Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future
Abstract
1. Introduction
2. Biodegradable Bioplastics
2.1. Polylactic Acid (PLA)
2.1.1. Overview and Synthesis
2.1.2. Limitations and Recent Advances
2.2. Polyglycolic Acid (PGA)
2.2.1. Overview and Synthesis
2.2.2. Limitations and Recent Advances
2.3. Polycaprolactone (PCL)
2.3.1. Overview and Synthesis
2.3.2. Limitations and Recent Advances
2.4. Poly(Butylene Succinate) (PBS)
2.4.1. Overview and Synthesis
2.4.2. Limitations and Recent Advances
2.5. Poly(Butylene Adipate-co-Terephthalate) (PBAT)
2.5.1. Overview and Synthesis
2.5.2. Limitations and Recent Advances
2.6. Polyhydroxyalkanoates (PHAs)
2.6.1. Overview and Synthesis
2.6.2. Limitations and Recent Advances
Biodegradable Plastic | Tensile Strength (MPa) | Young’s Modulus (GPa) | Tg (°C) | Tm (°C) | Elongation at Break (%) | Oxygen Permeability (OP) (cm3∙mm/m2∙Day∙atm) | Water Vapor Permeability (WVP) (g∙mm/m2∙Day∙kpa) | Substitutes for Conventional Plastic | Ref. |
---|---|---|---|---|---|---|---|---|---|
PLA | 21~60 | 0.35~3.5 | 45~60 | 150~180 | 2~10 | 132~590 (23 °C/RH 50% or 0%) [142] | 63~342 (23 °C/RH 85%) [142,143] | PET, PS | [22] |
PGA | ~115 | ~7 | 35~40 | 220~230 | ~15 | ~1 (30 °C/RH 0%) [144] | ~10 (40 °C/RH 90%) [144] | PET, Nylon | [18] |
PCL | 10.5~27.3 | 0.2~0.4 | ~−60 | 56~65 | 80~800 | 1990 (25 °C/RH 0%) [145] | 173 (23 °C/RH 75%) [146] 137 (35 °C/RH 48%) [147] | LDPE | [66] |
PBS | ~40 | ~0.7 | ~−15 | ~115 | ~230 | 208 (23 °C/RH 50%) [148] 340 (25 °C/RH 90%) [149] | 175 (25 °C) [150] | LDPE, PP | [82,86] |
PBAT | ~21 | 0.02~0.035 | ~−30 | 115~125 | ~700 | 2440 (23 °C/RH 50%) [151] | 1380 (23 °C/RH 100%) [151] | LDPE/LLDPE | [107] |
PHA (P3HB) b | 15~40 | 1~3.5 | 4~9 | 165~180 | 1~15 | 8 (23 °C/RH 85%) [152] 85 (23 °C/RH 0%) [153] 230 (25 °C/RH 80%) [154] | 106 (23 °C/RH 50%) [152] 30 (25 °C/RH 100%) [155] 26 (37.8 °C/RH 100%) [154] | PE, PP, PS | [132,137] |
3. Degradation Behavior and Standard Evaluation Methods
Environment | Standard/ Test Method | Analysis Time (Months) | Parameters Monitored | Interpretation of Results | Validity Criteria |
---|---|---|---|---|---|
Soil | ASTM D5988 [166] | Up to 6 | CO2 evolution, weight loss, visual appearance |
|
|
ISO 17556 [167] | Up to 24 | CO2 evolution, weight loss, visual disintegration |
|
| |
ISO 23517 [168] | Variable | CO2 evolution, ecotoxicity |
|
| |
Composting | ASTM D5338 [169] | Up to 6 | CO2 evolution, weight loss, disintegration |
|
|
ISO 14855 [170] | Up to 6 |
| |||
ASTM D6400 [171] | Up to 6 | CO2 evolution, weight loss, disintegration, plant toxicity |
|
| |
ISO 17088 [172] | Up to 6 |
| |||
Aquatic (freshwater) | ISO 14851 [173] | Up to 6 | CO2 evolution, dissolved organic carbon (DOC) |
|
|
Aquatic (marine) | ASTM D6691 [174] | Up to 6 | CO2 evolution, dissolved organic carbon (DOC) |
|
|
ISO 19679 [175] | Up to 6 |
|
| ||
ISO 18830 [176] | Up to 6 |
| |||
Anaerobic digestion | ASTM D5511 [164] | Up to 2 | Biogas production (CH4, CO2), weight loss |
|
|
ISO 15985 [165] | 15 days (extendable until plateau is reached) | Biogas (CH4, CO2) evolution, volatile solids reduction, vis-ual disintegration |
|
|
4. Conclusions and Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in Applications and Prospects of Bioplastics and Biopolymers: A Review. Environ. Chem. Lett. 2022, 20, 379–395. [Google Scholar] [CrossRef]
- Statista. Global Plastic Production 1950–2023; Statista Research Department: Hamburg, Germany, 2024. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The Behaviors of Microplastics in the Marine Environment. Mar. Environ. Res. 2016, 113, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.; Chae, E.; Choi, S.-S. Characteristics of Tire-Road Wear Particles Produced on Indoor Parking Garage Ramp. Elastom. Compos. 2024, 59, 97–107. [Google Scholar]
- da Costa, J.P.; Santos, P.S.M.; Duarte, A.C.; Rocha-Santos, T. (Nano)plastics in the Environment—Sources, Fates and Effects. Sci. Total Environ. 2016, 566–567, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Sinha Ray, S.; Bousmina, M. Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World. Prog. Mater. Sci. 2005, 50, 962–1079. [Google Scholar] [CrossRef]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, T.V. Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromol 2023, 3, 371–399. [Google Scholar] [CrossRef]
- De Falco, F.; Avolio, R.; Errico, M.E.; Di Pace, E.; Avella, M.; Cocca, M.; Gentile, G. Comparison of Biodegradable Polyesters Degradation Behavior in Sand. J. Hazard. Mater. 2021, 416, 126231. [Google Scholar] [CrossRef]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef]
- Braskem S.A. Integrated Report 2024; Braskem S.A.: Camaçari, Brazil, 2024. [Google Scholar]
- Cucina, M.; de Nisi, P.; Tambone, F.; Adani, F. The Role of Waste Management in Reducing Bioplastics’ Leakage into the Environment: A Review. Bioresour. Technol. 2021, 337, 125459. [Google Scholar] [CrossRef]
- Titone, V.; Botta, L.; La Mantia, F.P. Mechanical Recycling of New and Challenging Polymer Systems: A Brief Overview. Macromol. Mater. Eng. 2024, 310, 2400275. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Recycling of Bioplastic Waste: A Review. Adv. Ind. Eng. Polym. Res. 2021, 4, 159–177. [Google Scholar] [CrossRef]
- Muller, J.; González-Martínez, C.; Chiralt, A. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- European Bioplastics e.V. Bioplastics Market Development Update 2024; European Bioplastics e.V.: Berlin, Germany, 2024. [Google Scholar]
- Jem, K.J.; Tan, B. The Development and Challenges of Poly (lactic acid) and Poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Liu, M.; Meng, L.; Li, C. A Review of Research and Application of Polylactic acid Composites. J. Appl. Polym. Sci. 2023, 140, e53477. [Google Scholar] [CrossRef]
- Singhvi, M.; Gokhale, D. Biomass to Biodegradable Polymer (PLA). RSC Adv. 2013, 3, 13558–13568. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic acid Production—Producing Microorganisms and Substrates Sources-State of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Taib, N.-A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A Review on Poly-lactic acid (PLA) as a Biodegradable Polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Crystallization from the Melt of Poly(lactide)s with Different Optical Purities and Their Blends. Macromol. Chem. Phys. 1996, 197, 3483–3499. [Google Scholar] [CrossRef]
- Pang, K.; Kotek, R.; Tonelli, A. Review of Conventional and Novel Polymerization Processes for Polyesters. Prog. Polym. Sci. 2006, 31, 1009–1037. [Google Scholar] [CrossRef]
- Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid Synthesis for Application in Biomedical devices—A Review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Chen, C. Biobased, Biodegradable and Compostable Plastics: Chemical Nature, Biodegradation Pathways and Environmental Strategy. Environ. Sci. Pollut. Res. 2024, 31, 8387–8399. [Google Scholar] [CrossRef] [PubMed]
- Gigante, V.; Canesi, I.; Cinelli, P.; Coltelli, M.B.; Lazzeri, A. Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. Eur. Polym. J. 2019, 115, 125–137. [Google Scholar] [CrossRef]
- Harada, M.; Iida, K.; Okamoto, K.; Hayashi, H.; Hirano, K. Reactive Compatibilization of Biodegradable Poly(lactic acid)/Poly(ε-caprolactone) Blends with Reactive Processing Agents. Polym. Eng. Sci. 2008, 48, 1359–1368. [Google Scholar] [CrossRef]
- Van de Perre, D.; Serbruyns, L.; Coltelli, M.-B.; Gigante, V.; Aliotta, L.; Lazzeri, A.; Geerinck, R.; Verstichel, S. Tuning Biodegradation of Poly (lactic acid) (PLA) at Mild Temperature by Blending with Poly (butylene succinate-co-adipate) (PBSA) or Polycaprolactone (PCL). Materials 2024, 17, 5436. [Google Scholar] [CrossRef]
- Ojijo, V.; Ray, S.S. Super Toughened Biodegradable Polylactide Blends with Non-linear Copolymer Interfacial Architecture Obtained via Facile In-situ Reactive Compatibilization. Polymer 2015, 80, 1–17. [Google Scholar] [CrossRef]
- Nofar, M.; Heuzey, M.C.; Carreau, P.J.; Kamal, M.R. Effects of Nanoclay and Its Localization on the Morphology Stabilization of PLA/PBAT Blends under Shear Flow. Polymer 2016, 98, 353–364. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Zhou, S.; Li, J.; Qi, C.; Tao, H. Synthesis and Investigation of Sustainable Long-chain Branched Poly(lactic acid-r-malic acid) Copolymer as Toughening Agent for PLA Blends. Polymer 2024, 293, 126634. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Lee, Y.-J.; Park, S.; Kim, C.-W.; Kang, D.-G. Transparent Poly(Lactic Acid-b-3-Hydroxypropionic Acid) Block Copolymer and Articles Including the Same; KR 10-2744824 B1; Korean Intellectual Property Office (KIPO): Cheongsa-ro, Republic of Korea, 2021.
- Imai, Y.; Tominaga, Y.; Tanaka, S.; Yoshida, M.; Furutate, S.; Sato, S.; Koh, S.; Taguchi, S. Modification of Poly(lactate) via Polymer Blending with Microbially Produced Poly[(R)-lactate-co-(R)-3-hydroxybutyrate] Copolymers. Int. J. Biol. Macromol. 2024, 266, 130990. [Google Scholar] [CrossRef]
- Oh, J.K. Polylactide (PLA)-based Amphiphilic Block Copolymers: Synthesis, Self-assembly, and Biomedical Applications. Soft Matter 2011, 7, 5096. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Li, J.; Liang, X.; Zhou, W.; Peng, S. Strategies and Techniques for Improving Heat Resistance and Mechanical Performances of Poly(lactic acid) (PLA) Biodegradable Materials. Int. J. Biol. Macromol. 2022, 218, 115–134. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Jiang, J.; Srithep, Y.; Li, Q. Enhancing Heat Resistance of PBAT Foams by Incorporating sc-PLA and In Situ Fibrillation Process. ACS Appl. Polym. Mater. 2025, 7, 4658–4667. [Google Scholar] [CrossRef]
- Petchwattana, N.; Covavisaruch, S.; Petthai, S. Influence of Talc Particle Size and Content on Crystallization Behavior, Mechanical Properties and Morphology of Poly(lactic acid). Polym. Bull. 2014, 71, 1947–1959. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Haddleton, D.M.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly(glycolic acid) (PGA): A Versatile Building Block Expanding High Performance and Sustainable Bioplastic Applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Sanko, V.; Sahin, I.; Aydemir Sezer, U.; Sezer, S. A Versatile Method for the Synthesis of Poly(glycolic acid): High Solubility and Tunable Molecular Weights. Polym. J. 2019, 51, 637–647. [Google Scholar] [CrossRef]
- Budak, K.; Sogut, O.; Aydemir Sezer, U. A Review on Synthesis and Biomedical Applications of Polyglycolic acid. J. Polym. Res. 2020, 27, 208. [Google Scholar] [CrossRef]
- Market Research Future. Polyglycolic Acid Market Research Report—Global Forecast 2024–2032; Market Research Future: Pune, India, 2024. [Google Scholar]
- Singh, V.; Tiwari, M. Structure-Processing-Property Relationship of Poly(Glycolic Acid) for Drug Delivery Systems 1: Synthesis and Catalysis. Int. J. Polym. Sci. 2010, 2010, 652719. [Google Scholar] [CrossRef]
- Nieuwenhuis, J. Synthesis of Polylactides, Polyglycolides and Their Copolymers. Clin. Mater. 1992, 10, 59–67. [Google Scholar] [CrossRef]
- Takahashi, K.; Taniguchi, I.; Miyamoto, M.; Kimura, Y. Melt/Solid Polycondensation of Glycolic acid to Obtain High-molecular-weight Poly(glycolic acid). Polymer 2000, 41, 8725–8728. [Google Scholar] [CrossRef]
- Altay, E.; Jang, Y.-J.; Kua, X.Q.; Hillmyer, M.A. Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects. Biomacromolecules 2021, 22, 2532–2543. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shih-Horng, S.; Truong, N.K.; Meital, Z.; Liping, T.; Nelson, K.D.; Frenkel, P. Review: Bioresorbable Polymeric Stents: Current Status and Future Promise. J. Biomater. Sci.-Polym. Ed. 2003, 14, 299–312. [Google Scholar] [CrossRef]
- Chen, S.; Meng, X.; Xin, Z.; Gong, W.; Li, C.; Wen, W. Preparation of Rigidity Toughness Balance and Stable Poly(glycolic acid) Based on Chain Extension Reaction. J. Appl. Polym. Sci. 2024, 141, e54906. [Google Scholar] [CrossRef]
- Ellingford, C.; Samantaray, P.K.; Farris, S.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Reactive Extrusion of Biodegradable PGA/PBAT Blends to Enhance Flexibility and Gas Barrier Properties. J. Appl. Polym. Sci. 2022, 139, 51617. [Google Scholar] [CrossRef]
- Ayyoob, M.; Lee, D.H.; Kim, J.H.; Nam, S.W.; Kim, Y.J. Synthesis of Poly(glycolic acids) via Solution Polycondensation and Investigation of Their Thermal Degradation Behaviors. Fibers Polym. 2017, 18, 407–415. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, X.; Liang, A. Synthesis, Properties, and In Vitro Hydrolytic Degradation of Poly(d,l-lactide-co-glycolide-co-ε-caprolactone). Int. J. Polym. Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, B.-S.; Kim, S.H.; Choi, S.W.; Jeong, S.I.; Kwon, I.K.; Kang, S.W.; Nikolovski, J.; Mooney, D.J.; Han, Y.-K.; et al. Elastic Biodegradable Poly(glycolide-co-caprolactone) Scaffold for Tissue Engineering. J. Biomed. Mater. Res. Part A 2003, 66A, 29–37. [Google Scholar] [CrossRef]
- Díaz-Celorio, E.; Franco, L.; Rodríguez-Galán, A.; Puiggalí, J. Study on the Hydrolytic Degradation of Glycolide/Trimethylene carbonate Copolymers Having Different Microstructure and Composition. Polym. Degrad. Stabil. 2013, 98, 133–143. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Z.; Jiang, J.; Mao, X.; Pan, X.; Wu, J. Highly Regioselective Ring-Opening Polymerization of Cyclic Diester for Alternating Sequence-Controlled Copolymer Synthesis of Mandelic Acid and Glycolic Acid. Macromolecules 2019, 52, 7564–7571. [Google Scholar] [CrossRef]
- Shen, J.; Wang, K.; Ma, Z.; Xu, N.; Pang, S.; Pan, L. Biodegradable Blends of Poly(butylene adipate-co-terephthalate) and Polyglycolic acid with Enhanced Mechanical, Rheological and Barrier Performances. J. Appl. Polym. Sci. 2021, 138, 51285. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, Y.; Yang, Y.; Zhu, J. Mechanical, Barrier, and Biodegradable Properties of Poly(butylene adipate-co-terephthalate)/Polyglycolic Acid Blends Prepared by Reactive Extrusion. ACS Appl. Eng. Mater. 2023, 1, 304–315. [Google Scholar] [CrossRef]
- Miñano, J.; Puiggalí, J.; Franco, L. Effect of Curcumin on Thermal Degradation of Poly(glycolic acid) and Poly(ε-caprolactone) Blends. Thermochim. Acta 2020, 693, 178764. [Google Scholar] [CrossRef]
- Samadi, K.; Francisco, M.; Hegde, S.; Diaz, C.A.; Trabold, T.A.; Dell, E.M.; Lewis, C.L. Mechanical, Rheological and Anaerobic Biodegradation Behavior of a Poly(lactic acid) Blend Containing a Poly(lactic acid)-co-poly(glycolic acid) Copolymer. Polym. Degrad. Stabil. 2019, 170, 109018. [Google Scholar] [CrossRef]
- Ma, Z.; Yin, T.; Jiang, Z.; Weng, Y.; Zhang, C. Bio-based Epoxidized Soybean Oil Branched Cardanol Ethers as Compatibilizers of Polybutylene succinate (PBS)/Polyglycolic acid (PGA) Blends. Int. J. Biol. Macromol. 2024, 259, 129319. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Duan, M.; Ning, Z.; Gan, H.; Jiang, N. Reactive Toughening of Poly(Glycolic Acid)/Poly(ε-Caprolactone) Blends Using Environmentally Friendly and Cost-Effective Bio-Based Chain Extenders. J. Appl. Polym. Sci. 2025, 142, e57016. [Google Scholar] [CrossRef]
- Abdel-Motaal, F.F.; El-Sayed, M.A.; El-Zayat, S.A.; Ito, S.I. Biodegradation of Poly (ε-caprolactone) (PCL) Film and Foam Plastic by Pseudozyma japonica sp. nov., a Novel Cutinolytic Ustilaginomycetous Yeast Species. 3 Biotech 2014, 4, 507–512. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Z.; Chen, C.; He, F.; Zhuo, R. Synthesis of Poly(ε-caprolactone) by an Immobilized Lipase Coated with Ionic Liquids in a Solvent-free Condition. Biotechnol. Lett. 2013, 35, 1623–1630. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofac. Res. 2020, 10, 381–388. [Google Scholar] [CrossRef]
- Kayan, G.Ö.; Kayan, A. Polycaprolactone Composites/Blends and Their Applications Especially in Water Treatment. ChemEngineering 2023, 7, 104. [Google Scholar] [CrossRef]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation Mechanisms of Polycaprolactone in the Context of Chemistry, Geometry and Environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Sung, H.-J.; Meredith, C.; Johnson, C.; Galis, Z.S. The Effect of Scaffold Degradation Rate on Three-dimensional Cell Growth and Angiogenesis. Biomaterials 2004, 25, 5735–5742. [Google Scholar] [CrossRef] [PubMed]
- Jakus, A.E.; Rutz, A.L.; Shah, R.N. Advancing the Field of 3D Biomaterial Printing. Biomed. Mater. 2016, 11, 014102. [Google Scholar] [CrossRef] [PubMed]
- Backes, E.H.; Harb, S.V.; Beatrice, C.A.G.; Shimomura, K.M.B.; Passador, F.R.; Costa, L.C.; Pessan, L.A. Polycaprolactone Usage in Additive Manufacturing Strategies for Tissue Engineering Applications: A Review. J. Biomed. Mater. Res. Part B 2022, 110, 1479–1503. [Google Scholar] [CrossRef]
- Bhadran, A.; Shah, T.; Babanyinah, G.K.; Polara, H.; Taslimy, S.; Biewer, M.C.; Stefan, M.C. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023, 15, 1977. [Google Scholar] [CrossRef]
- Finotti, P.F.M.; Costa, L.C.; Capote, T.S.O.; Scarel-Caminaga, R.M.; Chinelatto, M.A. Immiscible Poly(lactic acid)/Poly(ε-caprolactone) for Temporary Implants: Compatibility and Cytotoxicity. J. Mech. Behav. Biomed. Mater. 2017, 68, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wachirahuttapong, S.; Thongpin, C.; Sombatsompop, N. Effect of PCL and Compatibility Contents on the Morphology, Crystallization and Mechanical Properties of PLA/PCL Blends. Energy Procedia 2016, 89, 198–206. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, E.; Liang, Y.; Miao, Y.; Chen, H.; Ling, M.; Li, W.; Huang, J.; Zhang, W. Bio-based PA-grafted Bamboo Charcoal for Improving the Flame Retardancy of PLA/PCL Film without Damaging Mechanical Properties and Degradability. Ind. Crop. Prod. 2024, 210, 118182. [Google Scholar] [CrossRef]
- Li, Y.; Han, C.; Yu, Y.; Xiao, L. Effect of Loadings of Nanocellulose on the Significantly Improved Crystallization and Mechanical Properties of Biodegradable Poly(ε-caprolactone). Int. J. Biol. Macromol. 2020, 147, 34–45. [Google Scholar] [CrossRef]
- Dethe, M.R.; Prabakaran, A.; Ahmed, H.; Agrawal, M.; Roy, U.; Alexander, A. PCL-PEG Copolymer Based Injectable Thermosensitive Hydrogels. J. Control. Release 2022, 343, 217–236. [Google Scholar] [CrossRef]
- Youssouf, L.; Bhaw-Luximon, A.; Diotel, N.; Catan, A.; Giraud, P.; Gimié, F.; Koshel, D.; Casale, S.; Bénard, S.; Meneyrol, V.; et al. Enhanced Effects of Curcumin Encapsulated in Polycaprolactone-grafted Oligocarrageenan Nanomicelles, a Novel Nanoparticle Drug Delivery System. Carbohydr. Polym. 2019, 217, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, K.; Ghaemy, M. Synthesis of New Thermo/pH Sensitive Drug Delivery Systems Based on Tragacanth Gum Polysaccharide. Int. J. Biol. Macromol. 2016, 87, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, B.; Wei, X.; Rao, W.; Ai, F.; Zhao, F.; Men, K.; Yang, B.; Liu, X.; Huang, M.; et al. Preparation, Characterization and Application of Star-shaped PCL/PEG Micelles for the Delivery of Doxorubicin in the Treatment of Colon Cancer. Int. J. Nanomed. 2013, 8, 971–982. [Google Scholar] [CrossRef]
- Rostamizadeh, K.; Manafi, M.; Nosrati, H.; Kheiri Manjili, H.; Danafar, H. Methotrexate-conjugated mPEG–PCL Copolymers: A Novel Approach for Dual Triggered Drug Delivery. New J. Chem. 2018, 42, 5937–5945. [Google Scholar] [CrossRef]
- Senevirathne, S.A.; Boonsith, S.; Oupicky, D.; Biewer, M.C.; Stefan, M.C. Synthesis and Characterization of Valproic acid ester Pro-drug Micelles via an Amphiphilic Polycaprolactone Block Copolymer Design. Polym. Chem. 2015, 6, 2386–2389. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.-H. Poly(butylene succinate) and Its Copolymers: Research, Development and Industrialization. Biotechnol. J. 2010, 5, 1149–1163. [Google Scholar] [CrossRef]
- Savitha, K.S.; Ravji Paghadar, B.; Senthil Kumar, M.; Jagadish, R.L. Polybutylene succinate, a Potential Bio-degradable Polymer: Synthesis, Copolymerization and Bio-degradation. Polym. Chem. 2022, 13, 3562–3612. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Jung, S.; Yun, H.; Choi, K.; Heo, G.; Jin, H.-J.; Park, S.; Kwak, H.W. Biodegradation Behavior of Polybutylene Succinate (PBS) Fishing Gear in Marine Sedimentary Environments for Ghost Fishing Prevention. Polym. Degrad. Stabil. 2023, 216, 110490. [Google Scholar] [CrossRef]
- Labruyère, C.; Talon, O.; Berezina, N.; Khousakoun, E.; Jérôme, C. Synthesis of Poly(butylene succinate) Through Oligomerization–cyclization–ROP Route. RSC Adv. 2014, 4, 38643–38648. [Google Scholar] [CrossRef]
- Fabbri, M.; Guidotti, G.; Soccio, M.; Lotti, N.; Govoni, M.; Giordano, E.; Gazzano, M.; Gamberini, R.; Rimini, B.; Munari, A. Novel Biocompatible PBS-based Random Copolymers Containing PEG-like Sequences for Biomedical Applications: From Drug Delivery to Tissue Engineering. Polym. Degrad. Stabil. 2018, 153, 53–62. [Google Scholar] [CrossRef]
- Nelson, T.F.; Baumgartner, R.; Jaggi, M.; Bernasconi, S.M.; Battagliarin, G.; Sinkel, C.; Künkel, A.; Kohler, H.-P.E.; McNeill, K.; Sander, M. Biodegradation of Poly(butylene succinate) in Soil Laboratory Incubations Assessed by Stable Carbon Isotope Labelling. Nat. Commun. 2022, 13, 5691. [Google Scholar] [CrossRef]
- da Costa, V.C.; de Souza Pinto, G.L.; Nascimento, M.V.F.; de Campos, V.E.B.; de Souza Junior, F.G. Poly (Butylene Succinate)-g-Poly(Hydroxypropyl Methacrylate) as a New Meloxican Delivery System. Macromol. Symp. 2018, 380, 1800109. [Google Scholar] [CrossRef]
- Platnieks, O.; Barkane, A.; Ijudina, N.; Gaidukova, G.; Thakur, V.K.; Gaidukovs, S. Sustainable Tetra Pak Recycled Cellulose / Poly(Butylene succinate) Based Woody-like Composites for a Circular economy. J. Clean Prod. 2020, 270, 122321. [Google Scholar] [CrossRef]
- Vandesteene, M.; Jacquel, N.; Saint-Loup, R.; Boucard, N.; Carrot, C.; Rousseau, A.; Fenouillot, F. Synthesis of Branched Poly(butylene succinate): Structure Properties Relationship. Chin. J. Polym. Sci. 2016, 34, 873–888. [Google Scholar] [CrossRef]
- Ma, P.; Hristova-Bogaerds, D.G.; Zhang, Y.; Lemstra, P.J. Enhancement in Crystallization Kinetics of the Bacterially Synthesized Poly(β-hydroxybutyrate) by Poly(butylene succinate). Polym. Bull. 2014, 71, 907–923. [Google Scholar] [CrossRef]
- Liang, Z.; Pan, P.; Zhu, B.; Dong, T.; Inoue, Y. Mechanical and Thermal Properties of Poly(butylene succinate)/Plant Fiber Biodegradable Composite. J. Appl. Polym. Sci. 2010, 115, 3559–3567. [Google Scholar] [CrossRef]
- Sheikholeslami, S.N.; Rafizadeh, M.; Taromi, F.A.; Shirali, H.; Jabbari, E. Material Properties of Degradable Poly(butylene succinate-co-fumarate) Copolymer Networks Synthesized by Polycondensation of Pre-homopolyesters. Polymer 2016, 98, 70–79. [Google Scholar] [CrossRef]
- Zheng, Y.; Tian, G.; Xue, J.; Zhou, J.; Huo, H.; Li, L. Effects of Isomorphic Poly(butylene succinate-co-butylene fumarate) on the Nucleation of Poly(butylene succinate) and the Formation of Poly(butylene succinate) Ring-banded Spherulites. CrystEngComm 2018, 20, 1573–1587. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.; Wu, S.; Li, C.; Zhang, D.; Xiao, Y. Novel Poly(butylene fumarate) and Poly(butylene succinate) Multiblock Copolymers Bearing Reactive Carbon–Carbon Double Bonds: Synthesis, Characterization, Cocrystallization, and Properties. Ind. Eng. Chem. Res. 2013, 52, 6147–6155. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.; Zhang, A.; Zhou, T. Crystallization Behavior of Poly(Tetramethylene Oxide) Influenced by the Crystallization Condition of Poly(Butylene Succinate) in Their Copolymers. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2019, 34, 496–506. [Google Scholar] [CrossRef]
- Safari, M.; Leon Boigues, L.; Shi, G.; Maiz, J.; Liu, G.; Wang, D.; Mijangos, C.; Müller, A.J. Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly(butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 2020, 53, 6486–6497. [Google Scholar] [CrossRef]
- Zheng, L.; Li, C.; Wang, Z.; Wang, J.; Xiao, Y.; Zhang, D.; Guan, G. Novel Biodegradable and Double Crystalline Multiblock Copolymers Comprising of Poly(butylene succinate) and Poly(ε-caprolactone): Synthesis, Characterization, and Properties. Ind. Eng. Chem. Res. 2012, 51, 7264–7272. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Lawson, T.; Kanwal, A.; Miao, Z. Poly(butylene succinate-co-salicylic acid) Copolymers and Their Effect on Promoting Plant Growth. R. Soc. Open Sci. 2019, 6, 190504. [Google Scholar] [CrossRef]
- Hongsriphan, N.; Pinpueng, A. Properties of Agricultural Films Prepared from Biodegradable Poly(Butylene Succinate) Adding Natural Sorbent and Fertilizer. J. Polym. Environ. 2019, 27, 434–443. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable Compatibilized Polymer Blends for Packaging Applications: A Literature Review. J. Appl. Polym. Sci. 2018, 135, 45726. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Chu, P.K.; Lv, F.; Zhang, C.; Ji, J.; Zhang, R.; Wang, H. Mechanical and Thermal Properties of Basalt Fiber Reinforced Poly(butylene succinate) Composites. Mater. Chem. Phys. 2012, 133, 845–849. [Google Scholar] [CrossRef]
- Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064–7123. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An Overview on Synthesis, Properties and Applications of Poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Zhou, Y.; Wang, B.; Chen, J.; Li, J.; Huang, L.; Wang, C. Hydrophilic and Biodegradable PBAT Copolyesters Prepared from Chemically Recycled Resources. ACS Appl. Polym. Mater. 2024, 6, 5235–5245. [Google Scholar] [CrossRef]
- Burford, T.; Rieg, W.; Madbouly, S. Biodegradable Poly(butylene adipate-co-terephthalate) (PBAT). Phys. Sci. Rev. 2023, 8, 1127–1156. [Google Scholar] [CrossRef]
- Lee, J.; Park, C.; Fai Tsang, Y.; Andrew Lin, K.Y. Towards Sustainable Production of Polybutylene Adipate Terephthalate: Non-Biological Catalytic Syntheses of Biomass-Derived Constituents. ChemSusChem 2024, 17, e202401070. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Luo, Y.; Yang, M.; Zhang, Y.; Zhu, L.; Fan, M.; Li, Q. Selective Catalytic Synthesis of Bio-based Terephthalic Acid from Lignocellulose Biomass. Appl. Catal. A Gen. 2022, 630, 118440. [Google Scholar] [CrossRef]
- Sousa, A.F.; Vilela, C.; Fonseca, A.C.; Matos, M.; Freire, C.S.R.; Gruter, G.-J.M.; Coelho, J.F.J.; Silvestre, A.J.D. Biobased Polyesters and Other Polymers From 2,5-Furandicarboxylic acid: A Tribute to Furan Excellency. Polym. Chem. 2015, 6, 5961–5983. [Google Scholar] [CrossRef]
- Hu, H.; Lin, C.; Luan, Q.; Jiang, X.; Zhang, X.; Wang, Q.; Dong, Y.; Wei, J.; Wang, J.; Zhu, J. Synergistic Modification of PBT with Diglycolic Acid and Succinic Acid: Fast Crystallization and High Strength-Toughness Copolyesters for Environmentally Degradable Packaging. ACS Sustain. Chem. Eng. 2023, 11, 14068–14080. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and Hydrolysis Rate of Aliphatic Aromatic Polyester. Polym. Degrad. Stabil. 2010, 95, 2641–2647. [Google Scholar] [CrossRef]
- Denial, M.; Karthikeyan, S.; Godse, R.; Gupta, V.K. Poly(butylene adipate-co-terephthalate) Polyester Synthesis Process and Product Development. Polym. Sci. Ser. C 2021, 63, 102–111. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Xie, W.; Wang, B.; Chen, J.; Song, S.; Li, J.; Wang, C. Preparation of PBAT Copolyesters with Flame Retardant and Degradable Functions through PBT Chemical Alcoholysis and Closed-Loop Recycling. ACS Sustain. Chem. Eng. 2024, 12, 17301–17318. [Google Scholar] [CrossRef]
- Wu, D.; Huang, A.; Fan, J.; Xu, R.; Liu, P.; Li, G.; Yang, S. Effect of Blending Procedures and Reactive Compatibilizers on the Properties of Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic acid) Blends. J. Polym. Eng. 2021, 41, 95–108. [Google Scholar] [CrossRef]
- Dammak, M.; Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S. Blends of PBAT with Plasticized Starch for Packaging Applications: Mechanical properties, Rheological Behaviour and Biodegradability. Ind. Crop. Prod. 2020, 144, 112061. [Google Scholar] [CrossRef]
- Wei, C.; Guo, P.; Lyu, M.; Wang, B.; Li, C.; Sang, L.; Wei, Z. High Barrier Poly(Glycolic Acid) Modified Poly(Butylene Adipate-co-terephthalate) Blown Films and Accelerated Ultraviolet Degradability Evaluation. ACS Appl. Polym. Mater. 2023, 5, 3457–3467. [Google Scholar] [CrossRef]
- Dai, Z.; Li, B.; He, M.; Li, J.; Zou, X.; Wang, Y.; Shan, Y. Biodegradable and High-performance Composites of Poly (butylene adipate-co-terephthalate) with PHBV Chain-Functionalized Nanocellulose. Prog. Org. Coat. 2024, 187, 108136. [Google Scholar] [CrossRef]
- da Costa, F.A.T.; Parra, D.F.; Cardoso, E.C.L.; Güven, O. PLA, PBAT, Cellulose Nanocrystals (CNCs), and Their Blends: Biodegradation, Compatibilization, and Nanoparticle Interactions. J. Polym. Environ. 2023, 31, 4662–4690. [Google Scholar] [CrossRef]
- Debeli, D.K.; Wu, L.; Huang, F. PBAT-based Biodegradable Nanocomposite Coating Films with Ultra-high Oxygen Barrier and Balanced Mechanical Properties. Polym. Degrad. Stabil. 2023, 216, 110489. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Yang, Y.; Wang, Q.; Zhang, X.; Hu, H.; Zhu, J. Bio-based Poly(butylene diglycolate-co-furandicarboxylate) Copolyesters with Balanced Mechanical, Barrier and Biodegradable Properties: A Prospective Substitute for PBAT. Polym. Degrad. Stabil. 2022, 202, 110010. [Google Scholar] [CrossRef]
- Reis, M.A.M.; Serafim, L.S.; Lemos, P.C.; Ramos, A.M.; Aguiar, F.R.; Van Loosdrecht, M.C.M. Production of Polyhydroxyalkanoates by Mixed Microbial Cultures. Bioprocess Biosyst. Eng. 2003, 25, 377–385. [Google Scholar] [CrossRef]
- Samrot, A.V.; Samanvitha, S.K.; Shobana, N.; Renitta, E.R.; Senthilkumar, P.; Kumar, S.S.; Abirami, S.; Dhiva, S.; Bavanilatha, M.; Prakash, P.; et al. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers 2021, 13, 3302. [Google Scholar] [CrossRef]
- Chien Bong, C.P.; Alam, M.N.H.Z.; Samsudin, S.A.; Jamaluddin, J.; Adrus, N.; Mohd Yusof, A.H.; Muis, Z.A.; Hashim, H.; Salleh, M.M.; Abdullah, A.R.; et al. A Review on the Potential of Polyhydroxyalkanoates Production from Oil-based Substrates. J. Environ. Manag. 2021, 298, 113461. [Google Scholar] [CrossRef]
- Sohail, R.; Jamil, N.; Ali, I.; Munir, S. Animal Fat and Glycerol Bioconversion to Polyhydroxyalkanoate by Produced Water Bacteria. e-Polymers 2020, 20, 92–102. [Google Scholar] [CrossRef]
- Zytner, P.; Kumar, D.; Elsayed, A.; Mohanty, A.; Ramarao, B.V.; Misra, M. A Review on Polyhydroxyalkanoate (PHA) Production Through the Use of Lignocellulosic Biomass. RSC Sustain. 2023, 1, 2120–2134. [Google Scholar] [CrossRef]
- Thamarai, P.; Vickram, A.S.; Saravanan, A.; Deivayanai, V.C.; Evangeline, S. Recent Advancements in Biosynthesis, Industrial Production, and Environmental Applications of Polyhydroxyalkanoates (PHAs): A Review. Bioresour. Technol. Rep. 2024, 27, 101957. [Google Scholar] [CrossRef]
- Szacherska, K.; Moraczewski, K.; Rytlewski, P.; Czaplicki, S.; Ciesielski, S.; Oleskowicz-Popiel, P.; Mozejko-Ciesielska, J. Polyhydroxyalkanoates Production from Short and Medium Chain Carboxylic Acids by Paracoccus Homiensis. Sci. Rep. 2022, 12, 7263. [Google Scholar] [CrossRef]
- Nygaard, D.; Yashchuk, O.; Hermida, É.B. PHA Granule Formation and Degradation by Cupriavidus Necator Under Different Nutritional Conditions. J. Basic Microbiol. 2021, 61, 825–834. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, L.; Wang, H.; Zhang, Z.; Zhou, J.; Jiao, N. Development of a CRISPR/Cas9n-based Tool for Metabolic Engineering of Pseudomonas Putida for Ferulic Acid-to-polyhydroxyalkanoate Bioconversion. Commun. Biol. 2020, 3, 98. [Google Scholar] [CrossRef]
- Jeon, Y.; Jin, H.; Kong, Y.; Cha, H.-G.; Lee, B.W.; Yu, K.; Yi, B.; Kim, H.T.; Joo, J.C.; Yang, Y.-H.; et al. Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase. J. Microbiol. Biotechnol. 2023, 33, 1076–1083. [Google Scholar] [CrossRef]
- McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef] [PubMed]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Sabapathy, P.C.; Devaraj, S.; Meixner, K.; Anburajan, P.; Kathirvel, P.; Ravikumar, Y.; Zabed, H.M.; Qi, X. Recent Developments in Polyhydroxyalkanoates (PHAs) Production—A Review. Bioresour. Technol. 2020, 306, 123132. [Google Scholar] [CrossRef]
- Tyagi, P.; Salem, K.S.; Hubbe, M.A.; Pal, L. Advances in Barrier Coatings and Film Technologies for Achieving Sustainable Packaging of Food Products—A Review. Trends Food Sci. Technol. 2021, 115, 461–485. [Google Scholar] [CrossRef]
- Yeo, J.C.C.; Muiruri, J.K.; Fei, X.; Wang, T.; Zhang, X.; Xiao, Y.; Thitsartarn, W.; Tanoto, H.; He, C.; Li, Z. Innovative Biomaterials for Food Packaging: Unlocking the Potential of Polyhydroxyalkanoate (PHA) Biopolymers. Biomater. Adv. 2024, 163, 213929. [Google Scholar] [CrossRef]
- Turco, R.; Santagata, G.; Corrado, I.; Pezzella, C.; Di Serio, M. In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Front. Bioeng. Biotechnol. 2020, 8, 619266. [Google Scholar] [CrossRef]
- Alfano, S.; Doineau, E.; Perdrier, C.; Preziosi-Belloy, L.; Gontard, N.; Martinelli, A.; Grousseau, E.; Angellier-Coussy, H. Influence of the 3-Hydroxyvalerate Content on the Processability, Nucleating and Blending Ability of Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate)-Based Materials. ACS Omega 2024, 9, 29360–29371. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.P.; Yan, X.; Zhang, X.; Chen, X.B.; Wu, Q.; Jiang, X.R.; Chen, G.Q. Biosynthesis of Functional Polyhydroxyalkanoates by Engineered Halomonas bluephagenesis. Metab. Eng. 2020, 59, 119–130. [Google Scholar] [CrossRef]
- Singh, S.; Sithole, B.; Lekha, P.; Permaul, K.; Govinden, R. Optimization of Cultivation Medium and Cyclic Fed-batch Fermentation Strategy for Enhanced Polyhydroxyalkanoate Production by Bacillus Thuringiensis Using a Glucose-rich Hydrolyzate. Bioresour. Bioprocess. 2021, 8, 11. [Google Scholar] [CrossRef]
- Borrero-de Acuna, J.M.; Rohde, M.; Saldias, C.; Poblete-Castro, I. Fed-Batch mcl- Polyhydroxyalkanoates Production in Pseudomonas putida KT2440 and DeltaphaZ Mutant on Biodiesel-Derived Crude Glycerol. Front. Bioeng. Biotechnol. 2021, 9, 642023. [Google Scholar] [CrossRef]
- Drieskens, M.; Peeters, R.; Mullens, J.; Franco, D.; Lemstra, P.J.; Hristova-Bogaerds, D.G. Structure Versus Properties Relationship of Poly(lactic acid). I. Effect of Crystallinity on Barrier Properties. J. Polym. Sci. Pt. B-Polym. Phys. 2009, 47, 2247–2258. [Google Scholar] [CrossRef]
- Auras, R.A.; Harte, B.; Selke, S.; Hernandez, R. Mechanical, Physical, and Barrier Properties of Poly(Lactide) Films. J. Plast. Film Sheeting 2003, 19, 123–135. [Google Scholar] [CrossRef]
- Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an Industrial Production Technology for High-molecular-weight Polyglycolic acid. Polym. J. 2014, 46, 769–775. [Google Scholar] [CrossRef]
- Cabedo, L.; Luis Feijoo, J.; Pilar Villanueva, M.; Lagarón, J.M.; Giménez, E. Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromol. Symp. 2006, 233, 191–197. [Google Scholar] [CrossRef]
- Messersmith, P.B.; Giannelis, E.P. Synthesis and Barrier Properties of Poly(ε-caprolactone)-layered Silicate Nanocomposites. J. Polym. Sci. Pol. Chem. 1995, 33, 1047–1057. [Google Scholar] [CrossRef]
- Yahiaoui, F.; Benhacine, F.; Ferfera-Harrar, H.; Habi, A.; Hadj-Hamou, A.S.; Grohens, Y. Development of Antimicrobial PCL/Nanoclay Nanocomposite Films with Enhanced Mechanical and Water Vapor Barrier Properties for Packaging Applications. Polym. Bull. 2015, 72, 235–254. [Google Scholar] [CrossRef]
- Xie, L.; Xu, H.; Chen, J.-B.; Zhang, Z.-J.; Hsiao, B.S.; Zhong, G.-J.; Chen, J.; Li, Z.-M. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films. ACS Appl. 2015, 7, 8023–8032. [Google Scholar] [CrossRef] [PubMed]
- Sinha Ray, S.; Okamoto, K.; Okamoto, M. Structure−Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites. Macromolecules 2003, 36, 2355–2367. [Google Scholar] [CrossRef]
- Charlon, S.; Follain, N.; Chappey, C.; Dargent, E.; Soulestin, J.; Sclavons, M.; Marais, S. Improvement of Barrier Properties of Bio-based Polyester Nanocomposite Membranes by Water-assisted extrusion. J. Membr. Sci. 2015, 496, 185–198. [Google Scholar] [CrossRef]
- Ren, P.-G.; Liu, X.-H.; Ren, F.; Zhong, G.-J.; Ji, X.; Xu, L. Biodegradable Graphene Oxide Nanosheets/Poly-(butylene adipate-co-terephthalate) Nanocomposite Film with Enhanced Gas and Water Vapor Barrier Properties. Polym. Test 2017, 58, 173–180. [Google Scholar] [CrossRef]
- Jost, V.; Langowski, H.-C. Effect of Different Plasticisers on the Mechanical and Barrier Properties of Extruded Cast PHBV Films. Eur. Polym. J. 2015, 68, 302–312. [Google Scholar] [CrossRef]
- Crétois, R.; Follain, N.; Dargent, E.; Soulestin, J.; Bourbigot, S.; Marais, S.; Lebrun, L. Microstructure and Barrier Properties of PHBV/Organoclays Bionanocomposites. J. Membr. Sci. 2014, 467, 56–66. [Google Scholar] [CrossRef]
- Fabra, M.J.; Lopez-Rubio, A.; Lagaron, J.M. Nanostructured Interlayers of Zein to Improve the Barrier Properties of High Barrier Polyhydroxyalkanoates and Other Polyesters. J. Food Eng. 2014, 127, 1–9. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable Polymers for Food Packaging: A Review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Satti, S.M.; Shah, A.A. Polyester-based Biodegradable Plastics: An Approach Towards Sustainable Development. Lett. Appl. Microbiol. 2020, 70, 413–430. [Google Scholar] [CrossRef]
- Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V.K. Sustainability of Bioplastics: Opportunities and Challenges. Curr. Opin. Green Sustain. Chem. 2018, 13, 68–75. [Google Scholar] [CrossRef]
- Roohi; Kulsoom, B.; Mohammed, K.; Mohammed, R.Z.; Qamar, Z.; Mohammed, F.K.; Ghulam Md, A.; Anamika, G.; Gjumrakch, A. Microbial Enzymatic Degradation of Biodegradable Plastics. Curr. Pharm. Biotechnol. 2017, 18, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Suresh, V.; Shams, R.; Dash, K.K.; Shaikh, A.M.; Béla, K. Comprehensive Review on Enzymatic Polymer Degradation: A Sustainable Solution for Plastics. J. Agric. Food Res. 2025, 20, 101788. [Google Scholar] [CrossRef]
- Shin, N.; Kim, S.H.; Cho, J.Y.; Hwang, J.H.; Kim, H.J.; Oh, S.J.; Park, S.-H.; Park, K.; Bhatia, S.K.; Yang, Y.-H. Fast Degradation of Polycaprolactone/Poly(butylene adipate-co-terephthalate) Blends by Novel Bacillus Strain NR4 with Broad Degrading Activity. J. Polym. Environ. 2023, 32, 898–912. [Google Scholar] [CrossRef]
- Massardier-Nageotte, V.; Pestre, C.; Cruard-Pradet, T.; Bayard, R. Aerobic and Anaerobic Biodegradability of Polymer Films and Physico-chemical Characterization. Polym. Degrad. Stabil. 2006, 91, 620–627. [Google Scholar] [CrossRef]
- Atalay, S.E.; Bezci, B.; Özdemir, B.; Göksu, Y.A.; Ghanbari, A.; Jalali, A.; Nofar, M. Thermal and Environmentally Induced Degradation Behaviors of Amorphous and Semicrystalline PLAs Through Rheological Analysis. J. Polym. Environ. 2021, 29, 3412–3426. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- ASTM D5511-18; Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions. ASTM International: West Conshohocken, PA, USA, 2018.
- ISO 15985:2014; Plastics—Determination of the Ultimate Anaerobic Biodegradation Under High-Solids Anaerobic-Digestion Conditions—Method by Analysis of Released Biogas. ISO: Geneva, Switzerland, 2014.
- ASTM D5988-18; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil. ASTM International: West Conshohocken, PA, USA, 2018; last updated 12 February 2025.
- ISO 17556:2019; Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. ISO: Geneva, Switzerland, 2019.
- ISO 23517:2021; Plastics—Soil Biodegradable Materials for Mulch Films for Use in Agriculture and Horticulture—Requirements and Test Methods Regarding Biodegradation, Ecotoxicity and Control of Constituents. ISO: Geneva, Switzerland, 2021.
- ASTM D5338-15; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions. ASTM International: West Conshohocken, PA, USA, 2021.
- ISO 14855-1:2012; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 1: General Method. ISO: Geneva, Switzerland, 2012.
- ASTM D6400-23; Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal and Industrial Aerobic Composting Facilities. ASTM International: West Conshohocken, PA, USA, 2023.
- ISO 17088:2021; Plastics—Organic Recycling—Specifications for Compostable Plastics. ISO: Geneva, Switzerland, 2021.
- ISO 14851:2019; Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in an Aqueous Medium—Method by Measuring the Oxygen Demand in a Closed Respirometer. ISO: Geneva, Switzerland, 2019.
- ASTM D6691-24a; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum. ASTM International: West Conshohocken, PA, USA, 2024.
- ISO 19679:2020; Plastics—Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sediment Interface—Method by Analysis of Evolved Carbon Dioxide. ISO: Geneva, Switzerland, 2020.
- ISO 18830:2016; Plastics—Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sandy Sediment Interface—Method by Measuring the Oxygen Demand in a Closed Respirometer. ISO: Geneva, Switzerland, 2016.
- ISO 16929:2021; Plastics—Determination of the Degree of Disintegration of Plastic Materials Under Defined Composting Conditions in a Pilot-Scale Test. ISO: Geneva, Switzerland, 2021.
- Seo, H.; Hong, H.; Park, J.; Lee, S.H.; Ki, D.; Ryu, A.; Sagong, H.Y.; Kim, K.J. Landscape Profiling of PET Depolymerases Using a Natural Sequence Cluster Framework. Science 2025, 387, eadp5637. [Google Scholar] [CrossRef]
- Sun, S. Enzyme-Embedded Biodegradable Plastic for Sustainable Applications: Advances, Challenges, and Perspectives. ACS Appl. Bio Mater. 2025, 8, 1785–1796. [Google Scholar] [CrossRef]
- Guicherd, M.; Ben Khaled, M.; Guéroult, M.; Nomme, J.; Dalibey, M.; Grimaud, F.; Alvarez, P.; Kamionka, E.; Gavalda, S.; Noël, M.; et al. An Engineered Enzyme Embedded into PLA to Make Self-biodegradable Plastic. Nature 2024, 631, 884–890. [Google Scholar] [CrossRef] [PubMed]
Polycondensation | Ring-Opening Polymerization | |
---|---|---|
Monomer | Diacids + diols/hydroxyacids | Cyclic monomers |
Cost | Cheap, Readily available | Expensive (need cyclic monomers) |
Growth pathway | Step growth | Chain growth |
Driving force | Removal of condensates | Release of ring strain |
Process | High temp., Reduced pressure | Lower temp. |
Molecular Weight | Low, Limited | High, Controllable |
Molecular Weight Distribution | Broad | Narrow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, E.; Yang, Y.-H.; Choi, J.; Park, S.-H.; Park, K.; Lee, J. Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future. Materials 2025, 18, 4247. https://doi.org/10.3390/ma18184247
Hwang E, Yang Y-H, Choi J, Park S-H, Park K, Lee J. Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future. Materials. 2025; 18(18):4247. https://doi.org/10.3390/ma18184247
Chicago/Turabian StyleHwang, Eunbin, Yung-Hun Yang, Jiho Choi, See-Hyoung Park, Kyungmoon Park, and Jongbok Lee. 2025. "Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future" Materials 18, no. 18: 4247. https://doi.org/10.3390/ma18184247
APA StyleHwang, E., Yang, Y.-H., Choi, J., Park, S.-H., Park, K., & Lee, J. (2025). Biodegradable Plastics as Sustainable Alternatives: Advances, Basics, Challenges, and Directions for the Future. Materials, 18(18), 4247. https://doi.org/10.3390/ma18184247