-TZBs exhibited an average size of about 200 nm with a polydispersity index of less than 20%, neutral charge, and a loading efficiency of 67%. Transmission electron microscopy revealed spherical nanoparticles with a smooth surface. Importantly, the TZB released from the nanoparticles retained all of its physicochemical properties and functionality. We observed that the NP-TZB formulation results in at least a nine-fold increase in TZB permeability across the nasal epithelium 24 h post-exposure, depending on the exposure conditions, but shows no significant improvement across the BBB model. The TZB released in the basal compartment is fully functional and able to recognize HER2 expressed on the surface of breast tumor BT474 cells. Conclusions: Using compounds already validated for clinical use, we were able to develop a formulation that allowed efficient passage of TZB across an in vitro nasal epithelial model. In contrast, no passage was observed across the BBB, supporting the notion of the superiority of the nose–brain route over systemic injection for in vivo delivery of TZB to the central nervous system. Full article
Show Figures

Graphical abstract

19 pages, 2409 KiB  
Brief Report
Anti-Influenza Activity of 6BIGOE: Improved Pharmacological Profile After Encapsulation in PLGA Nanoparticles
by Josefine Schroeder, Jan Westhoff, Ivan Vilotijević, Oliver Werz, Stephanie Hoeppener, Bettina Löffler, Dagmar Fischer and Christina Ehrhardt
Int. J. Mol. Sci. 2025, 26(9), 4235; https://doi.org/10.3390/ijms26094235 - 29 Apr 2025
Viewed by 647
Abstract
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and [...] Read more.
Influenza A virus (IAV) infections continue to threaten public health. Current strategies, such as vaccines and antiviral drugs, are limited due to their time-consuming development and drug-resistant strains. Therefore, new effective treatments are needed. Here, virus-supportive cellular factors are promising drug targets, and the encapsulation of candidate substances in poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) is intended to improve their bioavailability. This study investigates the potential of the indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE), a glycogen synthase kinase 3 (GSK-3)β inhibitor, for its potential to regulate IAV replication in vitro. The effects of 6BIGOE-loaded PLGA NPs on cell metabolism were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays in A549 and Calu-3 cells. Viral replication and spread were monitored in various IAV-infected cell lines in the absence and presence of free and 6BIGOE-loaded PLGA NPs via plaque assays and Western blot analysis. The encapsulation of 6BIGOE in PLGA NPs resulted in reduced negative side effects on cell viability while maintaining antiviral efficacy. Both encapsulated and free 6BIGOE exhibited antiviral activity, potentially through GSK-3β inhibition and the disruption of key signaling pathways required for viral replication. The data indicate 6BIGOE, particularly after encapsulation in NPs, as a potential candidate for further investigation and development as an antiviral agent to treat IAV infections. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

14 pages, 5530 KiB  
Article
Intranasal Application of Foxp3 Introduced with Poly(d,l-lactic-co-glycolic acid) (PLGA) Nanoparticles (Foxp3 NPs) Attenuates Allergic Inflammation in a Mouse Model of Allergic Rhinitis
by Seung Cheol Han, Sunhee Yeon, Hyejeen Kim and Sookyoung Park
Pharmaceutics 2025, 17(5), 575; https://doi.org/10.3390/pharmaceutics17050575 - 27 Apr 2025
Cited by 1 | Viewed by 586
Abstract
Background: Allergic rhinitis (AR) is a common disease that requires more convenient, safe, and effective therapy. This study aimed to investigate the therapeutic effect of Forkhead box protein3 (Foxp3) introduced with poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (Foxp3 NPs) in [...] Read more.
Background: Allergic rhinitis (AR) is a common disease that requires more convenient, safe, and effective therapy. This study aimed to investigate the therapeutic effect of Forkhead box protein3 (Foxp3) introduced with poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (Foxp3 NPs) in an AR mouse model. Methods: A murine model of allergic rhinitis was established using BALB/c mice through initial sensitization by intraperitoneal administration of ovalbumin (OVA), followed by repeated intranasal OVA challenges. Foxp3 plasmid-loaded PLGA nanoparticles were subsequently administered via either the intranasal or intraperitoneal route to evaluate therapeutic efficacy. Episodes of sneezing and nose rubbing were counted. The serum total IgE, OVA-specific IgE, and cytokine levels in nasal lavage fluid (NALF) were determined by ELISA (Enzyme-Linked ImmunoSorbent Assay). Nasal mucosa from each group were analyzed using protein, reverse transcriptase–polymerase chain reaction (RT-PCR), and histological analyses. Result: Rubbing and sneezing symptoms improved in the Foxp3 NPs intranasal administration group. Foxp3 NPs intranasal administration markedly ameliorated OVA-induced nasal allergic inflammation. The total IgE and OVA-specific IgE serum level and IL-4, IL-13 expression levels of NALF were significantly decreased in the treated Foxp3 NPs group. The histopathological results of nasal mucosa were also normal, with no cellular infiltration and no inflammation in the Foxp3 NPs group. Conclusions: These results suggest that Foxp3 NPs alleviate nasal allergic inflammation and may have therapeutic value in the treatment of AR. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

20 pages, 3614 KiB  
Article
Transnasal PLGA Nanoparticles with Terpene Permeation Enhancers: Membrane Remodeling and Tight Junction Modulation for Enhanced Brain Drug Delivery
by Yi Zhang, Zishuo Guo, Haitong Zhang, Hongmei Wei, Tieshan Wang, Shouying Du and Pengyue Li
Int. J. Mol. Sci. 2025, 26(8), 3861; https://doi.org/10.3390/ijms26083861 - 18 Apr 2025
Cited by 1 | Viewed by 540
Abstract
Nasal nanodrug delivery has gained prominence as a non-invasive method for administering therapeutic agents to the brain. However, the limited nasal cavity volume and the low drug loading capacity of nanoparticles contribute to a reduced accumulation of the drug within the brain tissue. [...] Read more.
Nasal nanodrug delivery has gained prominence as a non-invasive method for administering therapeutic agents to the brain. However, the limited nasal cavity volume and the low drug loading capacity of nanoparticles contribute to a reduced accumulation of the drug within the brain tissue. Therefore, the aim of the present study was to investigate the role of the drug delivery combination “transnasal route + nanoparticle drug delivery system + chemical osmosis technology” in promoting drug accumulation in the brain. We constructed an in vitro olfactory sheath cell model based on the direct nose–brain pathway and a vascular endothelial cell model based on the indirect pathway, and investigated the transport behaviors and mechanisms of Poly(lactic-co-glycolicacid)-Nanoparticles (PLGA-NPs) in combination with two terpene aroma constituents (menthol and curcumol). Menthol and curcumol significantly improved the intracellular accumulation of PLGA-NPs, which may be related to changes in the endocytosis pathway and intercellular tight junction proteins. Meanwhile, the results of laser scanning confocal microscopy and atomic force microscopy showed that menthol and curcumol disrupted different tight junction proteins of vascular endothelial cells, and the biomechanical properties (e.g., rigidity and roughness) of the olfactory sheath cells and vascular endothelial cell cytomembranes were also greatly changed. The delivery system of “transnasal route + nanoparticle drug delivery system + chemical osmosis technology” has great potential for intranasal delivery of drugs for the treatment of brain diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 2458 KiB  
Article
NIR pH-Responsive PEGylated PLGA Nanoparticles as Effective Phototoxic Agents in Resistant PDAC Cells
by Degnet Melese Dereje, Francesca Bianco, Carlotta Pontremoli, Alessandra Fiorio Pla and Nadia Barbero
Polymers 2025, 17(8), 1101; https://doi.org/10.3390/polym17081101 - 18 Apr 2025
Viewed by 610
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its resistance to conventional therapies that is attributed to its dense and acidic tumor microenvironment. Chemotherapy based on gemcitabine usually lacks efficacy due to poor drug penetration and the metabolic [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its resistance to conventional therapies that is attributed to its dense and acidic tumor microenvironment. Chemotherapy based on gemcitabine usually lacks efficacy due to poor drug penetration and the metabolic characteristics of the cells adapted to grow at a more acidic pHe, thus presenting a more aggressive phenotype. In this context, photodynamic therapy (PDT) offers a promising alternative since it generally does not suffer from the same patterns of cross-resistance observed with chemotherapy drugs. In the present work, a novel bromine-substituted heptamethine-cyanine dye (BrCY7) was synthesized, loaded into PEG-PLGA NPs, and tested on the pancreatic ductal adenocarcinoma cell line cultured under physiological (PANC-1 CT) and acidic (PANC-1 pH selected) conditions, which promotes the selection of a more aggressive phenotype. The cytotoxicity of BrCY7-PEG-PLGA is dose-dependent, with an IC50 of 2.15 µM in PANC-1 CT and 2.87 µM in PANC-1 pH selected. Notably, BrCY7-PEG-PLGA demonstrated a phototoxic effect against PANC-1 pH selected cells but not on PANC-1 CT, which makes these findings particularly relevant since PANC-1 pH selected cells are more resistant to gemcitabine as compared with PANC-1 CT cells. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop