Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = PET fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5828 KiB  
Article
Removal of Rifampicin and Rifaximin Antibiotics on PET Fibers: Optimization, Modeling, and Mechanism Insight
by Elena Fasniuc-Pereu, Elena Niculina Drăgoi, Dumitru Bulgariu, Maria-Cristina Popescu and Laura Bulgariu
Polymers 2025, 17(15), 2089; https://doi.org/10.3390/polym17152089 - 30 Jul 2025
Viewed by 212
Abstract
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and [...] Read more.
The removal of antibiotics from aqueous media along with their recovery is still an open research topic, due to their practical and economical importance. Adsorption allows these two objectives to be achieved, provided that the adsorbent used is chemically and mechanically stable and has a low preparation cost. In this study, PET (polyethylene terephthalate) fibers, obtained by mechanically processing PET waste, were used for the adsorption of rifampicin (RIF) and rifaximin (RIX) antibiotics from aqueous media. The experimental adsorption capacity of PET fibers for the two antibiotics (RIF and RIX) was determined at different pH values (2.0–6.5), adsorbent dose (0.4–20.0 g/L), contact time (5–1440 min), initial antibiotic concentration (4.0–67.0 mg/L), and temperature (10, 22, and 50 °C); the experimental values of these parameters were analyzed using a neuro-evolutive technique (ANE) combining sequential deep learning (DL) models with a differential evolution algorithm. The obtained optimal ANN-DL algorithm was then used to obtain the optimal models for the adsorption of RIF and RIX on PET fibers, which should adequately describe the adsorption dynamics for both antibiotics. The adsorption processes are spontaneous and endothermic (ΔG < 0, ΔH > 0) and are described by the Langmuir model (R2 > 0.97) and the pseudo-second order kinetic model (R2 > 0.99). The retention of RIF and RIX on the surface of PET fibers occurs through physicochemical interactions, and the FTIR spectra and microscopic images support this hypothesis. The presence of inorganic anions in the aqueous solution leads to an increase in the adsorption capacities of RIF (max. 7.6 mg/g) and RIX (max. 3.6 mg/g) on PET fibers, which is mainly due to the ordering of water molecules in the solution. The experimental results presented in this study allowed for the development of the adsorption mechanism of RIF and RIX on PET fibers, highlighting the potential practical applications of these adsorption processes. Full article
Show Figures

Graphical abstract

27 pages, 19505 KiB  
Article
Analysis on the Ductility of One-Part Geopolymer-Stabilized Soil with PET Fibers: A Deep Learning Neural Network Approach
by Guo Hu, Junyi Zhang, Ying Tang and Jun Wu
Buildings 2025, 15(15), 2645; https://doi.org/10.3390/buildings15152645 - 27 Jul 2025
Viewed by 269
Abstract
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance [...] Read more.
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance ductility while promoting plastic waste recycling. However, the evaluation of ductile behavior of OPG-stabilized soil with PET fiber normally demands extensive laboratory and field experiments. Leveraging artificial intelligence, a predictive model can be developed for this purpose. In this study, data were collected from compressive and tensile tests performed on the OPG-stabilized soil with PET fiber. Four deep learning neural network models, namely ANN, BPNN, CNN, and LSTM, were then used to construct prediction models. The input parameters in the model included the fly ash (FA) dosage, dosage and length of the PET fiber, and the Curing Time. Results revealed that the LSTM model had the best performance in predicting the three ductile properties (i.e., the compressive strength index [UCS], strain energy index [CSE], and tensile strength index [TES]). The SHAP and 2D-PDP methods were further used to verify the rationality of the LSTM model. It is found that the Curing Time was the most important factor for the strength and ductile behavior. The appropriate addition of PET fiber of a certain length had a positive impact on the ductility index. Thus, for the OPG-stabilized soil, the optimal dosage and length of PET fiber were found to be 1.5% and 9 mm, respectively. Additionally, there was a synergistic effect between FA and PET on the ductility metric. This research provides theoretical support for the application of geopolymer and PET fiber in enhancing the ductility of the stabilized soil. Full article
Show Figures

Figure 1

11 pages, 2151 KiB  
Article
Fabrication of Antibacterial Poly(ethylene terephthalate)/Graphene Nanocomposite Fibers by In Situ Polymerization for Fruit Preservation
by Jiarui Wu, Qinhan Chen, Aobin Han, Min Liu, Wenhuan Zhong, Xiaojue Shao, Yan Jiang, Jing Lin, Zhenyang Luo, Jie Yang and Gefei Li
Molecules 2025, 30(15), 3109; https://doi.org/10.3390/molecules30153109 - 24 Jul 2025
Viewed by 205
Abstract
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers [...] Read more.
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers containing 0.2 wt% graphene fraction showed an excellent dispersity of graphene nanosheets in polymeric matrix. DSC test showed that the efficient polymer-chain grafting depresses the crystallization of PET chains. This graphene-contained PET fabric exhibited attractive antibacterial properties that can be employed in fruit preservation to ensure food safety. Full article
(This article belongs to the Special Issue Design and Application of Functional Supramolecular Materials)
Show Figures

Figure 1

17 pages, 2815 KiB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Viewed by 259
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 199
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

21 pages, 15127 KiB  
Article
Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention
by Mamun Mandal, Anamika Roy, Shubhankar Ghosh, Achinta Mondal, Arkadiusz Przybysz, Robert Popek, Totan Ghosh, Sandeep Kumar Dash, Ganesh Kumar Agrawal, Randeep Rakwal and Abhijit Sarkar
Atmosphere 2025, 16(7), 861; https://doi.org/10.3390/atmos16070861 - 15 Jul 2025
Viewed by 384
Abstract
Since airborne microplastics (AMPs) are a recent and unexplored field of study, there are several unresolved issues regarding their effects on plants. The accumulating potential of AMPs and their effect on the biochemical parameters of ten different plant species in an Indian city [...] Read more.
Since airborne microplastics (AMPs) are a recent and unexplored field of study, there are several unresolved issues regarding their effects on plants. The accumulating potential of AMPs and their effect on the biochemical parameters of ten different plant species in an Indian city environment were assessed. The four types of AMPs deposited in the phyllosphere—fragment (30.76%), film (28.95%), fiber (22.61%), and pellet (17.68%)—were examined using stereomicroscopy and fluorescence microscopy. The air pollution tolerance index (APTI) was determined, and other biochemical parameters such as proline, phenol, malondialdehyde, carotenoids, superoxide dismutase, catalase, and peroxidase were also measured. The findings showed that in the case of polymers type, PE (30%) was more abundant than others, followed by PET (17%), PP (15%), PVC (13%), PVA (10%), PS (7%), ABS (5%), and PMMA (3%). Clerodendrum infortunatum L., Calotropis procera (Aiton) W.T. Aiton, and Mangifera indica L. all showed a strong APTI and also exhibited significantly higher amounts of AMP accumulation. Principal component analysis showed a stronger association between phyllospheric AMPs and biochemical parameters. Additionally, the correlation analysis revealed that the presence of accumulated AMPs may significantly influence the biochemical parameters of the plants. Thus, it can be concluded that the different plant species are uniquely specialized in AMP accumulation, which is significantly impacted by the plants’ APTI as well as other biochemical parameters. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

16 pages, 9013 KiB  
Article
Hybrid Membranes Based on Track-Etched Membranes and Nanofiber Layer for Water–Oil Separation and Membrane Distillation of Low-Level Liquid Radioactive Wastes and Salt Solutions
by Arman B. Yeszhanov, Aigerim Kh. Shakayeva, Maxim V. Zdorovets, Daryn B. Borgekov, Artem L. Kozlovskiy, Pavel V. Kharkin, Dmitriy A. Zheltov, Marina V. Krasnopyorova, Olgun Güven and Ilya V. Korolkov
Membranes 2025, 15(7), 202; https://doi.org/10.3390/membranes15070202 - 4 Jul 2025
Viewed by 558
Abstract
In this work, hybrid membranes were fabricated by depositing polyvinyl chloride (PVC) fibers onto PET track-etched membranes (TeMs) using the electrospinning technique. The resulting structures exhibited enhanced hydrophobicity, with contact angles reaching 155°, making them suitable for applications in both water–oil mixture separation [...] Read more.
In this work, hybrid membranes were fabricated by depositing polyvinyl chloride (PVC) fibers onto PET track-etched membranes (TeMs) using the electrospinning technique. The resulting structures exhibited enhanced hydrophobicity, with contact angles reaching 155°, making them suitable for applications in both water–oil mixture separation and membrane distillation processes involving low-level liquid radioactive waste (LLLRW), saline solutions, and natural water sources. The use of hybrids of TeMs and nanofiber membranes has significantly increased productivity compared to TeMs only, while maintaining a high degree of purification. Permeate obtained after MD of LLLRW and river water was analyzed by conductometry and the atomic emission spectroscopy (for Sr, Cs, Al, Mo, Co, Sb, Ca, Fe, Mg, K, and Na). The activity of radioisotopes (for 124Sb, 65Zn, 60Co, 57Co, 137Cs, and 134Cs) was evaluated by gamma-ray spectroscopy. In most cases, the degree of rejection was between 95 and 100% with a water flux of up to 17.3 kg/m2·h. These membranes were also tested in the separation of cetane–water emulsion with productivity up to 47.3 L/m2·min at vacuum pressure of 700 mbar and 15.2 L/m2·min at vacuum pressure of 900 mbar. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

24 pages, 7913 KiB  
Review
From Waste to Value: Advances in Recycling Textile-Based PET Fabrics
by Fatemeh Mohtaram and Peter Fojan
Textiles 2025, 5(3), 24; https://doi.org/10.3390/textiles5030024 - 28 Jun 2025
Viewed by 960
Abstract
The environmental burden of textile waste has become a critical challenge for sustainable development. This review explores recent developments in the recycling of textiles, especially polyethylene tereph-2 thalate (PET)-based fabrics, with a focus on fiber-to-fiber regeneration as a pathway toward circular textile production. [...] Read more.
The environmental burden of textile waste has become a critical challenge for sustainable development. This review explores recent developments in the recycling of textiles, especially polyethylene tereph-2 thalate (PET)-based fabrics, with a focus on fiber-to-fiber regeneration as a pathway toward circular textile production. Recent developments in PET recycling, such as mechanical and chemical recycling methods, are critically examined, highlighting the potential of chemical depolymerization for recovering high-purity monomers suitable for textile-grade PET synthesis. Special attention is given to electrospinning as an emerging technology for converting recycled PET into high-value nanofibers, offering functional properties suitable for advanced applications in filtration, medical textiles, and smart fabrics. The integration of these innovations, alongside improved sorting technologies and circular design strategies, is essential for overcoming current limitations and enabling scalable, high-quality recycling systems. This review aims to support the development of a more resource efficient textile industry by outlining key challenges, technologies, and future directions in PET recycling. Full article
Show Figures

Figure 1

18 pages, 1217 KiB  
Article
Nutritional Profiling and Labeling Practices of Plant-Based, Hybrid, and Animal-Based Dog Foods: A Study of European Pack Labels (2020–2024)
by Fatma Boukid and Kurt A. Rosentrater
Animals 2025, 15(13), 1883; https://doi.org/10.3390/ani15131883 - 26 Jun 2025
Viewed by 671
Abstract
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, [...] Read more.
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, we analyzed product labels, ingredient compositions, and marketing claims for various dog food categories. The findings revealed notable differences in key nutrients, such as protein, fiber, fat, ash, and moisture content. Plant-based dog foods generally offer higher fiber and ash content but often fall short in protein and fat levels, particularly in snacks and treats, which may impact their suitability for meeting the dietary needs of canines. Hybrid dog foods, which blend plant and animal ingredients, show greater variability, with some achieving balanced protein and fat content, while fiber levels depend on the plant-based proportion. Animal-based foods tend to excel in protein and fat content, particularly in wet and dry formats, while being lower in fiber and ash content. A key concern is the reliance on additives, particularly in plant-based and hybrid options, which raises questions about the long-term health impacts on pets. Pricing trends indicate that plant-based dog foods are generally more expensive than hybrid and animal-based options, although the cost varies widely across all categories. Full article
(This article belongs to the Special Issue Advancements in Nutritional Management of Companion Animals)
Show Figures

Figure 1

17 pages, 9487 KiB  
Article
Polymer Composite Sandwich Panels Composed of Hemp and Plastic Skins and Composite Wood, Recycled Plastic, and Styrofoam Cores
by Ashiqul Islam, Wahid Ferdous, Paulomi (Polly) Burey, Kamrun Nahar, Libo Yan and Allan Manalo
Polymers 2025, 17(10), 1359; https://doi.org/10.3390/polym17101359 - 15 May 2025
Viewed by 616
Abstract
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores [...] Read more.
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores (composite wood, recycled plastic, and styrofoam) materials. The skins of these sandwich panels were investigated under five different environmental conditions (normal air, water, hygrothermal, saline solution, and 80 °C elevated temperature) over seven months to evaluate their durability performance. In addition, the tensile and dynamic mechanical properties of those sandwich panels were studied. The bending behavior of cores and sandwich panels was also investigated and compared. The results indicated that elevated temperatures are 30% more detrimental to fiber composite laminates than normal water. Composite laminates made of hemp are more sensitive to environmental conditions than composite laminates made of recycled PET. A higher-density core makes panels more rigid and less susceptible to indentation failure. The flexible plastic cores are found to be up to 25% more effective at increasing the strength of sandwich panels than brittle wood cores. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

41 pages, 5362 KiB  
Review
Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources
by Awnon Bhowmik and Goutam Saha
Microplastics 2025, 4(2), 24; https://doi.org/10.3390/microplastics4020024 - 7 May 2025
Cited by 1 | Viewed by 3003
Abstract
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are an emerging global environmental and health concern due to their pervasive presence in aquatic ecosystems. This systematic review synthesizes data on the distribution, shapes, materials, and sizes of MPs in various water [...] Read more.
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are an emerging global environmental and health concern due to their pervasive presence in aquatic ecosystems. This systematic review synthesizes data on the distribution, shapes, materials, and sizes of MPs in various water sources, including lakes, rivers, seas, tap water, and bottled water, between 2014 and 2024. Results reveal that river water constitutes the largest share of studies on MP pollution (30%), followed by lake water (24%), sea water (19%), bottled water (17%), and tap water (11%), reflecting their critical roles in MP transport and accumulation. Seasonal analysis indicates that MP concentrations peak in the wet season (38%), followed by the dry (32%) and transitional (30%) seasons. Spatially, China leads MP research globally (19%), followed by the USA (7.8%) and India (5.9%). MPs are predominantly composed of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET), with fibers and fragments being the most common shapes. Sub-millimeter MPs (<1 mm) dominate globally, with significant variations driven by anthropogenic activities, industrial discharge, and environmental factors such as rainfall and temperature. The study highlights critical gaps in understanding the long-term ecological and health impacts of MPs, emphasizing the need for standardized methodologies, improved waste management, and innovative mitigation strategies. This review underscores the urgency of addressing microplastic pollution through global collaboration and stricter regulatory measures. Full article
Show Figures

Graphical abstract

21 pages, 10450 KiB  
Article
Experimental Investigation on the Fracture Behavior of PET-Modified Engineered High-Ductility Concrete: Effects of PET Powder and Precursor Composition
by Fei Meng, Shen Luo, Jingxian Sun, Cheng Zhang, Leilei Xu, Liqun Zhang, Fumin Qing, Junfeng Zeng, Ruihao Luo and Yongchang Guo
Materials 2025, 18(9), 2132; https://doi.org/10.3390/ma18092132 - 6 May 2025
Viewed by 452
Abstract
The utilization of polyethylene terephthalate (PET) powder as aggregate in the development of environmentally friendly high-ductility composites (P-EHDC) offers a promising pathway for advancing sustainable and high-performance concrete materials. Despite its potential, the fracture behavior of P-EHDC—particularly under the influence of alkali-activated precursors—remains [...] Read more.
The utilization of polyethylene terephthalate (PET) powder as aggregate in the development of environmentally friendly high-ductility composites (P-EHDC) offers a promising pathway for advancing sustainable and high-performance concrete materials. Despite its potential, the fracture behavior of P-EHDC—particularly under the influence of alkali-activated precursors—remains insufficiently explored. In this study, the fracture performance of P-EHDC was evaluated by varying the precursor composition ratios (GGBS:FA = 4:6, 3:7, and 2:8) and PET powder replacement ratios (0%, 15%, 30%, and 45% by volume). Fracture modes, Mode I fracture energy (GF), and crack propagation behavior were analyzed using the J-integral method. All specimens exhibited ductile fracture characteristics, a clear contrast to the brittle failure observed in conventional concrete. The replacement of 15 vol% PET powder significantly increased GF in precursor systems with higher GGBS content (4:6 and 3:7), and 30 vol% was more effective in fly ash-rich systems (2:8). The J-integral method, which offers broader applicability compared to conventional methods such as the double-K fracture model, provided a more comprehensive understanding of the fracture behavior. The results showed that PET powder reduced the matrix fracture toughness, promoted matrix cracking, and weakened the fiber-bridging effect, leading to enhanced energy absorption via fiber pull-out. At low PET powder replacement ratios (e.g., 15 vol%), the cracking threshold of the matrix was not significantly reduced, while more fibers engaged during the crack instability stage to absorb fracture energy through pull-out. This behavior highlights the synergistic toughening effect between PET powder and fibers in the P-EHDC system. The effect became more pronounced when the PET content was below 45 vol% and the precursor matrix contained a higher proportion of GGBS, leading to enhanced ductility. This study introduces a novel approach to fracture behavior analysis in PET-modified alkali-activated composites and provides theoretical support for the toughening design of high-performance, low-carbon concrete materials. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

19 pages, 3229 KiB  
Article
Unveiling the Microplastics Menace in Freshwater Fishes: Evidence from the Panjnad Barrage, South Punjab, Pakistan
by Syed Muhammad Moeen Uddin Raheel, Adnan Ahmad Qazi, Muhammad Latif, Huma Naz, Yasir Waqas and Maximilian Lackner
Fishes 2025, 10(5), 198; https://doi.org/10.3390/fishes10050198 - 26 Apr 2025
Viewed by 605
Abstract
This study explored the prevalence and types of microplastic (MP) pollution in three fish species—Labeo rohita, Wallago attu, and Cirrhinus mrigala—collected from the Panjnad Barrage in South Punjab, Pakistan. MPs were analyzed from the gastrointestinal tracts (GITs), gills, and [...] Read more.
This study explored the prevalence and types of microplastic (MP) pollution in three fish species—Labeo rohita, Wallago attu, and Cirrhinus mrigala—collected from the Panjnad Barrage in South Punjab, Pakistan. MPs were analyzed from the gastrointestinal tracts (GITs), gills, and muscles of 90 fish samples. Advanced analytical techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy (SEM/EDX), and Gas Chromatography/Mass Spectrometry (GC/MS), were deployed, confirming the polymeric composition and presence of various additives. Quantitative and qualitative analyses revealed significant variations in MP accumulation across tissues, with the GIT consistently showing the highest MP count, the gills having the highest concentration per gram, and the muscles exhibiting the lowest amount of accumulation. Wallago attu was found to have accumulated the highest concentration of microparticles among all three species due to its feeding habits and habitat. Fibers and fragments were the predominant types of MPs, with yellow and red being the most frequent colors. Polypropylene (PP) and polyethylene (PE) were the primary polymers identified, alongside other types like polyethylene terephthalate (PET) and polyvinyl chloride (PVC). The MP size distribution indicated that mid-sized particles (150–50 µm) were most abundant in the GIT and gills, while smaller particles (<50 µm) accumulated in the muscles, suggesting different levels of bioavailability and tissue penetration. Overall, the results suggest that agricultural activities are a major contributor to plastic pollution in the Panjnad Barrage. These findings highlight the ecological and health impacts of MP contamination, stressing the importance of targeted mitigation strategies to eliminate plastic waste in aquatic environments. Full article
(This article belongs to the Special Issue Effects of Nanoplastics and Microplastics on Fish Health)
Show Figures

Figure 1

12 pages, 3930 KiB  
Article
Microplastic Contamination of the Turkish Worm Lizard (Blanus strauchi Bedriaga, 1884) in Muğla Province (Türkiye)
by Cantekin Dursun, Nagihan Demirci, Kamil Candan, Elif Yıldırım Caynak, Yusuf Kumlutaş, Çetin Ilgaz and Serkan Gül
Biology 2025, 14(4), 441; https://doi.org/10.3390/biology14040441 - 19 Apr 2025
Cited by 1 | Viewed by 676
Abstract
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. [...] Read more.
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. This study examined MP intake in terrestrial environments utilizing gastrointestinal tracts (GITs), with a particular focus on the Turkish worm lizard (Blanus strauchi). Suspected particles discovered in the GITs were removed, measured, and characterized based on size, shape, color, and polymer type in order to evaluate MP ingestion. Out of 118 samples analyzed, 29 specimens (or 24.57%) had microplastic particlesMP length did not significantly correlate with snout–vent length (SVL) and weight. These correlations were tested to determine whether the size or weight of Blanus strauchi influenced the amount or size of MPs found within the GITs. Also, MP consumption by the worm lizard did not correlate with the year of sampling. All particles identified as fibers through FT-IR spectroscopy analysis. The most common type of microplastic was polyethylene terephthalate (PET). The most often detected color was blue, with mean MP lengths ranging from 133 µm to 2929 µm. It has been demonstrated that worm lizards inhabiting soil or sheltering under stones in bushy areas with sparse vegetation consume MPs. Predation is regarded to be the most likely way through which MPs infiltrate terrestrial food webs. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

17 pages, 4319 KiB  
Article
Electrospun Chitosan-Coated Recycled PET Scaffolds for Biomedical Applications: Short-Term Antimicrobial Efficacy and In Vivo Evaluation
by Andreea Mihaela Grămadă (Pintilie), Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, Alina Maria Holban, Alina Ciceu, Cornel Balta, Hildegard Herman, Anca Hermenean, Simona Ardelean, Alexandra-Elena Stoica, Alexandru Mihai Grumezescu and Adina Alberts
Polymers 2025, 17(8), 1077; https://doi.org/10.3390/polym17081077 - 16 Apr 2025
Viewed by 631
Abstract
This study investigates the preparation of electrospun recycled polyethylene terephthalate (rPET) coated with chitosan (CS) and evaluates their antibiofilm properties and in vivo response. rPET scaffolds were first fabricated via electrospinning at different flow rates (10, 7.5, 5 and 2.5 mL/h) and subsequently [...] Read more.
This study investigates the preparation of electrospun recycled polyethylene terephthalate (rPET) coated with chitosan (CS) and evaluates their antibiofilm properties and in vivo response. rPET scaffolds were first fabricated via electrospinning at different flow rates (10, 7.5, 5 and 2.5 mL/h) and subsequently coated with chitosan. Scanning electron microscopy (SEM) revealed that fiber morphology varied with electrospinning parameters, influencing microbial adhesion. Antimicrobial tests demonstrated that rPET@CS significantly inhibited Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans biofilm formation compared to control and uncoated rPET surfaces. Subcutaneous implantation of rPET@CS scaffolds induced a transient inflammatory response, with macrophage recruitment and collagen deposition supporting tissue integration. These findings highlight the potential of rPET@CS scaffolds as sustainable antimicrobial biomaterials for applications in infection-resistant coatings and biomedical implants. Full article
Show Figures

Figure 1

Back to TopTop