Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (401)

Search Parameters:
Keywords = PHA production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

48 pages, 3314 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 - 1 Aug 2025
Viewed by 86
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

32 pages, 1285 KiB  
Review
Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator
by Wim Hectors, Tom Delmulle and Wim K. Soetaert
Polymers 2025, 17(15), 2104; https://doi.org/10.3390/polym17152104 - 31 Jul 2025
Viewed by 359
Abstract
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering [...] Read more.
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering offers another avenue for improved productivity. Cupriavidus necator stands out as a model host for PHA production due to its substrate flexibility, high intracellular polymer accumulation, and tractability to genetic modification. This review delves into metabolic engineering strategies that have been developed to enhance the production of poly(3-hydroxybutyrate) (PHB) and related copolymers in C. necator. Strategies include the optimization of central carbon flux, redox and cofactor balancing, adaptation to oxygen-limiting conditions, and fine-tuning of granule-associated protein expression and the regulatory network. This is followed by outlining engineered pathways improving the synthesis of PHB copolymers, PHBV, PHBHHx, and other emerging variants, emphasizing genetic modifications enabling biosynthesis based on unrelated single-carbon sources. Among these, enzyme engineering strategies and the establishment of novel artificial pathways are widely discussed. In particular, this review offers a comprehensive overview of promising engineering strategies, serving as a resource for future strain development and positioning C. necator as a valuable microbial chassis for biopolymer production at an industrial scale. Full article
Show Figures

Figure 1

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 609
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

17 pages, 2025 KiB  
Article
Retainment of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Properties from Oil-Fermented Cupriavidus necator Using Additional Ethanol-Based Defatting Process
by Tae-Rim Choi, Gaeun Lim, Yebin Han, Jong-Min Jeon, Shashi Kant Bhatia, Hyun June Park, Jeong Chan Joo, Hee Taek Kim, Jeong-Jun Yoon and Yung-Hun Yang
Polymers 2025, 17(15), 2058; https://doi.org/10.3390/polym17152058 - 28 Jul 2025
Viewed by 295
Abstract
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the [...] Read more.
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the recovery process, particularly in removing residual oil and minimizing degradation of the polymer structure during extraction steps. This study investigated the effects of ethanol-based defatting on the recovery and polymeric properties of P(3HB-co-3HH). The proposed method involves the addition of ethanol to the cell broth to effectively remove residual oil. Ethanol improved the separation of microbial cells from the broth, thereby streamlining the downstream recovery process. Using ethanol in the washing step increased the recovery yield and purity to 95.7% and 83.4%, respectively (compared to 87.4% and 76.2% for distilled water washing), representing improvements of 8.3% and 7.2%. Ethanol washing also resulted in a 19% higher molecular weight compared to water washing, indicating reduced polymer degradation. In terms of physical properties, the elongation at break showed a significant difference: 241.9 ± 27.0% with ethanol washing compared to water (177.7 ± 10.3%), indicating ethanol washing retains flexibility. Overall, an ethanol washing step for defatting could simplify the recovery steps, increase yield and purity, and retain mechanical properties, especially for P(3HB-co-3HH) from oils. Full article
Show Figures

Figure 1

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 384
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

31 pages, 860 KiB  
Systematic Review
Advances in Biotechnology in the Circular Economy: A Path to the Sustainable Use of Resources
by Pedro Carmona Marques, Pedro C. B. Fernandes, Pedro Sampaio and Joaquim Silva
Sustainability 2025, 17(14), 6391; https://doi.org/10.3390/su17146391 - 12 Jul 2025
Viewed by 697
Abstract
This article analyzes the role of biotechnologies in supporting the circular economy in various productive sectors. It highlights innovative approaches that contribute to sustainability, resource regeneration, waste recovery, and reduced dependence on fossil fuels. The text brings together relevant examples of biotechnological applications [...] Read more.
This article analyzes the role of biotechnologies in supporting the circular economy in various productive sectors. It highlights innovative approaches that contribute to sustainability, resource regeneration, waste recovery, and reduced dependence on fossil fuels. The text brings together relevant examples of biotechnological applications aimed at the production of bioplastics, bioenergy, bioproducts, and bioremediation solutions, among others of interest. In addition, it highlights the potential of using agro-industrial waste as raw material in biotechnological processes, promoting more efficient production chains with less environmental impact. The methodology was based on a comprehensive review of recent advances in industrial biotechnology. The main results reveal successful applications in the production of polyhydroxyalkanoates (PHAs) from food waste, in the microbial bioleaching of metals from electronic waste, and in the bioconversion of agricultural byproducts into functional materials, among others. The article also discusses the regulatory and social factors that influence the integration of these solutions into circular value chains. It concludes that biotechnology is a key element for the circular bioeconomy, offering scalable and environmentally efficient alternatives to conventional linear models, although its large-scale adoption depends on overcoming technological and market challenges. Full article
Show Figures

Figure 1

16 pages, 2511 KiB  
Article
Screening of High-Yield 2-Phenylethanol Producing Strain from Wild-Type Saccharomyces cerevisiae and Optimization of Fermentation Parameters
by Chenshuo Zhang, Tingwen Fan, Zhichun Wang, Jiamu Yu, Xiaoming Guo, Wei Jiang, Lili Miao and Huaiyi Yang
Foods 2025, 14(14), 2444; https://doi.org/10.3390/foods14142444 - 11 Jul 2025
Viewed by 365
Abstract
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium [...] Read more.
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium components (carbon and nitrogen sources) were optimized through single-factor experiments in shaking flasks, and fermentation medium with 40 g/L glucose, 5 g/L malt extract, 1.75 g/L corn steep liquor, 2.5 g/L yeast extract, 5 g/L malt extract, 1.75 g/L corn steep liquor was considered suitable for 2-PE production. RT-qPCR results indicated that corn steep liquor activates expression of genes related to the shikimate pathway and Ehrlich pathway (pha2, aro4, aro8, and aro9), thereby promoting the synthesis of 2-PE through these pathways. Excess yeast extract inhibited the expression of aro8 and aro9, while enhancing the expression of tdh3 and adh2, thus promoting the de novo synthesis of 2-PE. Furthermore, fermentation in a 5 L bioreactor was applied to investigate the effects of feeding strategies, inoculum proportion, and pH on 2-PE production. With a pH of 5.5 and10% inoculum proportion, the supplementation of the substrate L-Phe led to a 2-PE production of 4.81 g/L after 24 h of fermentation. Finally, in situ product recovery (ISPR) techniques was applied to alleviate 2-PE cytotoxicity, achieving a production of 6.41 g/L. This process offers a promising strategy for producing 2-PE efficiently and naturally, paving the way for further industrial applications in food, pharmaceutical, and cosmetic sectors. Full article
Show Figures

Figure 1

52 pages, 3535 KiB  
Review
Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
by Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad and Wan Abd Al Qadr Imad Wan-Mohtar
Polymers 2025, 17(14), 1897; https://doi.org/10.3390/polym17141897 - 9 Jul 2025
Cited by 1 | Viewed by 1149
Abstract
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. [...] Read more.
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. Agricultural waste, often discarded in large quantities, offers a valuable resource for producing biodegradable polymers. This review discusses the environmental burden caused by traditional plastics and explores how agricultural residues such as rice husks, corn cobs, and fruit peels can be converted into eco-friendly packaging materials. Various types of biopolymers sourced from agricultural waste, including cellulose, starch, plant and animal-based proteins, polyhydroxyalkanoates (PHA), and polylactic acid (PLA), are examined for their properties, benefits, and limitations in food packaging applications. Each material presents unique characteristics in terms of biodegradability, mechanical strength, and barrier performance. While significant progress has been made, several challenges remain, including cost-effective production, material performance, and compliance with food safety regulations. Looking ahead, innovations in material processing, waste management integration, and biopolymer formulation could pave the way for widespread adoption. This review aims to provide a comprehensive overview of current developments and future directions in the use of agricultural waste for sustainable packaging solutions, comparing their biodegradability and performance to conventional plastics. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 2226 KiB  
Article
Discovery of a High 3-Hydroxyhexanoate Containing Poly-3-hydroxybutyrate-co-3-hydroxyhexanoate Producer-, Cupriavidus sp. Oh_1 with Enhanced Fatty Acid Metabolism
by Gaeun Lim, Suk-Jin Oh, Yebin Han, Jeonghee Yun, Jeong Chan Joo, Hee-Taek Kim, Hyun Gi Koh, See-Hyoung Park, Kyungmoon Park and Yung-Hun Yang
Polymers 2025, 17(13), 1824; https://doi.org/10.3390/polym17131824 - 30 Jun 2025
Cited by 1 | Viewed by 450
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) is a representative PHA copolymer that can improve the mechanical limitations of polyhydroxybutyrate (P(3HB)). Although genetic engineering can facilitate 3HHx incorporation, it often compromises cell growth and reduces polymer molecular weight owing to metabolic disruptions caused by the deletion [...] Read more.
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) is a representative PHA copolymer that can improve the mechanical limitations of polyhydroxybutyrate (P(3HB)). Although genetic engineering can facilitate 3HHx incorporation, it often compromises cell growth and reduces polymer molecular weight owing to metabolic disruptions caused by the deletion of acetoacetyl coenzyme A (acetyl-CoA) reductase (PhaB). To address this issue, native strains capable of producing high levels of 3HHx were identified via oil-based Cupriavidus screening. Eight PHA-producing strains were isolated from various samples and Cupriavidus sp. Oh_1 exhibited the highest polyhydroxybutyrate (PHB) production at 15.23 g/L from 17.2 g/L of biomass using soybean oil. Moreover, Oh_1/phaCRaJPa, containing enoyl-CoA hydratase (phaJ) and PHA synthetase (phaC), was identified as the most effective novel strain producing the highest 3HHx mole fraction, 48.93 g/L of PHA from 52.3 g/L of biomass and achieving a maximum 3HHx accumulation of 27.2 mol%. The resulting P(3HB-co-3HHx) showed a higher Mw (12.3 × 105) compared with P(3HB-co-3HHx) produced by the phaB-deleted strain (14.6 × 104). Higher production of 3HHx was attributed to the higher expression of phaCRa and phaJPa in Oh_1, with log2 fold changes of 2.94 and 8.2, respectively, as well as the upregulation of certain β-oxidation encoding operons. Collectively, these findings highlight a strain capable of synthesizing a substantial 3HHx fraction without requiring gene deletions or extensive genetic modifications. Full article
Show Figures

Figure 1

16 pages, 548 KiB  
Review
Soy Molasses: A Sustainable Resource for Industrial Biotechnology
by Bruno C. Gambarato, Ana Karine F. Carvalho, Fernanda De Oliveira, Silvio S. da Silva, Milena Lorenzi da Silva and Heitor B. S. Bento
Sustainability 2025, 17(12), 5667; https://doi.org/10.3390/su17125667 - 19 Jun 2025
Viewed by 552
Abstract
Soy molasses, a byproduct of soy protein concentrate production, offers potential as a substrate for biotechnological applications due to its rich composition of carbohydrates, proteins, lipids, and bioactive compounds. Despite this, it remains underutilized, often relegated to low-value applications such as animal feed [...] Read more.
Soy molasses, a byproduct of soy protein concentrate production, offers potential as a substrate for biotechnological applications due to its rich composition of carbohydrates, proteins, lipids, and bioactive compounds. Despite this, it remains underutilized, often relegated to low-value applications such as animal feed or waste, largely due to variability in its composition, the presence of microbial inhibitors, and limited industrial awareness of its potential. This review explores the biotechnological strategies for valorizing soy molasses, focusing on its chemical and physical properties, potential applications, and the challenges associated with its use. Its high carbohydrate content supports its utilization in producing biofuels, organic acids, and polyhydroxyalkanoates (PHA), addressing the global demand for sustainable energy and materials while costing approximately 20% of the value of conventional carbohydrate sources. Additionally, bioactive compounds have extended applications to nutraceuticals and cosmetics, while proteins and lipids enable enzyme and biosurfactant production. However, challenges such as variability in composition, the presence of inhibitory compounds, and scalability issues require innovative approaches, including pre-treatment methods and strain engineering. By integrating soy molasses into a circular bioeconomy framework, industries can reduce waste, lower their carbon footprint, valorize agro-industrial residues, and generate economic value. This review underscores the untapped potential of soy molasses as a versatile, sustainable resource, while highlighting the need for continued advancements to transform it into a key player in industrial biotechnology. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Graphical abstract

21 pages, 1280 KiB  
Review
A Review of Bioelectrochemical Strategies for Enhanced Polyhydroxyalkanoate Production
by Alejandro Chamizo-Ampudia, Raúl. M. Alonso, Luisa Ariza-Carmona, África Sanchiz and María Isabel San-Martín
Bioengineering 2025, 12(6), 616; https://doi.org/10.3390/bioengineering12060616 - 5 Jun 2025
Viewed by 886
Abstract
The growing demand for sustainable bioplastics has driven research toward more efficient and cost-effective methods of producing polyhydroxyalkanoates (PHAs). Among the emerging strategies, bioelectrochemical technologies have been identified as a promising approach to enhance PHA production by supplying electrons to microorganisms either directly [...] Read more.
The growing demand for sustainable bioplastics has driven research toward more efficient and cost-effective methods of producing polyhydroxyalkanoates (PHAs). Among the emerging strategies, bioelectrochemical technologies have been identified as a promising approach to enhance PHA production by supplying electrons to microorganisms either directly or indirectly. This review provides an overview of recent advancements in bioelectrochemical PHA synthesis, highlighting the advantages of this method, including increased production rates, the ability to utilize a wide range of substrates (including industrial and agricultural waste), and the potential for process integration with existing systems. Various bioelectrochemical systems (BES), electrode materials, and microbial strategies used for PHA biosynthesis are discussed, with a focus on the roles of electrode potentials and microbial electron transfer mechanisms in improving the polymer yield. The integration of BES into PHA production processes has been shown to reduce costs, enhance productivity, and support the use of renewable carbon sources. However, challenges remain, such as optimizing reactor design, scaling up processes, and improving the electron transfer efficiency. This review emphasizes the advancement of bioelectrochemical technologies combined with the use of agro-industrial waste as a carbon source, aiming to maximize the efficiency and sustainability of PHA production for large-scale industrial applications. Full article
Show Figures

Graphical abstract

20 pages, 10181 KiB  
Article
Encapsulation of Transforming Growth Factor-β3 in Poly(hydroxybutyrate-co-hydroxyvalerate) Nanoparticles for Enhanced Cartilage Tissue Engineering
by Ana Isabel Rodríguez-Cendal, José Señarís-Rodríguez, María Piñeiro-Ramil, Loreto Cabarcos-Mouzo, María del Carmen Veiga-Barbazán, Rosa María Mejide-Faílde, Francisco Javier de Toro-Santos, Isaac Manuel Fuentes-Boquete and Silvia María Díaz-Prado
Int. J. Mol. Sci. 2025, 26(11), 4997; https://doi.org/10.3390/ijms26114997 - 22 May 2025
Viewed by 527
Abstract
Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a naturally occurring biopolymer belonging to the polyhydroxyalkanoate (PHA) family. Due to its excellent properties (biocompatible, biodegradable, and non-toxic), this biopolymer is presented as a very suitable option for use in regenerative therapy as a drug delivery system (DDS). The [...] Read more.
Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a naturally occurring biopolymer belonging to the polyhydroxyalkanoate (PHA) family. Due to its excellent properties (biocompatible, biodegradable, and non-toxic), this biopolymer is presented as a very suitable option for use in regenerative therapy as a drug delivery system (DDS). The protein encapsulated in this study is transforming growth factor β3 (TGF-β3), which plays a key role in the chondrogenic differentiation of mesenchymal stem cells (MSCs). The main objective of this work is to evaluate the efficacy of PHBV nanoparticles (NPs) produced from a dairy by-product (whey) as a DDS of TGF-β3 for cartilage regeneration and extracellular matrix (ECM) synthesis and to reduce the complications associated with multiple high doses of TGF-β3 in its free form. For this purpose, biopolymer cytotoxicity, factor release, cell viability, cell proliferation, and differentiation were analyzed. The results showed that the biomaterial purified with chloroform and ethanol, either by single or double precipitation, was not toxic to cells. A sustained release profile was observed, reaching its maximum around day 4. The TGF-β3 NPs promoted the differentiation of MSCs into chondrocytes and the formation of ECM. In conclusion, PHBV demonstrated its potential as an optimal material for DDSs in cartilage regenerative therapy, effectively addressing the key challenge of the need for a single delivery method to reduce complications associated with multiple high doses of TGF-β3. Full article
(This article belongs to the Special Issue Bone and Cartilage Injury and Repair: Molecular Aspects)
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Evaluation of Growth Performance, Biochemical Composition, and Polyhydroxyalkanoates Production of Four Cyanobacterial Species Grown in Cheese Whey
by Eirini Sventzouri, Konstantinos Pispas, Georgia G. Kournoutou, Maria Geroulia, Eleni Giakoumatou, Sameh Samir Ali and Michael Kornaros
Microorganisms 2025, 13(5), 1157; https://doi.org/10.3390/microorganisms13051157 - 19 May 2025
Viewed by 657
Abstract
Large-scale cultivation of cyanobacteria is often limited by the high cost of synthetic culture medium and the environmental impact of nutrient consumption. Cheese whey, a major agro-industrial waste product, is rich in organic and inorganic nutrients, making it a promising low-cost alternative for [...] Read more.
Large-scale cultivation of cyanobacteria is often limited by the high cost of synthetic culture medium and the environmental impact of nutrient consumption. Cheese whey, a major agro-industrial waste product, is rich in organic and inorganic nutrients, making it a promising low-cost alternative for microbial growth while addressing waste bioremediation. This study investigates the growth performance and the biochemical composition of four different cyanobacterial species (Phormidium sp., Synechocystis sp., Chlorogloeopsis fritschii, and Arthrospira platensis), cultivated in cheese whey (CW). Pretreated CW was used at 20% and 100% v/v concentrations. All species grew satisfactorily in both concentrations, reaching biomass above 4 g L−1 (in 100% v/v CW) and 2 g L−1 (in 20% v/v CW). The highest μmax value (0.28 ± 0.02 d−1) was presented by Synechocystis sp. grown in 20% CW. Waste bioremediation of both 20 and 100% v/v CW demonstrated effective nutrient removal, with COD removal exceeding 50% for most species, while total nitrogen (TN) and total phosphorus (TP) removals reached up to 33% and 32%, respectively. Biochemical composition analysis revealed high carbohydrate and protein content, while lipid content remained below 15% in all cases. Interestingly, C. fritschii accumulated 11% w/w polyhydroxyalkanoates (PHAs) during the last day of cultivation in 20% v/v CW. These findings highlight the potential of C. fritschii as a valuable candidate for integration into bioprocesses aimed at sustainable bioplastic production. Its ability to synthesize PHAs from agro-industrial waste not only enhances the economic viability of the process but also aligns with circular economy principles. This study is a primary step towards establishing a biorefinery concept for the cultivation of cyanobacterial species in cheese whey-based wastewater streams. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

34 pages, 2173 KiB  
Review
Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials
by Poova Kattil Drishya, M. Venkateswar Reddy, Gunda Mohanakrishna, Omprakash Sarkar, Isha, M. V. Rohit, Aesha Patel and Young-Cheol Chang
Macromol 2025, 5(2), 21; https://doi.org/10.3390/macromol5020021 - 6 May 2025
Cited by 6 | Viewed by 3225
Abstract
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials [...] Read more.
Biopolymers are revolutionizing the materials landscape, driven by a growing demand for sustainable alternatives to traditional petroleum-based materials. Sourced from biological origins, these polymers are not only environment friendly but also present exciting solutions in healthcare, packaging, biosensors, high performance, and durable materials as alternatives to crude oil-based products. Recently, biopolymers derived from plants, such as lignin and cellulose, alongside those produced by bacteria, like polyhydroxyalkanoates (PHAs), have captured the spotlight, drawing significant interest for their industrial and eco-friendly applications. The growing interest in biopolymers stems from their potential as sustainable, renewable materials across diverse applications. This review provides an in-depth analysis of the current advancements in plant-based and bacterial biopolymers, covering aspects of bioproduction, downstream processing, and their integration into high-performance next-generation materials. Additionally, we delve into the technical challenges of cost-effectiveness, processing, and scalability, which are critical barriers to widespread adoption. By highlighting these issues, this review aims to equip researchers in the bio-based domain with a comprehensive understanding of how plant-based and bacterial biopolymers can serve as viable alternatives to petroleum-derived materials. Ultimately, we envision a transformative shift from a linear, fossil fuel-based economy to a circular, bio-based economy, fostering more sustainable and environmentally conscious material solutions using novel biopolymers aligning with the framework of the United Nations Sustainable Development Goals (SDGs), including clean water and sanitation (SDG 6), industry, innovation, and infrastructure (SDG 9), affordable and clean energy (SDG 7), sustainable cities and communities (SDG 11), responsible production and consumption (SDG 12), and climate action (SDG 13). Full article
Show Figures

Figure 1

Back to TopTop