Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (410)

Search Parameters:
Keywords = PHA production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2110 KB  
Article
Gene Regulatory Network Inference Relating to Glycolysis in Escherichia coli with Causal Discovery Method Based on Machine Learning
by Akihito Nakanishi, Natsumi Omino, Ren Owa, Hayato Kinoshita and Hiroaki Fukunishi
Bacteria 2025, 4(4), 60; https://doi.org/10.3390/bacteria4040060 - 13 Nov 2025
Abstract
Escherichia coli LS5218 is an attractive host for producing polyhydroxybutyrate. The strain, however, strongly requires heterologous gene expressions like phaC for efficient production. For enhancing the production, the whole gene expressions relating to end product-producing flow should be optimized so that not only [...] Read more.
Escherichia coli LS5218 is an attractive host for producing polyhydroxybutyrate. The strain, however, strongly requires heterologous gene expressions like phaC for efficient production. For enhancing the production, the whole gene expressions relating to end product-producing flow should be optimized so that not only heterologous induced-genes but also other relating genes are comprehensively analyzed on the transcription levels, resulting in normally time-consuming mutant-creation. Additionally, the explanation for each transcriptional relationship is likely to follow the relationships on known metabolic pathway map to limit the consideration. This study aimed to infer gene regulatory networks within glycolysis, a central metabolic pathway in LS5218, using machine learning-based causal discovery methods. To construct a directed acyclic graph representing the gene regulatory network, we employed the NOTEARS algorithm (Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for Structure learning). Using transcription data of 264 time-resolved sampling points, we inferred the gene regulatory network and identified several distal regulatory relationships. Notably, gapA, a key enzyme controlling the transition between the preparatory and rewarding phases in glycolysis, was found to influence pgi, the enzyme at the pathway’s entry point. These findings suggest that inferring such nonlocal regulatory interactions can provide valuable insights for guiding genetic engineering strategies. Full article
Show Figures

Figure 1

19 pages, 5147 KB  
Article
Aqueous Polyhydroxyalkanoate Solution-Based Knife Coatings: An Alternative Approach to the Production of Coated Cotton Fabrics
by Marta A. Teixeira, Joana Castro, Beatriz Lima, Catarina Guise, Helena Vilaça and Carla Joana Silva
Coatings 2025, 15(11), 1278; https://doi.org/10.3390/coatings15111278 - 3 Nov 2025
Viewed by 386
Abstract
Footwear is traditionally manufactured using non-biodegradable polymers and leather, raising well-documented environmental and health concerns related to their production and disposal. This study explores polyhydroxyalkanoates (PHAs) as sustainable alternatives for bio-based footwear components. A stable aqueous suspension of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) was successfully formulated [...] Read more.
Footwear is traditionally manufactured using non-biodegradable polymers and leather, raising well-documented environmental and health concerns related to their production and disposal. This study explores polyhydroxyalkanoates (PHAs) as sustainable alternatives for bio-based footwear components. A stable aqueous suspension of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) was successfully formulated and applied to cotton fabrics via knife-coating. Various formulations, with and without additives and employing natural or synthetic thickeners, were evaluated in terms of surface morphology, wettability, permeability, and durability. The 10% PHBHHx formulation provided the best balance between material efficiency, coating uniformity, and surface performance. Additives and thermal treatment both influenced wettability, reducing contact angles and enhancing water vapor permeability. Notably, coatings with additives and hot pressing exhibited the highest permeability (68.0 ± 3.1 L/m2/s; 651.0 ± 5.4 g/m2/24 h), while additive-free, non-pressed coatings showed significantly lower values (19.5 ± 4.4 L/m2/s; 245.6 ± 66.2 g/m2/24 h), likely due to excessive compaction. Abrasion resistance remained excellent across all samples, especially with thermal treatment, withstanding 51,200 cycles. Washing resistance results revealed a synergistic effect between additives and heat, promoting long-term hydrophobicity and coating adhesion. Overall, PHBHHx coatings demonstrated potential to enhance water resistance while maintaining breathability, representing a sustainable and effective solution for functional and technical footwear applications. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

21 pages, 1746 KB  
Review
Carbon Recovery from Wastewater Feedstocks: Synthesis of Polyhydroxyalkanoates for Target Applications
by Mario I. Sepúlveda, Michael Seeger and Gladys Vidal
Resources 2025, 14(10), 156; https://doi.org/10.3390/resources14100156 - 1 Oct 2025
Viewed by 921
Abstract
Polyhydroxyalkanoate (PHA) bioplastics are produced from wastewater as a carbon recovery strategy. However, the tuneable characteristics of PHAs and wastewater biorefinery potential have not been comprehensively reviewed. The aim of this study is to review the main challenges and strategies for carbon recovery [...] Read more.
Polyhydroxyalkanoate (PHA) bioplastics are produced from wastewater as a carbon recovery strategy. However, the tuneable characteristics of PHAs and wastewater biorefinery potential have not been comprehensively reviewed. The aim of this study is to review the main challenges and strategies for carbon recovery from wastewater feedstocks via PHA production, assessing potential target biopolymer applications. Diverse PHA-accumulating prokaryotes metabolize organic pollutants present in wastewater through different metabolic pathways, determining the biopolymer characteristics. The synthesis of PHAs using mixed microbial cultures with wastewater feedstocks derived from municipal, agro-industrial, food processing, lignocellulosic biomass processing and biofuel production activities are described. Acidogenic fermentation of wastewater feedstocks and mixed microbial culture enrichment are key steps in order to enhance PHA productivity and determine biopolymer properties towards customized bioplastics for specific applications. Biorefinery of PHA copolymers and extracellular polysaccharides (EPSs), including alginate-like polysaccharides, are alternatives to enhance the value-chain of carbon recovery from wastewater. PHAs and EPSs exhibit a wide repertoire of applications with distinct safety control requirements; hence, coupling biopolymer production demonstrations with target applications is crucial to move towards full-scale applications. This study discusses the relationship between the metabolic basis of PHA synthesis and composition, wastewater type, and target applications, describing the potential to maximize carbon resource valorisation. Full article
(This article belongs to the Topic Advances and Innovations in Waste Management)
Show Figures

Figure 1

20 pages, 3126 KB  
Review
Integrated Pretreatment and Microbial Matching for PHA Production from Lignocellulosic Agro-Forestry Residues
by Dongna Li, Shanshan Liu, Qiang Wang, Xiaojun Ma and Jianing Li
Fermentation 2025, 11(10), 563; https://doi.org/10.3390/fermentation11100563 - 29 Sep 2025
Viewed by 915
Abstract
Lignocellulosic agro-forestry residues (LARs), such as rice straw, sugarcane bagasse, and wood wastes, are abundant and low-cost feedstocks for polyhydroxyalkanoate (PHA) bioplastics. However, their complex cellulose–hemicellulose–lignin matrix requires integrated valorization strategies. This review presents a dual-framework approach: “pretreatment–co-substrate compatibility” and “pretreatment–microbial platform matching”, [...] Read more.
Lignocellulosic agro-forestry residues (LARs), such as rice straw, sugarcane bagasse, and wood wastes, are abundant and low-cost feedstocks for polyhydroxyalkanoate (PHA) bioplastics. However, their complex cellulose–hemicellulose–lignin matrix requires integrated valorization strategies. This review presents a dual-framework approach: “pretreatment–co-substrate compatibility” and “pretreatment–microbial platform matching”, to align advanced pretreatment methods (including deacetylation–microwave integration, deep eutectic solvents, and non-sterilized lignin recovery) with engineered or extremophilic microbial hosts. A “metabolic interaction” perspective on co-substrate fermentation, encompassing dynamic carbon flux allocation, synthetic consortia cooperation, and one-pot process coupling, is used to elevate PHA titers and tailor copolymer composition. In addition, we synthesize comprehensive kinetic analyses from the literature that elucidate microbial growth, substrate consumption, and dynamic carbon flux allocation under feast–famine conditions, thereby informing process optimization and scalability. Microbial platforms are reclassified as broad-substrate, process-compatible, or product-customized categories to emphasize adaptive evolution, CRISPR-guided precision design, and consortia engineering. Finally, next-generation techno-economic analyses, embracing multi-product integration, regional adaptation, and carbon-efficiency metrics, are surveyed to chart viable paths for scaling LAR-to-PHA into circular bioeconomy manufacturing. Full article
Show Figures

Figure 1

25 pages, 5754 KB  
Article
Evaluation of Thermomechanical Properties of Polymer Blends Intended for Additive Manufacturing Processing: Comparative Study of Poly(Lactic Acid) and Poly(Lactic Acid)/Polyhydroxyalkanoate Blends
by Jacek Andrzejewski, Katarzyna Skórczewska and Mateusz Barczewski
Polymers 2025, 17(18), 2454; https://doi.org/10.3390/polym17182454 - 10 Sep 2025
Viewed by 903
Abstract
The following article presents the results of research on the assessment of the effect of FDM printing process conditions on the properties of the obtained products. During the research, unmodified PLA and a PLA/PHA mixture were subjected to comparative analysis. Both materials exhibit [...] Read more.
The following article presents the results of research on the assessment of the effect of FDM printing process conditions on the properties of the obtained products. During the research, unmodified PLA and a PLA/PHA mixture were subjected to comparative analysis. Both materials exhibit excellent processability under standard FDM process conditions; however, the PLA/PHA blend is gaining attention due to its potential as a more thermally resistant and less brittle alternative to unmodified PLA. The printing procedure conducted at high bed platform temperature confirmed that for standard PLA varieties and the PLA/PHA blend, it is possible to obtain improved thermomechanical properties only by modifying the machine parameters of the printing process. The increase in the Vicat softening temperature value was about 80 °C, reaching above 130 °C. Interestingly, for materials based on pure PLA, most mechanical properties exhibit noticeable improvement, with the improvement in impact strength being particularly beneficial. For most materials, the measurements revealed significant anisotropy of properties within the tested samples, which was particularly due to the use of different bed platform temperatures. The apparent effect of this was the change in the thermal conditions of the PLA phase crystallization process, with crystallinity levels ranging from 17 to 33% for selected samples. The obtained results confirm that PLA/PHA blends are an interesting alternative for the PLA-based material; however, further research is needed to improve the application potential further. Full article
(This article belongs to the Special Issue Natural Polymers: Design, Characterization and Applications)
Show Figures

Graphical abstract

33 pages, 2623 KB  
Review
Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future
by Eunbin Hwang, Yung-Hun Yang, Jiho Choi, See-Hyoung Park, Kyungmoon Park and Jongbok Lee
Materials 2025, 18(18), 4247; https://doi.org/10.3390/ma18184247 - 10 Sep 2025
Cited by 2 | Viewed by 2239
Abstract
This review explores the current state and future potential of bioplastics as sustainable alternatives to conventional fossil-based polymers. It provides a detailed examination of the classification, molecular structures, and synthetic routes of major bioplastics, including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), [...] Read more.
This review explores the current state and future potential of bioplastics as sustainable alternatives to conventional fossil-based polymers. It provides a detailed examination of the classification, molecular structures, and synthetic routes of major bioplastics, including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate-co-terephthalate (PBAT), and polyhydroxyalkanoates (PHAs). Special emphasis is placed on the unique properties and degradation behaviors of each material across various environmental conditions, such as industrial composting, soil, and marine ecosystems. The manuscript further discusses advanced strategies in polymer design, such as copolymerization, reactive blending, and incorporation of nano- or micro-scale additives, to enhance flexibility, thermal resistance, barrier properties, and mechanical integrity. In addition to technical advancements, the review critically addresses key limitations impeding large-scale commercialization, including high production costs, limited availability of bio-based monomers, and inadequate end-of-life treatment infrastructure. Finally, future research directions are proposed to advance the development of fully bio-based, functionally tunable, and circular bioplastics that meet the performance demands of modern applications while reducing environmental impact. Full article
Show Figures

Figure 1

30 pages, 1838 KB  
Review
An Overview of Bio-Based Polymers with Potential for Food Packaging Applications
by Raluca Şomoghi, Sonia Mihai and Florin Oancea
Polymers 2025, 17(17), 2335; https://doi.org/10.3390/polym17172335 - 28 Aug 2025
Viewed by 3867
Abstract
Food packaging is an essential part of the food industry. Packaging materials are indispensable in ensuring product safety, enhancing consumer experience, and supporting sustainable practices. This review provides an update on the role of bio-based polymers, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), starch-based [...] Read more.
Food packaging is an essential part of the food industry. Packaging materials are indispensable in ensuring product safety, enhancing consumer experience, and supporting sustainable practices. This review provides an update on the role of bio-based polymers, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), starch-based polymers, and cellulose-based polymers (cellulose acetate (CA), cellulose sulphate (CS), carboxymethyl cellulose (CMC), nanocellulose (NC), and methylcellulose (MC)) for food packaging applications. Properties as mechanical, barrier and antimicrobial, as well as their eco-friendly behavior, are also summarized. The advantages and disadvantages of using bio-based polymers in food packaging are discussed. Present review also addresses the challenges associated with their preparation and highlights the potential future prospects of bio-based polymers for packaging applications. Full article
(This article belongs to the Special Issue Advances in Natural Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

16 pages, 4347 KB  
Article
Comprehensive Evaluation of Wet-Spun Polyhydroxyalkanoate Fibres: Morphology, Crystallinity, and Thermal Properties
by Marta A. Teixeira, Inês Leite, Raquel Gonçalves, Helena Vilaça, Catarina Guise and Carla Silva
Fibers 2025, 13(8), 111; https://doi.org/10.3390/fib13080111 - 21 Aug 2025
Viewed by 801
Abstract
In response to increasing environmental concerns, significant efforts have been made to reduce our reliance on fossil fuel-based plastics, driving the development of sustainable alternatives such as polyhydroxyalkanoates (PHAs). This study investigates the processing of various PHAs into fibres, focusing on their morphological, [...] Read more.
In response to increasing environmental concerns, significant efforts have been made to reduce our reliance on fossil fuel-based plastics, driving the development of sustainable alternatives such as polyhydroxyalkanoates (PHAs). This study investigates the processing of various PHAs into fibres, focusing on their morphological, thermal, and mechanical properties. Different PHAs were spun into fibres at a 15% (w/v) concentration using wet-spinning techniques. Among the PHAs studied, commercially available PHBHHx, used as a reference, exhibited spongy morphology in the fibres and demonstrated thermal vulnerability due to its rapid degradation. Blended fibres showed enhanced morphological and mechanical properties compared with neat fibres. In Fourier-transform infrared spectroscopy (FTIR), no differences were observed between the unprocessed polymers and the wet-spun polymeric fibres, indicating that the wet-spinning process did not affect the molecular structure of the polymers. Thermal and mechanical evaluations confirmed the miscibility between the polymers in the blends. Overall, these results highlight, for the first time, the successful production of wet-spun fibres from two modified P(3HB) variants, individually, in combination with each other, and in blends with the well-established commercial PHA, PHBHHx. However, this study also underscores the need to optimise feed rates to enhance fibre production efficiency and mechanical strength, thereby broadening their potential for various applications. Full article
Show Figures

Figure 1

17 pages, 1150 KB  
Article
Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123
by Angela Longo, Luca Sconosciuto, Michela Verni, Vito Emanuele Carofiglio, Domenico Centrone, Marianna Villano, Gaia Salvatori, Erica Pontonio, Marco Montemurro and Carlo Giuseppe Rizzello
Microorganisms 2025, 13(8), 1917; https://doi.org/10.3390/microorganisms13081917 - 17 Aug 2025
Viewed by 699
Abstract
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by Azohydromonas [...] Read more.
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by Azohydromonas lata DSM 1123. The substrate was characterized by low protein and fat contents and a relevant lactose concentration (3.81%, w/v). Due to A. lata’s inability to directly metabolize lactose, β-galactosidase supplementation was necessary. Mineral supplementation of pasteurized RCEW significantly improved both microbial biomass and PHA synthesis, achieving up to 25.94% intracellular PHA content, whereas pre-adaptation trials failed to enhance strain performance. Moderate nitrogen limitation in the substrate (C/N ratio 44) favored PHA synthesis (0.55 g/L) and 32.74% intracellular accumulation. Thermal treatments decreased initial microbial contamination, hence a balanced mixture of pasteurized–sterilized (75:25) substrate was used to modulate RCEW protein content without the inclusion of additional technological or chemical processing steps and without lactose loss or dilution. Bioreactor trials using optimized RCEW pre-treatment conditions led to a further increase in biomass (2.36 g/L) and PHA production (0.88 g/L), especially under fed-batch conditions. The extracted polymer was confirmed to be polyhydroxybutyrate (PHB), with high thermal stability and a molecular weight of 5.9 KDa. Full article
Show Figures

Figure 1

33 pages, 4132 KB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Cited by 4 | Viewed by 2431
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

48 pages, 3314 KB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 - 1 Aug 2025
Viewed by 1557
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
Show Figures

Figure 1

32 pages, 1285 KB  
Review
Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator
by Wim Hectors, Tom Delmulle and Wim K. Soetaert
Polymers 2025, 17(15), 2104; https://doi.org/10.3390/polym17152104 - 31 Jul 2025
Viewed by 4006
Abstract
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering [...] Read more.
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering offers another avenue for improved productivity. Cupriavidus necator stands out as a model host for PHA production due to its substrate flexibility, high intracellular polymer accumulation, and tractability to genetic modification. This review delves into metabolic engineering strategies that have been developed to enhance the production of poly(3-hydroxybutyrate) (PHB) and related copolymers in C. necator. Strategies include the optimization of central carbon flux, redox and cofactor balancing, adaptation to oxygen-limiting conditions, and fine-tuning of granule-associated protein expression and the regulatory network. This is followed by outlining engineered pathways improving the synthesis of PHB copolymers, PHBV, PHBHHx, and other emerging variants, emphasizing genetic modifications enabling biosynthesis based on unrelated single-carbon sources. Among these, enzyme engineering strategies and the establishment of novel artificial pathways are widely discussed. In particular, this review offers a comprehensive overview of promising engineering strategies, serving as a resource for future strain development and positioning C. necator as a valuable microbial chassis for biopolymer production at an industrial scale. Full article
Show Figures

Figure 1

27 pages, 940 KB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Cited by 1 | Viewed by 3792
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

17 pages, 2025 KB  
Article
Retainment of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Properties from Oil-Fermented Cupriavidus necator Using Additional Ethanol-Based Defatting Process
by Tae-Rim Choi, Gaeun Lim, Yebin Han, Jong-Min Jeon, Shashi Kant Bhatia, Hyun June Park, Jeong Chan Joo, Hee Taek Kim, Jeong-Jun Yoon and Yung-Hun Yang
Polymers 2025, 17(15), 2058; https://doi.org/10.3390/polym17152058 - 28 Jul 2025
Viewed by 762
Abstract
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the [...] Read more.
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the recovery process, particularly in removing residual oil and minimizing degradation of the polymer structure during extraction steps. This study investigated the effects of ethanol-based defatting on the recovery and polymeric properties of P(3HB-co-3HH). The proposed method involves the addition of ethanol to the cell broth to effectively remove residual oil. Ethanol improved the separation of microbial cells from the broth, thereby streamlining the downstream recovery process. Using ethanol in the washing step increased the recovery yield and purity to 95.7% and 83.4%, respectively (compared to 87.4% and 76.2% for distilled water washing), representing improvements of 8.3% and 7.2%. Ethanol washing also resulted in a 19% higher molecular weight compared to water washing, indicating reduced polymer degradation. In terms of physical properties, the elongation at break showed a significant difference: 241.9 ± 27.0% with ethanol washing compared to water (177.7 ± 10.3%), indicating ethanol washing retains flexibility. Overall, an ethanol washing step for defatting could simplify the recovery steps, increase yield and purity, and retain mechanical properties, especially for P(3HB-co-3HH) from oils. Full article
Show Figures

Figure 1

16 pages, 1640 KB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 1409
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

Back to TopTop