Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms and Cultivation Conditions
2.2. Dairy Wastewater Characterization
2.3. Growth and PHA Accumulation Tests in RCEW
2.3.1. Mineral Supplementation
2.3.2. Pre-Adaptation
2.3.3. Thermal Treated Substrates
2.3.4. Effect of Organic Nitrogen Compound Levels
2.3.5. Two-Stage Cultivation Trials
2.4. Bioplastic Production
2.4.1. Cell Dry Matter
2.4.2. Intracellular PHA Content
2.5. Scale-Up of PHA Production in Bioreactor
2.6. PHA Characterization
2.6.1. Purity and Composition by Gas Chromatography (GC) Analysis
2.6.2. Thermogravimetric Analysis (TGA)
2.6.3. Average Molecular Weight and Polydispersity Index
2.7. Statistical Analysis
3. Results
3.1. Dairy Wastewater and Derived Substrates Characterization
3.2. Growth and PHA Accumulation Tests
3.2.1. Mineral Supplementation and Thermal Treatments
3.2.2. Pre-Adaptation
3.2.3. Modulation of Protein Concentration
3.2.4. Two-Stage Cultivation Trials
3.3. Scale-Up Under Bioreactor Conditions
3.4. Characterization of the PHA
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karlsson, T.M.; Arneborg, L.; Brostrom, G.; Almroth, B.C.; Gipperth, L.; Hassellov, M. The unaccountability case of plastic pellet pollution. Mar. Pollut. Bull. 2018, 129, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Zalasiewicz, J.; Waters, C.N.; Do Sul, J.A.I.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Comp. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Gouin, T.; Becker, R.A.; Collot, A.G.; Davis, J.W.; Howard, B.; Inawaka, K.; Lampi, M.; Ramon, B.S.; Shi, J.; Hopp, P.W. Towards the development and application of an environmental risk assessment framework for microplastic. Environ. Toxicol. Chem. 2019, 38, 2087–2100. [Google Scholar] [CrossRef]
- Adam, V.; Yang, T.; Nowack, B. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 2019, 38, 436–447. [Google Scholar] [CrossRef]
- Gontard, N.; David, G.; Guilbert, A.; Sohn, J. Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nat. Sustain. 2022, 5, 472–478. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Circular Plastics Alliance. Available online: https://single-market-economy.ec.europa.eu/industry/industrial-alliances/circular-plastics-alliance_en (accessed on 8 June 2023).
- A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 8 June 2023).
- Plastics Europe. Report: “ReShaping Plastics: Pathways to a Circular, Climate Neutral Plastics System in Europe”. Available online: https://plasticseurope.org/changingplasticsforgood/reshaping-plastics/ (accessed on 8 June 2023).
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Bioplastics Market Data. Available online: https://www.european-bioplastics.org/market/ (accessed on 8 June 2023).
- Dietrich, K.; Dumont, M.J.; Del Rio, L.F.; Orsat, V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017, 9, 58–70. [Google Scholar] [CrossRef]
- Alcântara, J.M.G.; Distante, F.; Storti, G.; Moscatelli, D.; Morbidelli, M.; Sponchioni, M. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnol. Adv. 2020, 42, 107582. [Google Scholar] [CrossRef]
- Anju, A.; Zuber, M.; Mahmood, Z.K.; Noreen, A.; Naveed, A.; Tabasum, S. Microbial production of Polyhydroxyalkanoates and its copolymers. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, J.; Chen, G.Q. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 2014, 30, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Samanvitha, S.K.; Shobana, N.; Renitta, E.R.; Senthilkumar, P.; Kumar, S.S.; Abirami, S.; Dhiva, S.; Bavanilatha, M.; Prakash, P.; et al. The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles. Polymer 2021, 13, 3302. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Otari, S.V.; Jeon, J.M.; Gurav, R.; Choi, Y.K.; Bhatia, R.K.; Pugazhendhi, A.; Kumar, V.; Banu, J.R.; Yoon, J.J.; et al. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresour. Technol. 2021, 326, 124733. [Google Scholar] [CrossRef] [PubMed]
- Moretto, G.; Russo, I.; Bolzonella, D.; Pavan, P.; Majone, M.; Valentino, F. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res. 2020, 170, 115371. [Google Scholar] [CrossRef]
- Varghese, S.; Dhanraj, N.D.; Rebello, S.; Sindhu, R.; Binod, P.; Pandey, A.; Jisha, M.S.; Awasthi, M.K. Leads and hurdles to sustainable microbial bioplastic production. Chemosphere 2022, 305, 135390. [Google Scholar] [CrossRef]
- Nielsen, C.; Rahman, A.; Rehman, A.U.; Walsh, M.K.; Miller, C.D. Food waste conversion to microbial polyhydroxyalkanoates. Microb. Biotechnol. 2017, 10, 1338–1352. [Google Scholar] [CrossRef]
- Penloglou, G.; Pavlou, A.; Kiparissides, C. Microbial Conversion of Cheese Whey to Polyhydroxybutyrate (PHB) via Statistically Optimized Cultures. Fermentation 2023, 9, 624. [Google Scholar] [CrossRef]
- Montemurro, M.; Salvatori, G.; Sara, A.; Martinelli, A.; Verni, M.; Pontonio, E.; Villano, M.; Rizzello, C.G. Exploitation of wasted bread as substrate for polyhydroxyalkanoates production through the use of Haloferax mediterranei and seawater. Front. Microbiol. 2022, 13, 1000962. [Google Scholar] [CrossRef]
- Grana, M.; Marreiros, B.C.; Carvalheira, M.; Ficara, E.; Reis, M.A.M. Polyhydroxyalkanoates production from cheese whey under near-seawater salinity conditions. New Biotechnol. 2024, 84, 53–63. [Google Scholar] [CrossRef]
- Mollea, C.; Marmo, L.; Bosco, F. Valorisation of cheese whey, a by-product from the dairy industry. In Food Industry; Muzzalupo, I., Ed.; IntechOpen: London, UK, 2013; pp. 549–588. [Google Scholar] [CrossRef]
- Rosa, F. Waste generated by food industry and reuse in a circular economy approach: The whey processing. CDVS 2018, 2, 171–173. [Google Scholar] [CrossRef]
- Fernández-Gutiérrez, D.; Veillette, M.; Giroir-Fendler, A.; Ramirez, A.A.; Faucheux, N.; Heitz, M. Biovalorization of saccharides derived from industrial wastes such as whey: A review. Rev. Environ. Sci Biotechnol. 2017, 16, 147–174. [Google Scholar] [CrossRef]
- Monari, S.; Ferri, M.; Russo, C.; Prandi, B.; Tedeschi, T.; Bellucci, P.; Zambrini, A.V.; Donati, E.; Tassoni, A. Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS ONE 2019, 14, e0226834. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.; Kumar, S.; Kumar, S.; Dhiman, A.K. Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatal. Agric. Biotechnol 2012, 1, 70–79. [Google Scholar] [CrossRef]
- Scott, F.; Yañez, L.; Conejeros, R.; Araya, B.; Vergara-Fernández, A. Two internal bottlenecks cause the overflow metabolism leading to poly(3-hydroxybutyrate) production in Azohydromonas lata DSM1123. J. Environ. Chem. Eng. 2021, 9, 105665. [Google Scholar] [CrossRef]
- Reasoner, D.J.; Geldreich, E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7. [Google Scholar] [CrossRef]
- Joint Standard ISO 8968-1/IDF 20-1:2001; ISO/FIL. Milk and Milk Products: Determination of Nitrogen Content. Part 1: Kjeldahl Principle and Crude Protein Calculation. International Standardisation Organisation: Geneva, Switzerland, 2001.
- Verni, M.; De Mastro, G.; De Cillis, F.; Gobbetti, M.; Rizzello, C.G. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res. Int. 2019, 125, 108571. [Google Scholar] [CrossRef]
- Verni, M.; Dingeo, C.; Rizzello, C.G.; Pontonio, E. Lactic acid bacteria fermentation and endopeptidase treatment improve the functional and nutritional features of Arthrospira platensis. Front. Microbiol. 2021, 12, 744437. [Google Scholar] [CrossRef]
- Joint Standard ISO 2446/IDF 226:2008; ISO/IDF. Milk. Determination of Fat Content. International Standardisation Organisation: Geneva, Switzerland, 2008.
- AOAC. Ash of milk-Gravimetric method, method 945.46. In Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Ed.; AOAC International: Rockville, ML, USA, 2016; p. 10. [Google Scholar]
- Rodriguez-Colinas, B.; Fernandez-Arrojo, L.; Ballesteros, A.O.; Plou, F.J. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chem. 2014, 145, 388–394. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Sharma, V.; Misra, S.; Kumar Srivastava, A. Developing a green and sustainable process for enhanced PHB production by Azohydromonas australica. Biocatal. Agric. Biotechnol. 2017, 10, 122–129. [Google Scholar] [CrossRef]
- Rama, G.R.; Kuhn, D.; Beux, S.; Maciel, M.J.; de Souza, C.F.V. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int. Dairy J. 2019, 98, 25–37. [Google Scholar] [CrossRef]
- Wang, B.; Sharma-Shivappa, R.R.; Olson, J.W.; Khan, S.A. Upstream process optimization of polyhydroxybutyrate (PHB) by Alcaligenes latus using two-stage batch and fed-batch fermentation strategies. BBE 2012, 35, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Raho, S.; Carofiglio, V.E.; Montemurro, M.; Miceli, V.; Centrone, D.; Stufano, P.; Schioppa, S.; Pontonio, E.; Rizzello, C.G. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Haloferax mediterranei Fermentation. Foods 2020, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Braunegg, G.; Sonnleitner, B.Y.; Lafferty, R.M. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 1978, 6, 29–37. [Google Scholar] [CrossRef]
- Salvatori, G.; Marchetti, A.; Russo, A.M.; Rodriguez, J.; Scerbacov, V.; Fianelli, F.; Alfano, S.; Crognale, S.; Massimi, A.; Rossetti, S.; et al. Pilot-Scale Acidogenic Fermentation of Reground Pasta Byproduct for Polyhydroxyalkanoate Production with Mixed Microbial Cultures. Sustain. Chem. Eng. 2025, 13, 3024–3035. [Google Scholar] [CrossRef]
- Hong, S.G.; Lin, Y.C.; Lin, C.H. Crystallization and degradation behaviors of treated polyhydroxybutyrates. React. Funct. Polym. 2008, 68, 1516–1523. [Google Scholar] [CrossRef]
- Kervran, M.; Vagner, C.; Cochez, M.; Ponçot, M.; Saeb, R.; Vahabi, H. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review. Polym. Degrad. Stab. 2022, 201, 109995. [Google Scholar] [CrossRef]
- Rana, A.; Kumar, V.; Dhewa, T.; Taneja, N.K. Bioplastic Production Using Whey (Polyhydroxyalkanoates and Polyhydroxybutyrates). In Whey Valorization; Poonia, A., Petkoska, A.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 103–113. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef]
- Braunegg, G.; Bogensberger, B. Zur Kinetik des Wachstums und der Speicherungvon poly d(-)-3-hydroxybuttersaure by Alcaligenes latus. Acta Biotechnol. 1985, 5, 339–345. [Google Scholar] [CrossRef]
- Wang, F.; Lee, S.Y. Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl. Environ. Microbiol. 1997, 63, 3703–3706. [Google Scholar] [CrossRef]
- Amini, M.; Sobhani, S.; Younesi, H.; Abyar, H.; Salamatinia, B.; Mohammadi, M. Evaluating the Feasibility of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Co-Biopolymer Production from Rice Wastewater by Azohydromonas lata. Appl. Food Biotechnol. 2020, 7, 73–83. [Google Scholar] [CrossRef]
- Wisuthiphaet, N.; Napathorn, S.C. Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation. Process Biochem. 2016, 51, 352–361. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiang, X.-R. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Synth. Syst. Biotechnol. 2018, 3, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Chatzidoukas, C.; Penloglou, G.; Kiparissides, C. Development of a structured dynamic model for the production of polyhydroxybutyrate (PHB) in Azohydromonas lata cultures. Biochem. Eng. J. 2013, 71, 72–80. [Google Scholar] [CrossRef]
- Penloglou, G.; Chatzidoukas, C.; Kiparissides, C. Microbial production of polyhydroxybutyrate with tailor-made properties: An integrated modelling approach and experimental validation. Biotechnol. Adv. 2012, 30, 329–337. [Google Scholar] [CrossRef]
- Penloglou, G.; Kretza, E.; Chatzidoukas, C.; Parouti, S.; Kiparissides, C. On the control of molecular weight distribution of polyhydroxybutyrate in Azohydromonas lata cultures. Biochem. Eng. J. 2012, 62, 39–47. [Google Scholar] [CrossRef]
- Zafar, M.; Kumar, S.; Kumar, S.; Dhiman, A.K. Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: A genetic algorithm paradigm. Bioresour. Technol. 2012, 104, 631–641. [Google Scholar] [CrossRef]
- Zhao, J.; Cui, Y.W.; Zhang, H.Y.; Gao, Z.L. Carbon Source Applied in Enrichment Stage of Mixed Microbial Cultures Limits the Substrate Adaptability for PHA Fermentation Using the Renewable Carbon. Appl. Biochem. Biotechnol. 2021, 193, 3253–3270. [Google Scholar] [CrossRef]
- Traversa, D.; Pazzani, C.; D’Addabbo, P.; Trisolini, L.; Chiara, M.; Oliva, M.; Marzella, A.; Mandorino, C.; Calia, C.; Chimienti, G.; et al. De Novo Assembly of the Polyhydroxybutyrate (PHB) Producer Azohydromonas lata Strain H1 Genome and Genomic Analysis of PHB Production Machinery. Microorganisms 2025, 13, 137. [Google Scholar] [CrossRef]
- Penloglou, G.; Vasileiadou, A.; Chatzidoukas, C.; Kiparissides, C. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate. BBE 2017, 40, 1247–1260. [Google Scholar] [CrossRef]
- Surendran, A.; Lakshmanan, M.; Chee, J.Y.; Sulaiman, A.M.; Van Thuoc, D.; Sudesh, K. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils? Front. Bioeng. Biotechnol. 2020, 8, 169. [Google Scholar] [CrossRef]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2014, 38, 536–583, Erratum in Prog. Polym. Sci. 2014, 39, 397–442. [Google Scholar] [CrossRef]
- Madkour, M.H.; Heinrich, D.; Alghamdi, M.A.; Shabbaj, I.I.; Steinbüchel, A. PHA Recovery from Biomass. Biomacromolecules 2013, 14, 2963–2972. [Google Scholar] [CrossRef]
- Koller, M.; Salerno, A.; Dias, M.; Reiterer, A.; Braunegg, G. Modern biotechnological polymer synthesis: A review. FTB 2010, 48, 255–269. [Google Scholar]
- Reddy, C.S.K.; Ghai, R.; Rashmi Kalia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Hernández, M.V.; Laycock, B.; Pratt, S.; Donose, B.C.; Nikolić, M.A.L.; Luckman, P.; Werker, A.; Lant, P.A. Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polym. Degrad. Stab. 2012, 97, 2301–2312. [Google Scholar] [CrossRef]
- Colombo, B.; Pepè Sciarria, T.; Reis, M.; Scaglia, B.; Adani, F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour. Technol. 2016, 218, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Jia, L.; Morrison, H.M.; Majumder, E.L.W.; Kumar, D. Enhanced polyhydroxybutyrate production from acid whey through determination of process and metabolic limiting factors. Bioresour. Technol. 2021, 342, 125973. [Google Scholar] [CrossRef]
Chemical Analysis | |
---|---|
pH | 5.2 ± 0.10 |
Total nitrogen % (w/v) | 0.06 ± 0.01 |
Proteins % (w/v) | 0.38 ±0.06 |
Total free amino acids (mg/L) | 403 ± 25 |
Lactose % (w/v) | 3.81 ± 0.15 |
Glucose % (w/v) | <0.01 |
Galactose % (w/v) | <0.01 |
Fat % (w/v) | 0.20 ± 0.03 |
Ash % (w/v) | 1.20 ± 0.05 |
Microbiological Analysis | |
Total bacteria (Log cfu/mL) | 5.30 ± 0.11 |
Lactic acid bacteria (Log cfu/mL) | 4.56 ±0.21 |
Yeasts (Log cfu/mL) | 3.21 ± 0.2 |
Enterobacteriaceae (Log cfu/mL) | <1 |
Adaptation | Substrate | Lactose (% w/v) | Protein (% w/v) | C/N | CDM (g/L) | PHA (g/L) | Intracellular PHA (%) |
---|---|---|---|---|---|---|---|
Mineral supplementation and thermal treatments | |||||||
- | pRCEW | 3.80 ± 0.10 a | 0.33 ± 0.03 a | 34 e | 0.82 ± 0.15 c | 0.13 ± 0.05 c | 16.19 ± 0.12 c |
- | pRCEW+ | 3.80 ± 0.15 a | 0.33 ± 0.03 a | 34 e | 1.58 ± 0.12 a | 0.41 ± 0.03 b | 25.94 ± 0.54 b |
- | sRCEW+ | 3.78 ± 0.03 a | 0.01 ± 0.01 d | 1019 a | 0.39 ± 0.10 d | 0.01 ± 0.03 d | 2.50 ± 0.48 e |
Pre-adaptation | |||||||
3.8-I | pRCEW+ | 3.81 ± 0.10 a | 0.33 ± 0.02 a | 34 e | 1.59 ± 0.09 a | 0.23 ± 0.03 bc | 14.46 ± 0.48 c |
3.8-III | pRCEW+ | 3.79 ± 0.12 a | 0.33 ± 0.02 a | 34 e | 1.69 ± 0.11 a | 0.07 ± 0.01 d | 4.35 ± 0.55 e |
12.5-I | pRCEW+ | 3.80 ± 0.10 a | 0.33 ± 0.01 a | 34 e | 1.74 ± 0.13 a | 0.07 ± 0.02 d | 4.05 ± 0.42 e |
Modulation of the protein concentration | |||||||
- | RCEW-I | 3.80 ± 0.11 a | 0.09 ± 0.01 d | 117 b | 1.65 ± 0.12 a | 0.12 ± 0.05 c | 7.27 ± 0.21 d |
- | RCEW-II | 3.79 ± 0.09 a | 0.17 ± 0.0 c | 63 c | 1.67 ± 0.10 a | 0.35 ± 0.09 b | 20.96 ± 0.54 b |
- | RCEW-III | 3.79 ± 0.10 a | 0.25 ± 0.02 b | 44 d | 1.68 ± 0.10 a | 0.55 ± 0.05 a | 32.74 ± 0.15 a |
Two-stage cultivation | |||||||
- | sRCEWamm/sRCEW | 3.80 ± 0.10 a/3.79 ± 0.11 a | * 0.01 ± 0.01 d/0.01 ± 0.01 d | 23 f/1021 a | 1.10 ± 0.12 b | 0.04 ± 0.05 a | 3.60 ± 0.12 e |
- | pRCEW/sRCEW | 3.78 ± 0.10 a/3.79 ± 0.10 a | 0.33 ± 0.03 a/0.01 ± 0.01 d | 34 e/1021 a | 1.46 ± 0.10 a | 0.34 ± 0.07 b | 23.3 ± 0.18 b |
Substrate | Lactose (% w/v) | Protein (% w/v) | C/N | CDM (g/L) | PHA (g/L) | Intracellular PHA (%) |
---|---|---|---|---|---|---|
b/RCEW-III | 3.80± 0.10 a | 0.25 ± 0.02 a | 44 a | 2.27 ± 0.21 a | 0.75 ± 0.10 ab | 32.83 ± 0.17 b |
fb/RCEW-III | 3.81 ± 0.10 a | 0.25 ± 0.02 a | 44 a | 2.36 ± 0.20 a | 0.88 ± 0.11 a | 37.29 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, A.; Sconosciuto, L.; Verni, M.; Carofiglio, V.E.; Centrone, D.; Villano, M.; Salvatori, G.; Pontonio, E.; Montemurro, M.; Rizzello, C.G. Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123. Microorganisms 2025, 13, 1917. https://doi.org/10.3390/microorganisms13081917
Longo A, Sconosciuto L, Verni M, Carofiglio VE, Centrone D, Villano M, Salvatori G, Pontonio E, Montemurro M, Rizzello CG. Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123. Microorganisms. 2025; 13(8):1917. https://doi.org/10.3390/microorganisms13081917
Chicago/Turabian StyleLongo, Angela, Luca Sconosciuto, Michela Verni, Vito Emanuele Carofiglio, Domenico Centrone, Marianna Villano, Gaia Salvatori, Erica Pontonio, Marco Montemurro, and Carlo Giuseppe Rizzello. 2025. "Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123" Microorganisms 13, no. 8: 1917. https://doi.org/10.3390/microorganisms13081917
APA StyleLongo, A., Sconosciuto, L., Verni, M., Carofiglio, V. E., Centrone, D., Villano, M., Salvatori, G., Pontonio, E., Montemurro, M., & Rizzello, C. G. (2025). Substrate Optimization for PHB Production from Ricotta Cheese Exhausted Whey Using Azohydromonas lata DSM 1123. Microorganisms, 13(8), 1917. https://doi.org/10.3390/microorganisms13081917