Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources
Abstract
:1. Introduction
- What are the dominant sources and types of microplastics found in each water source?
- How do regional and seasonal factors influence their distribution and abundance?
- What are the potential ecological and health impacts associated with microplastic contamination in these systems?
2. Methodology
2.1. Reporting
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Quality and Risk of Bias Assessments
2.5. Search Findings and Study Characteristics
3. Results
4. Discussion
4.1. Microplastics in Lakes
Ref. | Region, Sampling Collection Year, and Abundance | Shape of MPs | Materials of MPs | Color of MPs | Sizes of MPs |
---|---|---|---|---|---|
[12] | Poyang lake, China, November 2017, 5–34 items/L | Fiber (41.2%), Film, Fragment, Pellet | PP (38.5%), PE (32.3%), Nylon, PVC (6.2%) | White, Black, Colored (48.9%), Transparent (35.9%) | Less than 0.5 mm (73.1%) |
[13] | Flathead lake, USA, Summer, 2018, 8 × 104–4.22 × 105 particles/km2, MPs: 100 μm–5 mm | Fiber (55.2–98.5%), Sheet, Fragment, Line | PE, PET, PP, PVC, PS | - | - |
[14] | Lake Ontario, Canada, 0.8 particles/L | Fiber (28%), Film (27%), Foam (8%), Fragment (34%), others | PET, PE, PVC, PP, PA, CA | White | - |
[28] | Ox-Bow lake, Nigeria, December 2018 to June 2019, Dry season: 1004–8329 particles/m3, Rainy season: 201–8369 particles/m3 | Fiber, Pellet, Fragment, Bead, Film, Flake | Dry season: PET (72.63%), PP (6.3%), PVC (10.9%), HDPE (7.7%), Rainy season: PVC (81.5%), PA (1.7%), PET (2.6%) | Rainy season: Green (61.2%), Dry season: Red (42.4%), Black, Yellow, Blue, White, Purple | Dry season: 0.02–0.5 mm (4.3%), 0.51–1 mm (6.7%), 1–3 mm (74.9%), 3–5 mm (14.1%), Rainy season: 0.02–0.5 mm (4.9%), 0.51–1 mm (89.1%), 1–3 mm (4.7%), 3–5 mm (2.3%) |
[29] | Dhanmondi, Gulshan, Hatir Jheel lakes, Bangladesh, September 2021, 8 to 36 items/L | Film (28%), Pellet (25%), Fiber (23%), Fragment (21%), Foam (1%) | HDPE (40%), LDPE (30%), PP (10%), PVC (10%), PC (10%) | Transparent (50%), Black (20%), Red (7%), White (9%), Blue (14%) | <100 μm (30%), 101–200 μm (20%), 201–400 μm (23%), 401–600 μm (7%), 601–800 μm (5%), 801–1000 μm (9%), >1000 μm (7%) |
[32] | Lake Ontario, Lake Erie, Lake Superior, Canada and USA, 2018–2019, max. 2 × 107 particles/km2 | Lake Ontario: Fragment (37%), Foam (11%), Commercial fragments (19 %), Irregular Microbeads (17%), Lake Erie: Fragment (41%), Foam (12%), Irregular Microbeads (25%), Spherical microbeads (11%), Lake Superior: Fragment (42%), Foam (41%) | PE (61%), PS (12%), PP (16%), PVC | Transparent (50%), White (17%), Grey (15%) | 1.00–4.75 mm, 0.335–1.00 mm (80%) |
[33] | Great Slave lake, Canada, July to August 2021, 0.03–2.04 particles/m3 | Mostly Fiber, Fragment, Film, Foam | PP, PE, PA, PET, PS, etc. | Colored | - |
[34] | 20 lakes of Hanjiang, & Yangtze rivers of Wuhan, China, April 2016, 1660 ± 639.1 to 8925 ± 1591 n/m3 | Fiber (52.9 to 95.6%), Pallet, Film, Granule | PET, PE, PP, Nylon, PS | Colored (50.4% to 86.9%), Transparent, Blue, Purple, Red | <2 mm (>80%) |
[35] | Lake mead, USA, July to October 2018, 0.44–9.7 particles/m3 | Fiber (95%), Fragment, Film, Pallet | PES (65.7%), PP (6.5%), Rayon (6.7%) | Blue, Red and Black (75%), Yellow, White, Transparent, Green, Gray | - |
[36] | Lake Phewa, Nepal, February & July 2021, Dry: 2.96 ± 1.83 particles/L, Wet: 1.51 ± 0.62 particles/L | Fiber: Dry season (93.04%), Wet season (96.69%), Film, Foam, Fragment | - | Transparent (Dry: 40.51%, Wet: 31.41%), White, Red, Blue, Black, Yellow, Green, Purple | Dry season: 1.0–5.0 mm (0%) 0.2–1.0 mm (100%) Wet season: 1.0–5.0 mm (1%) 0.2–1.0 mm (99%) |
[37] | Taihu lake, China, Year: August 2015, 3.4–25.8 items/L | Fiber (48–84%), Pellet, Film, Fragment | Cellophane | Blue (50–63%), Green, Yellow, Red, White, Black, Transparent | 5–100 μm, 100–1000 μm, 1000–5000 μm |
[38] | 35 Lakes, Sierra Nevada, Spain, Avg: 21.3 particles/L | Fragment (60%), Fiber (39%) Sphere (1%) | - | Blue (53%), Transparent (28%), Red (8%), White (2.5%), Black (2%) | <50 μm (26%), 50–100 μm (16%), 100–200 μm (19%), 200–300 μm (11%), 300–500 μm (11%), >500 μm (17%) |
[39] | Songshan lake, Dongguan, China, March 2018, 2.29 ± 0.98 items/m3 | Film (60.7%), Fragment (24.2%), Foam (3.9%), Fiber (11.2%) | PE, PP, PE-PP, PS, PVC | Transparent (41%), Black (17%), Blue (16%), White (14%), Red (8%), Green (4%) | 0.18–0.6 mm (43.3%), 0.112–0.18 mm (38.1%), 0.6–2 mm (12.4%), 2–5 mm (6.2%) |
[40] | Vesijärvi lake, Finland, March 2018, Snow: 117.1 ± 18.4 MPs/L, Ice: 7.8 ± 1.2 MPs/L | Fiber, Fragment | Snow: PP/PE (19.6%), PA (14.6%), PE-PET (2.4%), CE (39%), Ice: CE (45.8%), PE/PP (16.6%), PA (8.3%), PU (2.1%) | - | 100–700 μm |
[42] | Lake Saimaa, Finland, Avg: 0.7 ± 0.1 n/L | Fiber (40%), Fragment | PP, PE, PS, PES (41%), PMMA, PA, PVC | Transparent/White (87%), Brown, Blue, Grey, Red | Fragment (1100 ± 230 μm), Fiber (430 ± 49 μm), 100–500 μm (59%) |
[43] | Mahodand Lake, Pakistan, June & July, 2019, 0–5 MPs/L | Fiber (50%), Sheet (28%), Fragment (22%) | LDPE (44.4%), PVC (30.5%), HDPE (5.5%) | - | 300–500 μm (57%), 150–300 μm (28%), 50–150 μm (15%) |
[44] | Lake Hovsgol, Mongolia, July, 2013, Avg: 20,264 particles/km2 | Fragment (40%), Film (38%), Line/Fiber (20%), Pellet (1%), Foam (1%) | - | - | 0.36–1 mm, 10–4.75 mm, >4.75 mm |
[45] | West and South Dongting lakes, China, April 2018, West: 616.67 to 2216.67 items/m3, South: 716.67 to 2316.67 items/m3 | Fiber (12.17 to 77.42%), Fragment, Pallet, Film | PS (38%), PET (28%), PP (16%), PE (12%) | Transparent, White, Blue, Black, Red, Blue, Green | <0.5 mm, 0.5–5.0 mm |
[46] | Xianjia, Meixi, Yang, Yue, Yuejin, Nianjia, Dong, Donggua lakes, China, 2425 ± 247.5 items/m3 to 7050 ± 1060.66 items/m3 | Line, Film, Foam, Fragment | PP (33.75%), PE (27.5%), PS (13.75%), PVC (3.75%), PET (11.25%), PA (7.5%) | Transparent | <2 mm (89.5%) |
[47] | Al-Asfar lake, Saudi Arabia: 0.7 to 7.8 items/L; Al-Hubail lake, Saudi Arabia: 1.1 to 9.0 items/L, Year: Winter, 2017–2018 | Fiber (83%), Fragment (17%) | - | - | <250 μm (30%), Between 250 and 500 μm (70%) |
[48] | Florentino Ameghino dam, Pico 1 lake, Pico 4 lake, Los Niños lake, Vintter lake, La Plata lake, Fontana lake, Toro lake, Musters lake, Argentina, December 2018, 0.3–1.9 particles/m3 | Fiber (66.7–96.4%), Foam, Fragment, Film, Rubber | PET (38.3%), PU (11.8%), PS (2.9%), PP (2.9%) | Blue (42%), Black (37%), Yellow, Red, White, Green, brown | <1 mm (70.7%), 1–2 mm, 2–3 mm, 3–4 mm, 4–5 mm, >5 mm |
[49] | Lake Superior, USA, May & July 2018, 9000 to 40,000 particles/ km2 | Fiber (70%), Fragment, Film, Foam, Bead | PE (93%), PP (77%), PS (78%), PET (81%), PVC (12%) | Translucent, Transparent, Blue, White, Black, Yellow, Green, Grey, Purple, Pink, Silver | <4 mm, >0.45 μm |
[50] | Lake Sassolo, Switzerland, June 2019, 6.8 particles/L | Fiber (36%), Fragment, Film, Pellet, Bead | PE (76.92%), PP (23.08%) | Green, Transparent | 125 to 5000 μm |
[51] | Lake Michigan (LM), Lake Erie (LE), USA, September, 2013, September 2014, LM: 65.2 p/kg, LE: 431 p/kg | Fiber/Line (>0.355 mm): 91% in LM, 75% in LE, Fragment (>0.355 mm): 1.5% in LM, 10.2% in LE, Pellet/Bead (>0.355 mm): 1.2% in LM, 3.4% in LE, Film (>0.355 mm): 0.9% in LM, 6.4% in LE, Foam (>0.355 mm): 5% in LM, and 5.4% in LE | LM: PET, HDPE, LE: PP, PVC | - | 0.36−1 mm, >1 mm |
[52] | Bay Mau, Ho Tay, Yen So, Cong Vien, Hoa Phu lakes, Vietnam, 70 to 611 items/m3 | Mostly Fiber, Fragment | - | - | Up to 5000 μm |
[53] | Vellayani lake, Kerala, India, March 2022, 4.1 particles/L | Film (5%), Fiber (95%) | PES (95%), PP (5%) | White (30%), Colored (70%) | <1000 μm (71%), ˃1000 μm (29%) |
[54] | Masurian Lakes (30) Poland, July 2019, 0.27 to 1.57 MPs/L | Fragment (36.7%), Film (25.6%), Foam (3.4%), Fiber (30.4%) | - | Blue (30.6%), Black (4.3%), Red (12.7%), Green (10.4%), Transparent (21.3%) | 0.5–1 mm (10.3%), 1–2 mm (19%), 2–3 mm (15.9%), 3–4 mm (14.9%), 4–5 mm (35.0%) |
[55] | Lake Balaton, Hungary, July 2022, Avg: 5.5 particles/m3 | - | PP, PE, PA, PES | - | 50–100 μm |
[56] | Lake Balaton, Hungary, July 2022, 1.50 to 106.84 MPs/m3, Avg: 21.0 ± 12.5 MPs/m3 | Fiber (13%), Fragment (87%) | PE (33.29%), PP (31.22%), PS, PVC, PU, PA | - | 50 and 100 μm (26.27%), <500 μm (90%) |
[57] | 7 lakes in Da Nang City, Vietnam, Year: Apr & Dec 2021, Dry: 293.3 ± 23.1–6510 ± 380.4 items/m3, Wet: 366.7 ± 23.1–1143.3 ± 110.2 items/m3 | Fiber: 44.25% to 75.98% (Dry), 64.54% to 80.17% (Wet). Fragment: 20.78% to 45.86% (Dry), 13.36% to 28.18% (Wet) | PP (47.8%), PE (43.5%) | Blue: 18.47% to 49.35% (Dry), 12.10% to 50% (Wet). White: 22.85% to 50% (Dry), 16.06% to 41.13% (Wet), Black: 14.68% to 33.82% | 1000–2000 μm: Dry (35.4–59.6%), Wet: 34.4–56.4%) |
[58] | Tembisa (TL), Braamfontein (BL), Silver (SL) Lakes, South Africa, March to June 2023, TL: 4 to 20 particles/L, BL: 9.0 to 31 particles/L, SL: 4.7 to 16 particles/L | BL: Fiber (77%), Fragment (9.68%), Pellet (2.47%), Film (1.9%), TL: Fiber (83.6%), Fragment (13.8%), Film (1.5%), Pellet (1.0%), SL: Fiber (77.7%), Fragment (15.1%), Pellet (0.63%), Film (6.6%) | HDPE, PU, PET | BL: Fiber (Black, 37.5%, Green, 33.1%, Blue, 15%), TL: Fiber (Black, 33.6%, Green, 28.1%, Blue, 24.5%), SL: Fiber (Blue, 30.4%, Black, 26.7%, Transparent, 17.4%) | BL: <1 mm (80%) TL: <1 mm (75%) SL: <1 mm (72%) |
4.2. Microplastics in Rivers
4.3. Microplastics in Tap Water
4.4. Microplastics in Bottled Water
4.5. Microplastics in Sea
4.6. Microplastics in Human, Domestic Animals, Birds, and Aquatic Organisms
5. Conclusions
6. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PE | Polyethylene |
PP | Polypropylene |
PPS | Polyphenylene Sulfite |
PS | Polystyrene |
PET | Polyethylene Terephathalate |
PMS | Poly alpha-Methylstyrene |
PTFE | Polytetrafluoroethylene |
PC | Polycarbonate |
PMMA | Poly Methyl Methacrylate |
PBT | Polybutylene Terephthalate |
PB | Polybutene |
PVC | Poly Vinyl Chloride |
LDPE | Low-Density Polyethylene |
PU | Polyurethane |
PBS | Polybutylene Succinate |
PPC | Polypropylene Carbonate |
PA | Polyamide |
UA | Urethane Acrylate |
PVA | Polyvinyl Alcohol |
PES | Polyethersulfone |
HDPE | High-Density Polyethylene |
CE | Cellulose |
PI | Polyisoprene |
PBD | Polybutadiene |
PDMS | Polydimethylsiloxanes |
ABS | Acrylonitrile Butadiene Styrene |
CA | Cellulose Acetate |
EVAc | Ethylene Vinyl Acetate |
EVOH | Ethylene Vinyl-alcohol |
PAN | Polyacrylonitrile |
PEEK | Poly-Ether-Ether-Ketone |
POM | Polyoxymethylene |
PPSU | Polyphenylene Sulfone |
PSU | Polysulfone |
PLA | Polylactic Acid |
SI | Silicone |
SEBS | Styrene-Ethylene-Butylene |
PDMS | Polydimethyl Siloxane |
SIL | Polysiloxane |
References
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Saha, S.C.; Saha, G.; Francis, I.; Luo, Z. Transport and deposition of microplastics and nanoplastics in the human respiratory tract. Environ. Adv. 2024, 16, 100525. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Luo, W.; Su, L.; Craig, N.J.; Du, F.; Wu, C.; Shi, H. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environ. Pollut. (1987) 2019, 246, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.C.; Saha, G. Effect of microplastics deposition on human lung airways: A review with computational benefits and challenges. Heliyon 2024, 10, e24355. [Google Scholar] [CrossRef]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V.; Zhou, Z. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and identification of microplastics in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Saha, G.; Saha, S.C. Tiny Particles, Big Problems: The Threat of Microplastics to Marine Life and Human Health. Processes 2024, 12, 1401. [Google Scholar] [CrossRef]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, X.; Wang, W.; Di, M.; Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2019, 170, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tappenbeck, T.H.; Wu, C.; Elser, J.J. Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA. Environ. Pollut. 2022, 306, 119445. [Google Scholar] [CrossRef] [PubMed]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Gonçalves, F.J.M.; Nogueira, H.; Marques, J.C.; Gonçalves, A.M.M. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci. Total Environ. 2018, 633, 1549. [Google Scholar] [CrossRef]
- Lahens, L.; Strady, E.; Kieu-Le, T.-C.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin, B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 2018, 236, 661–671. [Google Scholar] [CrossRef]
- Han, M.; Niu, X.; Tang, M.; Zhang, B.-T.; Wang, G.; Yue, W.; Kong, X.; Zhu, J. Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci. Total Environ. 2020, 707, 135601. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.; Liu, F.; Dong, Y.; Jiao, J.; Sun, P.; RM, E.-W. Microplastic pollution in Yellow River, China: Current status and research progress of biotoxicological effects. China Geol. 2021, 4, 585–592. [Google Scholar] [CrossRef]
- Hitchcock, J.N. Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci. Total Environ. 2020, 734, 139436. [Google Scholar] [CrossRef]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res. 2019, 160, 228–237. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, H.; Chen, H.; Wang, S.; Sun, X.; Zou, Q.; Zhang, Y.; Lin, H.; Cai, S.; Huang, J. Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Sci. Total Environ. 2019, 650 Pt 2, 1913–1922. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Zhao, Q.; Qu, L.; Ma, D.; Wang, J. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China. Mar. Pollut. Bull. 2020, 158, 111343. [Google Scholar] [CrossRef] [PubMed]
- Gunaalan, K.; Almeda, R.; Lorenz, C.; Vianello, A.; Iordachescu, L.; Papacharalampos, K.; Rohde Kiær, C.M.; Vollertsen, J.; Nielsen, T.G. Abundance and distribution of microplastics in surface waters of the Kattegat/Skagerrak (Denmark). Environ. Pollut. 2023, 318, 120853. [Google Scholar] [CrossRef] [PubMed]
- Altunisik, A. Prevalence of microplastics in commercially sold soft drinks and human risk assessment. J. Environ. Manag. 2023, 336, 117720. [Google Scholar] [CrossRef] [PubMed]
- Pratesi, C.B.A.L.; Santos Almeida, M.A.; Cutrim Paz, G.S.; Ramos Teotonio, M.H.; Gandolfi, L.; Pratesi, R.; Hecht, M.; Zandonadi, R.P. Presence and quantification of microplastic in urban tap water: A pre-screening in Brasilia, Brazil. Sustainability 2021, 13, 6404. [Google Scholar] [CrossRef]
- Chanpiwat, P.; Damrongsiri, S. Abundance and characteristics of microplastics in freshwater and treated tap water in Bangkok, Thailand. Environ. Monit. Assess. 2021, 193, 258. [Google Scholar] [CrossRef]
- Yang, L.; Kang, S.; Luo, X.; Wang, Z. Microplastics in drinking water: A review on methods, occurrence, sources, and potential risks assessment. Environ. Pollut. 2024, 348, 123857. [Google Scholar] [CrossRef]
- Oni, B.A.; Ayeni, A.O.; Agboola, O.; Oguntade, T.; Obanla, O. Comparing microplastics contaminants in (dry and raining) seasons for Ox- Bow Lake in Yenagoa, Nigeria. Ecotoxicol. Environ. Saf. 2020, 198, 110656. [Google Scholar] [CrossRef]
- Mercy, F.T.; Alam, A.K.M.R.; Akbor Md, A. Abundance and characteristics of microplastics in major urban lakes of Dhaka, Bangladesh. Heliyon 2023, 9, e14587. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; Anthony, W.G.; John McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Schiffman, R. Plastics Pioneer Richard Thompson on the Scourge of Marine Microplastics. Yale Environment 360. Available online: https://e360.yale.edu/features/richard-thompson-interview (accessed on 5 December 2024).
- Jasmine, T.Y.; Helm, P.A.; Diamond, M.L. Source-specific categorization of microplastics in nearshore surface waters of the Great Lakes. J. Great Lakes Res. 2024, 50, 102256. [Google Scholar] [CrossRef]
- Bourdages, M.P.; Provencher, J.F.; Hurtubise, J.; Johnson, N.; Vermaire, J.C. Microplastics and anthropogenic microparticles in surface waters from Yellowknife Bay, Great Slave Lake, Northwest Territories, Canada. J. Great Lakes Res. 2024, 50, 102348. [Google Scholar] [CrossRef]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wei, R.; Luo, W.; Hu, L.; Li, B.; Di, Y.; Shi, H. Microplastic pollution in water and sediment in a textile industrial area. Environ. Pollut. 2020, 258, 113658. [Google Scholar] [CrossRef]
- Malla-Pradhan, R.; Suwunwong, T.; Phoungthong, K.; Joshi, T.P.; Pradhan, B.L. Microplastic pollution in urban Lake Phewa, Nepal: The first report on abundance and composition in surface water of lake in different seasons. Environ. Sci. Pollut. Res. Int. 2022, 29, 39928–39936. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Godoy, V.; Calero, M.; González-Olalla, J.M.; Martín-Lara, M.A.; Olea, N.; Ruiz-Gutierrez, A.; Villar-Argaiz, M. The human connection: First evidence of microplastics in remote high mountain lakes of Sierra Nevada, Spain. Environ. Pollut. 2022, 311, 119922. [Google Scholar] [CrossRef]
- Tang, N.; Yu, Y.; Cai, L.; Tan, X.; Zhang, L.; Huang, Y.; Li, B.; Peng, J.; Xu, X. Distribution Characteristics and Source Analysis of Microplastics in Urban Freshwater Lakes: A Case Study in Songshan Lake of Dongguan, China. Water 2022, 14, 1111. [Google Scholar] [CrossRef]
- Scopetani, C.; Chelazzi, D.; Cincinelli, A.; Esterhuizen-Londt, M. Assessment of microplastic pollution: Occurrence and characterisation in Vesijärvi lake and Pikku Vesijärvi pond, Finland. Environ. Monit. Assess. 2019, 191, 652. [Google Scholar] [CrossRef]
- Viitala, M.; Steinmetz, Z.; Sillanpää, M.; Mänttäri, M.; Sillanpää, M. Historical and current occurrence of microplastics in water and sediment of a Finnish lake affected by WWTP effluents. Environ. Pollut. 2022, 314, 120298. [Google Scholar] [CrossRef]
- Rojas-Luna, R.A.; Oquendo-Ruiz, L.; García-Alzate, C.A.; Arana, V.A.; García-Alzate, R.; Trilleras, J. Identification, Abundance, and Distribution of Microplastics in Surface Water Collected from Luruaco Lake, Low Basin Magdalena River, Colombia. Water 2023, 15, 344. [Google Scholar] [CrossRef]
- Bilal, M.; Ul Hassan, H.; Siddique, M.A.M.; Khan, W.; Gabol, K.; Ullah, I.; Sultana, S.; Abdali, U.; Mahboob, S.; Khan, M.S.; et al. Microplastics in the Surface Water and Gastrointestinal Tract of Salmo trutta from the Mahodand Lake, Kalam Swat in Pakistan. Toxics 2022, 11, 3. [Google Scholar] [CrossRef]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Yin, L.; Wen, X.; Du, C.; Wu, L.; Long, Y.; Liu, Y.; Ma, Y.; Yin, Q.; Zhou, Z.; et al. Microplastics in sediment and surface water of west Dongting lake and south Dongting lake: Abundance, source and composition. Int. J. Environ. Res. Public Health 2018, 15, 2164. [Google Scholar] [CrossRef]
- Yin, L.; Jiang, C.; Wen, X.; Du, C.; Zhong, W.; Feng, Z.; Long, Y.; Ma, Y. Microplastic pollution in surface water of urban lakes in Changsha, china. Int. J. Environ. Res. Public Health 2019, 16, 1650. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alshahrani, H.O.; Barceló, D. Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes. Sci. Total Environ. 2020, 701, 135021. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, M.B.; Scordo, F.; Seitz, C.; Mavo Manstretta, G.M.; Ronda, A.C.; Arias, A.H.; Tomba, J.P.; Silva, L.I.; Perillo, G.M.E.; Piccolo, M.C. First evidence of microplastics in nine lakes across Patagonia (South America). Sci. Total Environ. 2020, 733, 139385. [Google Scholar] [CrossRef]
- Minor, E.C.; Lin, R.; Burrows, A.; Cooney, E.M.; Grosshuesch, S.; Lafrancois, B. An analysis of microlitter and microplastics from Lake Superior beach sand and surface-water. Sci. Total Environ. 2020, 744, 140824. [Google Scholar] [CrossRef]
- Velasco, A.N.d.J.; Rard, L.; Blois, W.; Lebrun, D.; Lebrun, F.; Pothe, F.; Stoll, S. Microplastic and fibre contamination in a remote Mountain lake in Switzerland. Water 2020, 12, 2410. [Google Scholar] [CrossRef]
- Lenaker, P.L.; Corsi, S.R.; Mason, S.A. Spatial Distribution of Microplastics in Surficial Benthic Sediment of Lake Michigan and Lake Erie. Environ. Sci. Technol. 2021, 55, 373–384. [Google Scholar] [CrossRef]
- Strady, E.; Dang, T.H.; Dao, T.D.; Dinh, H.N.; Do, T.T.D.; Duong, T.N.; Duong, T.T.; Hoang, D.A.; Kieu-Le, T.C.; Le, T.P.Q.; et al. Baseline assessment of microplastic concentrations in marine and freshwater environments of a developing Southeast Asian country, Viet Nam. Mar. Pollut. Bull. 2021, 162, 111870. [Google Scholar] [CrossRef] [PubMed]
- Immanuvel David, T.; Sheela, M.S.; Krishnakumar, S.; Muhammed Siyad, A.; Abimanyu, A.; Vikasini, V.K.; Monisha, T.; Dineshbabu, S. Distribution and characterization of microplastics and ecological risks in Vellayani Lake, Kerala, India. Total Environ. Res. Themes 2023, 7, 100065. [Google Scholar] [CrossRef]
- Pol, W.; Stasińska, E.; Żmijewska, A.; Więcko, A.; Zieliński, P. Litter per liter–Lakes’ morphology and shoreline urbanization index as factors of microplastic pollution: Study of 30 lakes in NE Poland. Sci. Total Environ. 2023, 881, 163426. [Google Scholar] [CrossRef]
- Svigruha, R.; Prikler, B.; Farkas, A.; Ács, A.; Fodor, I.; Tapolczai, K.; Schmidt, J.; Bordós, G.; Háhn, J.; Harkai, P.; et al. Presence, variation, and potential ecological impact of microplastics in the largest shallow lake of Central Europe. Sci. Total Environ. 2023, 883, 163537. [Google Scholar] [CrossRef] [PubMed]
- Prikler, B.; Svigruha, R.; Háhn, J.; Harkai, P.; Fodor, I.; Kaszab, E.; Kriszt, B.; Tóth, G.; Szabó, I.; Csenki, Z.; et al. Spatial Variations in Microplastics in the Largest Shallow Lake of Central Europe and Its Protecting Wetland Area. Water 2024, 16, 1014. [Google Scholar] [CrossRef]
- Tran-Nguyen, Q.A.; Le, T.M.; Nguyen, H.N.Y.; Nguyen, Q.T.; Trinh-Dang, M. Microplastics in the surface water of urban lakes in central Vietnam: Pollution level, characteristics, and ecological risk assessment. Case Stud. Chem. Environ. Eng. 2024, 9, 100622. [Google Scholar] [CrossRef]
- Ramaremisa, G.; Tutu, H.; Saad, D. Detection and characterisation of microplastics in tap water from Gauteng, South Africa. Chemosphere 2024, 356, 141903. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, J.; Dris, R.; Bonin, T.; Rocher, V.; Tassin, B. Assessment of floating plastic debris in surface water along the Seine River. Environ. Pollut. 2014, 195, 163–166. [Google Scholar] [CrossRef]
- Barrows, A.P.W.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Wang, T.; Li, D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Mar. Pollut. Bull. 2014, 86, 562–568. [Google Scholar] [CrossRef]
- Weideman, E.A.; Perold, V.; Ryan, P.G. Limited long-distance transport of plastic pollution by the Orange-Vaal River system, South Africa. Sci. Total Environ. 2020, 727, 138653. [Google Scholar] [CrossRef] [PubMed]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Huang, W.; Yin, M.; Huang, P.; Ding, Y.; Ni, X.; Xia, H.; Liu, H.; Wang, G.; Zheng, H.; et al. Tributary inflows enhance the microplastic load in the estuary: A case from the Qiantang River. Mar. Pollut. Bull. 2020, 156, 111152. [Google Scholar] [CrossRef]
- Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W.; Davies, B.F.R.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Hasan Niloy, M.N.; et al. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ. Pollut. 2021, 274, 116348. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B.; Kideys, A.E. Microplastic distribution in the surface water and sediment of the Ergene River. Environ. Res. 2023, 234, 116500. [Google Scholar] [CrossRef]
- Yan, M.; Nie, H.; Xu, K.; He, Y.; Hu, Y.; Huang, Y.; Wang, J. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China. Chemosphere 2019, 217, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Haberstroh, C.J.; Arias, M.E.; Yin, Z.; Wang, M.C. Effects of hydrodynamics on the cross-sectional distribution and transport of plastic in an urban coastal river. Water Environ. Res. 2020, 93, 186–200. [Google Scholar] [CrossRef]
- Vermaire, J.C.; Pomeroy, C.; Herczegh, S.M.; Haggart, O.; Murphy, M. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2017, 2, 301–314. [Google Scholar] [CrossRef]
- Kapp, K.J.; Yeatman, E. Microplastic hotspots in the Snake and Lower Columbia rivers: A journey from the Greater Yellowstone Ecosystem to the Pacific Ocean. Environ. Pollut. 2018, 241, 1082–1090. [Google Scholar] [CrossRef]
- Alam, F.C.; Sembiring, E.; Muntalif, B.S.; Suendo, V. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere 2019, 224, 637645. [Google Scholar] [CrossRef]
- Ding, L.; Mao, R.f.; Guo, X.; Yang, X.; Zhang, Q.; Yang, C. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Sci. Total Environ. 2019, 667, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Yu, X.; Cai, L.; Wang, J.; Peng, J. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere 2019, 221, 834–840. [Google Scholar] [CrossRef]
- Ferraz, M.; Bauer, A.L.; Valiati, V.H.; Schulz, U.H. Microplastic concentrations in raw and drinking water in the Sinos River, Southern Brazil. Water 2020, 12, 3115. [Google Scholar] [CrossRef]
- Lestari, P.; Trihadiningrum, Y.; Wijaya, B.A.; Yunus, K.A.; Firdaus, M. Distribution of microplastics in Surabaya River, Indonesia. Sci. Total Environ. 2020, 726, 138560. [Google Scholar] [CrossRef]
- Scherer, C.; Weber, A.; Stock, F.; Vurusic, S.; Egerci, H.; Kochleus, C.; Arendt, N.; Foeldi, C.; Dierkes, G.; Wagner, M.; et al. Comparative assessment of microplastics in water and sediment of a large European river. Sci. Total Environ. 2020, 738, 139866. [Google Scholar] [CrossRef] [PubMed]
- Tien, C.-J.; Wang, Z.-X.; Chen, C.S. Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environ. Pollut. 2020, 265, 114962. [Google Scholar] [CrossRef]
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef]
- Amrutha, K.; Warrier, A.K. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India. Sci. Total Environ. 2020, 739, 140377. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.S.; Semwal, D.; Nainwal, M.; Badola, N.; Thapliyal, P. Investigation of microplastic pollution in river Alaknanda stretch of Uttarakhand. Environ. Dev. Sustain. 2021, 23, 16819–16833. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Liu, L.; Lai, H.; Zeng, X.; Chen, J.; Liu, C.; Luo, Q. Temporal and spatial distribution of microplastics in a coastal region of the Pearl River Estuary, China. Water 2021, 13, 1618. [Google Scholar] [CrossRef]
- Bian, P.; Liu, Y.; Zhao, K.; Hu, Y.; Zhang, J.; Kang, L.; Shen, W. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China. Ecotoxicol. Environ. Saf. 2022, 232, 113298. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.N.; Komakech, H.C.; Lugomela, G. Analysis of Macro- and Microplastics in Riverine, Riverbanks, and Irrigated Farms in Arusha, Tanzania. Arch. Environ. Contam. Toxicol. 2022, 82, 142–157. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Busquets, R.; Nematollahi, M.J.; Javid, R.; Gobert, S. Effect of land use on microplastic pollution in a major boundary waterway: The Arvand River. Sci. Total Environ. 2022, 830, 154728. [Google Scholar] [CrossRef] [PubMed]
- Vaid, M.; Mehra, K.; Sarma, K.; Gupta, A. Investigations on the co-occurrence of microplastics and other pollutants in River Yamuna, Delhi. Water Sci. Technol. Water Supply 2022, 22, 8767–8777. [Google Scholar] [CrossRef]
- Qian, Y.; Shang, Y.; Zheng, Y.; Jia, Y.; Wang, F. Temporal and spatial variation of microplastics in Baotou section of Yellow River, China. J. Environ. Manag. 2023, 338, 117803. [Google Scholar] [CrossRef]
- Rajan, K.; Khudsar, F.A.; Kumar, R. Urbanization and population resources affect microplastic concentration in surface water of the River Ganga. J. Hazard. Mater. Adv. 2023, 11, 100342. [Google Scholar] [CrossRef]
- Khedre, A.M.; Ramadan, S.A.; Ashry, A.; Alaraby, M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. Chemosphere 2024, 353, 141557. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, J.; Liu, M.; Tu, T.; Wang, L.; Zhang, S. Exploring correlations between microplastics, microorganisms, and water quality in an urban drinking water source. Ecotoxicol. Environ. Saf. 2024, 275, 116249. [Google Scholar] [CrossRef]
- Gupta, P.; Saha, M.; Naik, A.; Kumar, M.M.; Rathore, C.; Vashishth, S.; Maitra, S.P.; Bhardwaj, K.D.; Thukral, H. A comprehensive assessment of macro and microplastics from Rivers Ganga and Yamuna: Unveiling the seasonal, spatial and risk factors. J. Hazard. Mater. 2024, 469, 133926. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Wang, F.; Gu, X.; Li, Y.; Liu, Q.; Li, L.; Bai, F. Temporal and spatial variation of microplastics in the urban rivers of Harbin. Sci. Total Environ. 2024, 910, 168373. [Google Scholar] [CrossRef]
- Mukotaka, A.; Kataoka, T.; Nihei, Y. Rapid analytical method for characterization and quantification of microplastics in tap water using a Fourier-transform infrared microscope. Sci. Total Environ. 2021, 790, 148231. [Google Scholar] [CrossRef] [PubMed]
- Vega-Herrera, A.; Llorca, M.; Borrell-Diaz, X.; Redondo-Hasselerharm, P.E.; Abad, E.; Villanueva, C.M.; Farré, M. Polymers of micro (nano) plastic in household tap water of the Barcelona Metropolitan Area. Water Res. 2022, 220, 118645. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.H.; Al-Ahmady, K.K.; Mhemid, R.K.S. Microplastics Evaluation in Tap Water in Left Side Districts of Mosul City, Iraq. J. Ecol. Eng. 2023, 24, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, H.; Ghayebzadeh, M.; Ganji, F.; Mousavi, S.; Azizi, N. Tracking microplastics contamination in drinking water in Zahedan, Iran: From source to consumption taps. Sci. Total Environ. 2023, 872, 162121. [Google Scholar] [CrossRef]
- Feld, L.; Da Silva, V.H.; Murphy, F.; Hartmann, N.B.; Strand, J. A study of microplastic particles in Danish tap water. Water 2021, 13, 2097. [Google Scholar] [CrossRef]
- Tse, Y.T.; Chan, S.M.N.; Sze, E.T.P. Quantitative Assessment of Full Size Microplastics in Bottled and Tap Water Samples in Hong Kong. Int. J. Environ. Res. Public Health 2022, 19, 13432. [Google Scholar] [CrossRef]
- Gálvez-Blanca, V.; Edo, C.; González-Pleiter, M.; Albentosa, M.; Bayo, J.; Beiras, R.; Fernández-Piñas, F.; Gago, J.; Gómez, M.; Gonzalez-Cascon, R.; et al. Occurrence and size distribution study of microplastics in household water from different cities in continental Spain and the Canary Islands. Water Res. 2023, 238, 120044. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Ma, M.; Wu, H.; An, L.; Yang, Z. Occurrence of microplastics in commercially sold bottled water. Sci. Total Environ. 2023, 867, 161553. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, Q.; Wei, X.-F.; Chen, C.; Ma, J.; Crittenden, J.C.; Liu, B. Tracing microplastics in rural drinking water in Chongqing, China: Their presence and pathways from source to tap. J. Hazard. Mater. 2023, 459, 132206. [Google Scholar] [CrossRef]
- Adediran, G.A.; Cox, R.; Jürgens, M.D.; Morel, E.; Cross, R.; Carter, H.; Pereira, M.G.; Read, D.S.; Johnson, A.C. Fate and behaviour of Microplastics (>25 µm) within the water distribution network, from water treatment works to service reservoirs and customer taps. Water Res. 2024, 255, 121508. [Google Scholar] [CrossRef]
- Makhdoumi, P.; Amin, A.A.; Karimi, H.; Pirsaheb, M.; Kim, H.; Hossini, H. Occurrence of microplastic particles in the most popular Iranian bottled mineral water brands and an assessment of human exposure. J. Water Process Eng. 2021, 39, 101708. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Gambino, I.; Malitesta, C.; Bagordo, F.; Grassi, T.; Panico, A.; Fraissinet, S.; De Donno, A.; De Benedetto, G.E. Characterization of microplastics in water bottled in different packaging by Raman spectroscopy. Environ. Sci. Water Res. Technol. 2023, 9, 3391–3397. [Google Scholar] [CrossRef]
- Gálvez-Blanca, V.; Edo, C.; González-Pleiter, M.; Fernández-Piñas, F.; Leganés, F.; Rosal, R. Microplastics and non-natural cellulosic particles in Spanish bottled drinking water. Sci. Rep. 2024, 14, 11089. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Vega-Herrera, A.; Garcia-Torné, M.; Borrell-Diaz, X.; Abad, E.; Llorca, M.; Villanueva, C.M.; Farré, M. Exposure to micro (nano) plastics polymers in water stored in single-use plastic bottles. Chemosphere 2023, 343, 140106. [Google Scholar] [CrossRef] [PubMed]
- Kankanige, D.; Babel, S. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand. Sci. Total Environ. 2020, 717, 137232. [Google Scholar] [CrossRef]
- Sekar, V.; Shaji, S.; Sundaram, B. Microplastic prevalence and human exposure in the bottled drinking water in the west Godavari region of Andhra Pradesh, India. J. Contam. Hydrol. 2024, 264, 104346. [Google Scholar] [CrossRef]
- Altunisik, A. Microplastic pollution and human risk assessment in Turkish bottled natural and mineral waters. Environ. Sci. Pollut. Res. Int. 2023, 30, 39815. [Google Scholar] [CrossRef]
- Zuccarello, P.; Ferrante, M.; Cristaldi, A.; Copat, C.; Grasso, A.; Sangregorio, D.; Fiore, M.; Oliveri Conti, G. Exposure to Microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019, 157, 365–371. [Google Scholar] [CrossRef]
- Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the well to the bottle: Identifying sources of microplastics in mineral water. Water 2021, 13, 841. [Google Scholar] [CrossRef]
- Zhou, X.J.; Wang, J.; Li, H.Y.; Zhang, H.M.; Zhang, D.L. Microplastic pollution of bottled water in China. J. Water Process Eng. 2021, 40, 101884. [Google Scholar] [CrossRef]
- Huang, Y.; Wong, K.K.; Li, W.; Zhao, H.; Wang, T.; Stanescu, S.; Boult, S.; van Dongen, B.; Mativenga, P.; Li, L. Characteristics of nano-plastics in bottled drinking water. J. Hazard. Mater. 2022, 424, 127404. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Shamsul Ariffin, N.I.; Nafisyah, A.L. Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. Environ. Pollut. 2022, 315, 120494. [Google Scholar] [CrossRef]
- Ibeto, C.N.; Enyoh, C.E.; Ofomatah, A.C.; Oguejiofor, L.A.; Okafocha, T.; Okanya, V. Microplastics pollution indices of bottled water from South Eastern Nigeria. Int. J. Environ. Anal. Chem. 2023, 103, 8176–8195. [Google Scholar] [CrossRef]
- Nacaratte, F.; Cuevas, P.; Becerra-Herrera, M.; Manzano, C.A. Early screening of suspected microplastics in bottled water in the Santiago Metropolitan Region of Chile. Environ. Pollut. 2023, 334, 122118. [Google Scholar] [CrossRef]
- Nizamali, J.; Mintenig, S.M.; Koelmans, A.A. Assessing microplastic characteristics in bottled drinking water and air deposition samples using laser direct infrared imaging. J. Hazard. Mater. 2023, 441, 129942. [Google Scholar] [CrossRef]
- Nocon, W.; Moraczewska-Majkut, K.; Wisniowska, E. Microplastics in bottled water and bottled soft drinks. Desalination Water Treat. 2023, 312, 64–69. [Google Scholar] [CrossRef]
- Vitali, C.; Peters, R.J.B.; Janssen, H.-G.; Undas, A.K.; Munniks, S.; Ruggeri, F.S.; Nielen, M.W.F. Quantitative image analysis of microplastics in bottled water using artificial intelligence. Talanta 2024, 266, 124965. [Google Scholar] [CrossRef]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef]
- Isobe, A.; Uchida, K.; Tokai, T.; Iwasaki, S. East Asian seas: A hot spot of pelagic microplastics. Mar. Pollut. Bull. 2015, 101, 618–623. [Google Scholar] [CrossRef]
- Gewert, B.; Ogonowski, M.; Barth, A.; MacLeod, M. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea. Mar. Pollut. Bull. 2017, 120, 292–302. [Google Scholar] [CrossRef]
- Kanhai, L.D.K.; Officer, R.; Lyashevska, O.; Thompson, R.C.; O’Connor, I. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean. Mar. Pollut. Bull. 2017, 115, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, W.; Zhang, S.; Jin, F.; Fang, C.; Ma, X.; Wang, J.; Mu, J. Systematical insights into distribution and characteristics of microplastics in near-surface waters from the East Asian Seas to the Arctic Central Basin. Sci. Total Environ. 2022, 814, 151923. [Google Scholar] [CrossRef] [PubMed]
- Aigars, J.; Barone, M.; Suhareva, N.; Putna-Nimane, I.; Dimante-Deimantovica, I. Occurrence and spatial distribution of microplastics in the surface waters of the Baltic Sea and the Gulf of Riga. Mar. Pollut. Bull. 2021, 172, 112860. [Google Scholar] [CrossRef]
- Galli, M.; Tepsich, P.; Baini, M.; Panti, C.; Rosso, M.; Vafeiadou, A.; Pantelidou, M.; Moulins, A.; Fossi, M.C. Microplastic abundance and biodiversity richness overlap: Identification of sensitive areas in the Western Ionian Sea. Mar. Pollut. Bull. 2022, 177, 113550. [Google Scholar] [CrossRef]
- Ikenoue, T.; Nakajima, R.; Mishra, P.; Ramasamy, E.V.; Fujiwara, A.; Nishino, S.; Murata, A.; Watanabe, E.; Itoh, M. Floating microplastic inventories in the southern Beaufort Sea, Arctic Ocean. Front. Mar. Sci. 2023, 10, 1288301. [Google Scholar] [CrossRef]
- Min, B.K.; Jeong, H.H.; Ju, M.J.; Ko, U.; Dae, K.H.; Kim, H.J.; Cho, C.R.; Soh, H.Y.; Ishibashi, Y.; Cho, H.S. Baseline Study on Microplastic Distribution in the Open Surface Waters of the Korean Southwest Sea. Water 2023, 15, 2393. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Wang, J.; Wang, Y.; Mu, J.; Wang, P.; Lin, X.; Ma, D. Microplastic pollution in the surface waters of the Bohai Sea, China. Environ. Pollut. 2017, 231, 541–548. [Google Scholar] [CrossRef]
- Zayen, A.; Sayadi, S.; Chevalier, C.; Boukthir, M.; Ben Ismail, S.; Tedetti, M. Microplastics in surface waters of the Gulf of Gabes, southern Mediterranean Sea: Distribution, composition and influence of hydrodynamics. Estuar. Coast. Shelf Sci. 2020, 242, 106832. [Google Scholar] [CrossRef]
- Aytan, U.; Valente, A.; Senturk, Y.; Usta, R.; Esensoy Sahin, F.B.; Mazlum, R.E.; Agirbas, E. First evaluation of neustonic microplastics in Black Sea waters. Mar. Environ. Res. 2016, 119, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Katsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 2017, 175, 391–400. [Google Scholar] [CrossRef]
- Schmidt, N.; Thibault, D.; Galgani, F.; Paluselli, A.; Sempéré, R. Occurrence of microplastics in surface waters of the Gulf of Lion (NW Mediterranean Sea). Prog. Oceanogr. 2018, 163, 214–220. [Google Scholar] [CrossRef]
- Tunçer, S.; Artüz, O.B.; Demirkol, M.; Artüz, M.L. First report of occurrence, distribution, and composition of microplastics in surface waters of the Sea of Marmara, Turkey. Mar. Pollut. Bull. 2018, 135, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhang, S.; Qu, L.; Jin, F.; Fang, C.; Ma, X.; Zhang, W.; Wang, J. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull. 2019, 143, 58–65. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Moore, F.; Keshavarzi, B.; Vogt, R.D.; Nasrollahzadeh Saravi, H.; Busquets, R. Microplastic particles in sediments and waters, south of Caspian Sea: Frequency, distribution, characteristics, and chemical composition. Ecotoxicol. Environ. Saf. 2020, 206, 111137. [Google Scholar] [CrossRef]
- Uurasjärvi, E.; Pääkkönen, M.; Setälä, O.; Koistinen, A.; Lehtiniemi, M. Microplastics accumulate to thin layers in the stratified Baltic Sea. Environ. Pollut. 2021, 268, 115700. [Google Scholar] [CrossRef]
- D’Angelo, A.; Trenholm, N.; Loose, B.; Glastra, L.; Strock, J.; Kim, J. Microplastics Distribution within Western Arctic Seawater and Sea Ice. Toxics 2023, 11, 792. [Google Scholar] [CrossRef]
- Dereszewska, A.; Krasowska, K.; Popek, M. Microplastics in Harbour Seawaters: A Case Study in the Port of Gdynia, Baltic Sea. Sustainability 2023, 15, 6678. [Google Scholar] [CrossRef]
- Ikenoue, T.; Nakajima, R.; Fujiwara, A.; Onodera, J.; Itoh, M.; Toyoshima, J.; Watanabe, E.; Murata, A.; Nishino, S.; Kikuchi, T. Horizontal distribution of surface microplastic concentrations and water-column microplastic inventories in the Chukchi Sea, western Arctic Ocean. Sci. Total Environ. 2023, 855, 159564. [Google Scholar] [CrossRef]
- Leistenschneider, C.; Wu, F.; Primpke, S.; Gerdts, G.; Burkhardt-Holm, P. Unveiling high concentrations of small microplastics (11–500 μm) in surface water samples from the southern Weddell Sea off Antarctica. Sci. Total Environ. 2024, 927, 172124. [Google Scholar] [CrossRef]
- Li, B.; Ding, Y.; Cheng, X.; Sheng, D.; Xu, Z.; Rong, Q.; Wu, Y.; Zhao, H.; Ji, X.; Zhang, Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 2020, 244, 125492. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Besseling, E.; Foekema, E.M. Leaching of plastic additives to marine organisms. Environ. Pollut. 2014, 187, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Diepens, N.J.; Koelmans, A.A. Accumulation of plastic debris and associated contaminants in aquatic food webs. Environ. Sci. Technol. 2018, 52, 8510–8520. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis. Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef]
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures. Environ. Sci. Eur. 2018, 30, 13. [Google Scholar] [CrossRef]
- Provencher, J.F.; Bond, A.L.; Mallory, M.L. Marine birds and plastic debris in Canada: A national synthesis, and a way forward. Environ. Rev. 2014, 23, 1–13. [Google Scholar] [CrossRef]
- Bhowmik, A.; Saha, G.; Saha, S.C. Microplastics in Animals: The Silent Invasion. Pollutants 2024, 4, 490–497. [Google Scholar] [CrossRef]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhou, N.; Chen, Y.; Ling, Z.; Xiang, P. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity. Sci. Total Environ. 2024, 946, 174215. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ. Sci. Technol. 2022, 56, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Fournier, S.B.; D’Errico, J.N.; Adler, D.S.; Kollontzi, S.; Goedken, M.J.; Fabris, L.; Yurkow, E.J.; Stapleton, P.A. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 2020, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Zhu, M.; Li, P.; Xu, T.; Zhang, G.; Xu, Z.; Wang, X.; Zhao, L.; Yang, H. Combined exposure to lead and microplastics increased risk of glucose metabolism in mice via the Nrf2/NF-κB pathway. Environ. Toxicol. 2024, 39, 2502–2511. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. Environ. Sci. Technol. Lett. 2020, 7, 928–931. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere 2022, 298, 134261. [Google Scholar] [CrossRef]
- Qiu, L.; Lu, W.; Tu, C.; Li, X.; Zhang, H.; Wang, S.; Chen, M.; Zheng, X.; Wang, Z.; Lin, M.; et al. Evidence of microplastics in bronchoalveolar lavage fluid among never-smokers: A prospective case series. Environ. Sci. Technol. 2023, 57, 2435–2444. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Guo, J.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. The association between microplastics and microbiota in placentas and meconium: The first evidence in humans. Environ. Sci. Technol. 2022, 57, 17774–17785. [Google Scholar] [CrossRef]
- Hunt, K.; Davies, A.; Fraser, A.; Burden, C.; Howell, A.; Buckley, K.; Harding, S.; Bakhbakhi, D. Exposure to microplastics and human reproductive outcomes: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2024, 131, 675–683. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumari, U.; Kumar, S. Impact of Microplastics on Pregnancy and Fetal Development: A Systematic Review. Cureus 2024, 16, e60712. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, Y.; Jiao, Y.; Chen, Q.; Wu, D. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NF-κB-mediated antioxidant system in Daphnia pulex. Aquat. Toxicol. 2020, 220, 105420. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Mohanty, A.K.; Misra, M. Microplastics in ecosystems: Their implications and mitigation pathways. Environ. Science. Adv. 2022, 1, 9–29. [Google Scholar] [CrossRef]
- Galloway, T.S.; Lewis, C.N. Marine microplastics spell big problems for future generations. Proc. Natl. Acad. Sci. USA 2016, 113, 2331–2333. [Google Scholar] [CrossRef]
- Pan, C.; Hong, R.; Wang, K.; Shi, Y.; Fan, Z.; Liu, T.; Chen, H. Chronic exposure to polystyrene microplastics triggers osteoporosis by breaking the balance of osteoblast and osteoclast differentiation. Toxicology 2025, 510, 154017. [Google Scholar] [CrossRef]
Ref. | Region, Sampling Collection Year and Abundance | Shape of MPs | Materials of MPs | Color of MPs | Sizes of MPs |
---|---|---|---|---|---|
[1] | Rhine and Meuse rivers, Netherlands, 2012–2013, 48–187 particles/L | Fiber, Foil, Sphere | - | - | 10–300 μm (17–63%), 300–5000 μm (37–83%) |
[4] | Suzhou and Huangpu rivers, China, April to September 2017, 0.08–7.8 items/L | Fiber: Suzhou River (85%), Huangpu River (81%), Fragment, Film, Pallet | Fibrous PES (27.7%), Rayon (14.4%), PP (8.7%) | Blue and Red (46–76%), Yellow, Green, Purple, Brown, Gray, Black, Transparent, White | 20 to 5000 μm, 100 to 1000 μm (57–80%) |
[15] | Antua river, Portugal, March and October 2016, 58–1265 items/m−3 | Fragment, Pellet, Film, Foam, Fiber | PP (29.4%), PE (29.4%), PS (8.8%), PVA (8.8%), PET (8.8%), PTFE, PMMA, PEA | - | - |
[16] | Saigon river, Vietnam, April 2016, 172,000–519,000 items/m3 | Fiber, Fragment, Film, Foam | PP (15%), PE (79%), PET (4%) | - | up to 5000 μm |
[17] | Lower Yellow river, China, July 2018, March 2019, 380–1392 particles/L, dry season: 930 items/L, wet season: 497 items/L | Fiber (93.12%), Fragment (2.14%), Pellet | PE, PP, PS | - | 50–100 μm, 100–200 μm, 200–500 μm, 500–5000 μm where <200 μm (87.94%) |
[19] | Cooks river, Australia, 400–17,383 particles/m3 | - | - | - | 333 μm–1000 μm (7%), 1001 μm–5000 μm (4%) |
[20] | Nakdong river, South Korea, February, May, August, October 2017, 293 ± 83 particles/m3 (upstream), 4760 ± 5242 particles/m3 (downstream) | Fragment (69%), Fiber (30%), Sphere and Film (<1%) | PP (41.8%), PES (23.1%), PE (9.4%), PA (5.8%), PS (2.1%), PU (1.4%), PVC (1.1%), Alkyd (4.2%), Acrylic (3.2%), etc. | - | <300 μm (74%) |
[59] | Seine river, France | - | PP (35.2%), PE (26.0%), PET (20.7%), PS (10.8%) | - | - |
[60] | Gallatin river, USA, 0–0.675 particles/m3 | Microfiber (80%), Fragment (19.7%), Microbead 0.3%) | PES (20%), PET (13%), PP (4%), PA (4%), Urethane (4%) | Transparent (30%), Red (13%), Black (11%), Others (13%), Blue (33%) | 0.1–1.5 mm (71%), 1.6–3.1 mm (20%), 3.2–5 mm (6%), 5.1–9.6 mm (2%) |
[61] | Yangtze river, China, July and August 2013, 0.5–10.2 n/L | Fiber (79.1%), Film (9.1%), Granule (11.6%), Spherule (0.2%) | - | White (8.7%), Black (6.2%), Colored (26.1%), Transparent (58.9%) | >0.5–1 mm (67%), >1–2.5 mm (28.4%), >2.5–5 mm (4.4%), >5 mm (0.2%) |
[62] | Orange-Vaal river, South Africa, Wet (April, May) and Dry (October, November) seasons, 2018, August, February, 2020, Microfiber: Wet, 2.3 ± 7.2 items/L, Dry, 1.4 ± 2.6 items/L. | Microfiber (99.4%), Fragment (0.6%) | - | Microfiber: Blue, 97.2%, Fragment: Green, 43%, White, 25%, Blue, 17%, Yellow, 9%, Orange, 3%, Red, 3%. | >50 mm |
[63] | Rhine river, Netherlands, June–July 2014, 892,777 particles/km2 | Opaque spherule (45.2%), Fragment (37.5%), Transparent spherule (13.2%), Fiber (2.5%) | PS (29.7%), PP (16.9%), PES (5.1%), PVC (1.7%), Acrylate (9.3%) | Transparent | - |
[64] | Qiantang river, China, wet (June), dry (November) seasons, 2018, Avg: 1183 ± 269 particles/m3 | Fiber (53.2%), Fragment (29.5%), Granule (8.4%), Film (8.5%), Foam (0.4%) | PET, PA, PES | White (45%), Black (23.4%), Transparent (14.6%), Red, Blue, Yellow, Green | - |
[65] | Ganges river, India, Bangladesh, May–June, October–December, 2019, Dry: 0.051 ± 0.007 MPs/L, Wet: 0.026 ± 0.004 MPs/L | Fiber (91%), Fragment (9%) | Rayon (54%), Acrylic (24%), PET (8%), PVC (6%), PET (5%), Nylon (3%) | Blue (74%), Black (11%), Red (6%), Purple (4%), Brown (2%), Green, Yellow, Transparent (each 1%) | Avg: 2459 ± 209 mm |
[66] | Ergene river, Turkey, May 2019, September 2020, Avg: May: 4.65 ± 2.06 items/L, September: 6.90 ± 5.16 items/L | Fiber (88%), Fragment (8%), Pellet (2%), Foam (1%), Rubber (<1%) | PET (28%), PA (27%), PE (19%), PS (19%), PP (5%), PI (2%) | Black (49%), Blue (25%), Red (14%), White (5%), Brown (2%), Transparent, Green, Orange, Purple (each 1%), Pink, Grey, Yellow (each <1%) | 1000–2000 μm (38%), 45–1000 μm (31%), 2000–3000 μm (18%), 3000–5000 μm (13%) |
[67] | Pearl river, China, December 2017, 19,860 items/m3 | Film, Fiber, Granule | PA (26.2%), Cellophane (23.1%), PP (13.1%), PE (10%), PVC | Blue, Transparent, Green, Red | <0.5 mm (80%) |
[68] | Hillsborough river, Florida, USA, May to October 2019, max 14.06 particles/m3 | Fragment, Fiber | PE (50–60%), PET, HDPE, LDPE, PP (24.7%), PS (5.9%) | - | <1 mm, 1 mm to 5 mm, > 5 mm |
[69] | Ottawa river, Canada, summer, 2016, Avg: 1.35 items/m3 | Microfiber (73%), Microbead (7%), Fragment (20%) | - | - | - |
[70] | Snake and Columbia rivers, USA, June, July, August 2016, Grab: 0 to 5.405 MPs/L, Net: 0 to 0.014 MPs/L | Fragment, Film, Bead, Fiber | - | - | 100 to 333 mm |
[71] | Ciwalengke river, Majalaya district, Indonesia, October, November, 2017, 5.85 ± 3.28 MPs/L | Fiber (65%), Fragment | PES | - | 50–100 mm, 1000–2000 mm |
[72] | Wei river, China, Winter 2017, 3.67–10.7 items/L | Fiber (38.25 to 61.95%), Pellet (0.4 to 7.8%), Foam (0.25 to 3.5%), Fragment (10.6 to 21.7%), Film (17.4 to 38.2%) | - | - | <0.5 mm (40.8% to 68.8%), 0.5–1.0 mm, 1–2 mm, 2–3 mm, 3–4 mm, 4–5 mm, >5 mm |
[73] | Beijiang river, China, August 2016, 0.56 ± 0.45 items/m3 | Foam (37.78%), Film (21.81%), Fragment (24.67%), Fiber (15.73%) | PP (52.31%), PE (27.39%), PS, EPS (13.20%), PVC (1.98%), PET (0.99%) | - | 0.6 to 2 mm (41.36%) |
[74] | Sinos River, Southern Brazil, December 2018, Raw water (Avg: 330.2 particles/L), Drinking water: (Avg: 105.8 particles/L) | Raw water: (Fiber 89.4%, Pellet, 10.5%, Film, 0.1%), Drinking water: (Fiber 80.2%, Pellet, 19.1%, Film, 0.7%) | - | - | - |
[75] | Surabaya river, Indonesia, February to May 2019, Surface: 1.47–43.11 particles/m3, Middle: 0.76–12.56 particles/m3, Bottom: 1.43–34.63 particles/m3 | Surface: Film (45.8–92.9%), Fragment (4.7–35.6%), Fiber (0.2–2.6%), Foam (0.8–20.7%), Pellet (0.5–2.6%); Middle: Film (57.1–88%), Fragment (2.8–30.5%), Fiber (0.8–12.4%), Foam (0.4–3.9%), Pellet (0.1–0.5%); Bottom: Film (63.4–88.7%), Fragment (3.4–25.1%), Fiber (0.3–11.5%), Foam (0.8–6.8%), Pellet (0.4–0.5%) | Surface: LDPE (44–68%), PP (18–41%), PS (1–17%), PE (10–12%), PET (1–2%); Middle: LDPE (39–73%), PP (13–58%), PE (1–17%), PS (1–6%), PET (1–2%); Bottom: LDPE (39–73%), PP (14–50%), PE (13–19%), PS (1–6%), PET (1%) | Surface: Transparent (26.2–73.9%), White (8.5–31.3%), Blue (4.7–27.2%), Red (1.7–10.6%), Black (2.6–7.6%), Yellow (0.5–7.3%); Middle: Transparent (33.1–79.9%), White (1.3–31%), Blue (4.1–23.6%), Black (6.9–13%), Red (3.1–9.6%), Yellow (0.3–8.2%); Bottom: Transparent (33.1–65%), White (7–56.5%), Blue (3.1–22.1%), Black (3.9–10.4%), Red (1.2–8.2%), Yellow (1.1–4.6%) | MPs: 0.3–5 mm |
[76] | River Elbe, Germany, Avg: 5.57 particles/m3 | Fiber (46.5%), Fragment (22.9%), Sphere (20.1%), Foil (10.6%) | PE (47.5%), PP (45.0%), PS (2.5%) | Blue (19.7%), White (15.0%) | 125/150–5000 μm |
[77] | Fengshan river, Taiwan, September 2018, 334–1058 particles/m3 | Fiber (81–99%), Fragment | PE, PET, PA, PES | - | 50–297 μm (43–69%), 297–5000 μm (31–57%) |
[78] | Ofanto river, Italy, February, April, October, December, 2017, May 2018, 0.4–18 particles/m3 | Fragment (56%), Flake (26%), Pellet, Spherule, Line, Fiber, Film, Foam | PE (76%), PS (12%), PP (10%), PVC (0.7%), PU (0.35%) | White, Red, Yellow, Black (35%), Blue, Green, Transparent (56%), Brown | <500 μm (10–17%), 500–1000 μm (66%), 1000–2000 μm, 2000–5000 μm |
[79] | Netravathi river, India, July 2019, 56–2328 particles/m3 | Fiber (51.59%), Film (34.92%), Fragment (8.13%), Foam (5.16%), Pallet (0.20%) | PE (58.33%), PP (3.57%), PET (28.57%), PVC (0.40%) | Transparent (32.5%), White (29.8%), Brown (13.3%), Black (10.7%) | 1–5 mm (73.4%), 0.3–1 mm (26.6%) |
[80] | Alaknanda river, Uttarakhand, India, April 2019, 566 out of 955 MPs in water | Fragment, Film, Foam, Fiber/line, Pellet | PET, HDPE, PVC, LDPE, PP, PS | - | <1 mm (26%), 1–2 mm (22%), 2–3 mm (17%), 3–4 mm (24%), 4–5 mm (11%) |
[81] | Pear river estuary, China, September and November 2020, Dry season: 545.4 n/m3, Wet season: 294.6 n/m3 | Fiber: Dry (40–82%), Rainy (63–81%), Granules: Dry (7–40%), Rainy (5–21%), Fragment: Dry (5–20%), Rainy (3–20%), Film | PE (Dry: 35.7, Rainy: 38.7%) | Transparent, Gray, White, Green, Dry: Gray (42.4%), White (31.4%), | <0.5 mm (53.5–73.9%) |
[82] | 6 rivers: Hei, Lao, Feng, Ba, Chan, Wei rivers, China, August 2020, 2.30–21.05 items/L | Film (41.19%), Fragment (41.24%) | PE (41.3%), PP (14.9%), PS (13.8%), PVC (9.6%), PA (12.5%), PET (4.8%) | White (43.2%), Blue (11.7%), Black (20.7%) | <500 μm (64.3%) |
[83] | Themi river, Tanzania, 70–160 MP/kg−1 | Fiber, Film, Fragment, Microbead | LDPE, HDPE, PP, PS, PET, PMMA, PVC | - | - |
[84] | Arvand river, Iran, January 2018, 1 to 291 items/L | Fiber | PET (27%), PP, PS, Nylon (33%) | Black, Grey, Yellow, Orange | 100–500 μm |
[85] | River Yamuna, Delhi, Mar 2020, 500 MPs/m3– 3900 MPs/m3 | Fragment (60.7%), Pellet (19.6%), Fiber (16.8%), Foam (1.9%), Film (0.9%) | LDPE, HDPE, PS, PET, PP | Transparent (13%), White (61%), Pink (5%), Blue (8%), Black, Grey, Red, Green, Yellow | - |
[86] | Yellow river, China, March and September, 2021, Avg: Dry season: 433 ± 241 n/L, Wet season: 2510 ± 2971 n/L | - | Dry season: PBS (26–35%), PPC (16–25%), PET (19–33%), Wet season: PP (49–94%), PBS (5–17%) | - | <500 μm, 20–50 μm (66–89%) |
[87] | Ganga river, India, October 2017, February 2018, May 2023, 92.85 ± 50.69 particles/m3 | Fragment, Pellet, Filament, Film, Foam | PET and PA (38%), PE (26%), PP (18%), PVC (10%), PS (5%) | Blue, Black, Red, Transparent/White, Pink, Green, Yellow | 100 to 2000 μm |
[88] | Nile River, Egypt, January, July, April, October, 2021, Avg: 2.24 ± 0.6 to 3.76 ± 1.1 particles/L | Fiber (79%), Fragment (15%) Foam (6%) | PES (0 to 7%), PE, PP, PS | Blue (43%), Red (16%), Black (15%), White, Green (each 10%) | <500 μm, 501–1000 μm, 1001–1500 μm, 1501–2000 μm, 2001–2500 μm, 2501–3000 μm, 3001–3500 μm, 3501–4000 μm |
[89] | Xiangjiang river, China, August 2020, 0.72 to 18.6 (Avg: 7.32 ± 5.35) items/L | Granular (51.0%), Film (18.3%), Fragment (16.4%), Fiber (14.2%) | Rayon (70.7%), PES (13%), PVA and acrylic (each 3.9%), PP (2.2%), PET (2%), PA (1.5%), PE and PS (each 1.3%) | Transparent (28.7%), Black (22.2%), Brown (20.1%), Yellow (15.3%), Red | 50–100 μm (13.73–92.51%) |
[90] | Banks of Ganga and Yamuna rivers, Haridwar, Agra, Prayagraj, Patna, India, wet (July), dry (December) seasons, 2021, Wet: Haridwar, highest: 0.165 ± 0.092 MPs/m3, Patna, lowest: 0.0067 ± 0.003 MPs/m3, Dry: highest: Agra, 0.022 ± 0.013 MPs/m3, lowest: Patna, 0.007 ± 0.001 MPs/m3 and Haridwar, 0.007 ± 0.002 MPs/m3 | Fiber, Fragment, Film | PAM (wet: 0–36.11%, dry: 8.75–32.50%), PVC (wet: 0–22%; dry- 8.75–36%), EVOH (wet: 11–22%; dry: 15–22%) | Blue (32.6%), Black (28.4%), Red (22.8%), Transparent (3.5%), Green (4.9%) | 300 μm to 5 mm: 38–73% (wet season), 61–86% (dry season) |
[91] | Xinyi river, Ashe river, Harbin, China, July (Wet season), November (Dry season) 2022, Avg: Xinyi (Dry: 37,328.4 n/m3, Wet: 50,809.9 n/m3), Ashe (Dry: 22,638.8 n/m3, Wet: 40,183.0 n/m3) | Xinyi (Dry and Wet: Fibrous, 40.27%, 39.94%, Debris, 25.48%, 25.01%, Filmy, 18.36%, 19.83%, Granular, 15.89%, 15.20%), Ashe (Dry: Fibrous, 40.27%, Debris, 25.48%, Filmy, 18.36%, Granular, 15.89%, Wet: Fiber, 36.49%, Film, 23.84%, Fragment, 22.55%, Particle, 17.12%) | Xinyi (Dry: PE, 35%, PP, 23.33%, PS, PA, PVC (each 11.67%), PET, 6.66%, Wet: PE, 23.19%, PP, PS (each 18.84%), PA, 14.49%, PVC, 13.04%, PET, 11.60%), Ashe (Dry: PE, 36.11%, PP, 25%, PS, 2.22%, PA, 11.67%, PVC, 13.89%, PET, 11.11%, Wet: PE, 26.02%, PP, 21.92%, PS, 16.44%, PA, 10.96%, PVC, 12.33%) | Xinyi (Dry: Colorless, 46.29%, White, 30.13%, Black, 12.29%, Blue, 4.42%, Red, 4.19%, Yellow, 2.68%, Wet: Colorless, 51.52%, White, 22.83%, Black, 11.86%), Blue, 5.17%, Red, 4.31%, Yellow, 4.31%), Ashe (Wet: Colorless, 45.56%, White, 21.68%, Black, 15.83%, Blue, 8.73%, Yellow, 4.16%, Red, 4.04%) | Xinyi (Dry: 20–100 μm, 28.98%, Wet: 20 to 5000 μm, 91.03%, 20–100 μm, 24.03%, 100–300 μm, 24.88%), Ashe (Dry: 20–100 μm, 34.68%) |
Ref. | Region, Sampling Collection Year and Abundance | Shape of MPs | Materials of MPs | Color of MPs | Sizes of MPs |
---|---|---|---|---|---|
[7] | 38 tap water samples collected from different cities of China, 440 ± 220 particles/L | Fragment (53.85 to 100%), Fiber (1.18 to 30.77%), Sphere (2.27 to 36.36%) | PE (26.7%), PP (24.4%), PE + PP (22%), PPS (7.3%), PS (6.5%), PET (3.3%), other (PMS, PTFE, PC, PMMA, PBT, PB, PVC) (9.8%) | - | <50 μm (31.25– 100%), 50–100 μm (1.47–31.25 μm), 100–300 μm (1.72–31.25%), 300–500 μm (1.18–7.69%), 500–5000 μm (1.72–11.76%) |
[25] | Brasilia, Brazil, January–February, 2018, 32 samples, 97–219 MPs/500 ml | - | - | - | 5–6 μm |
[26] | Bangkok, Thailand, Water sources: Chao Phraya and Maeklong rivers, April and September 2019, 0.4–2.4 particles/L | Fiber, Fragment, Tap water: Fragment (85.6%) | PE, PP, PVC, PS, PET, PMA, PMMA, Tap water: PE (47.9%) | Tap water: Colorless (85.1%) | 50–900 μm, >1000 μm, <300 μm (82.1%) |
[58] | Gauteng province, Sources: Tembisa, Braamfontein, and Silver Lakes, South Africa, March to June 2023, 4.7 to 31 particles/L | Fiber (83.1%), Fragment (12.4%), Pellet/Bead (3.1%), Film (1.5%) | HDPE, PU, PET | Black, Blue, Green | Mostly <1 mm |
[92] | 42 tap water samples, Japan, USA, France, Finland, Germany, December to April 2020, 1.9 to 225 particles/L | Fragment, Fiber, Sphere | PS, PP, PES, PE, SEBS, PVC | - | 19.2 μm to 4.2 mm |
[93] | 42 samples, Barcelona, Spain, August to October, 2020, 0.7 to 20 μm | - | PE (69%), PP (57.1%), PI (42.9%), PBD (9.5%), PS, PA, PDMS | - | 0.70–20 μm |
[94] | 48 samples, Mosul City, Iraq, October 2022 to February 2023, 25 to 71 items/L | Fiber (52%), Fragment (43%), Film (3%), Foam (2%) | PVC (50–52%), PA (15–17%), PET (12–14%), PE (9–12%), PP (2–5%), PS (2–3%) | Transparent (45–48%), Black (13–16%), Blue (11–17%), Red (8–10%), Orange (2–5%), White (4–6%), Green (4%), Yellow (1–2%) | - |
[95] | 10 tap water samples, Zahedan, Iran, Winter and Spring, Avg: 85–390 MP/m3, 75–400 MP/m3 | Fragment (>60%), Fiver (<40%) | PS (29.17%), Rubber (20.83%), PA (16.67%), PP and PVC (each 12.50%), PMMA (8.3%) | Red (16.7%), Blue (23.3%), Black (11.5%), Transparent (23.9%), White (24.6%) | <50 μm (>90%), >50 μm (<10%) |
[96] | 17 samples, Denmark, April to June, 2018 | For >100 μm: Fiber (82%), Fragment (14%), Film (4%) | PET, PP, PS, ABS | - | >10 μm, >100 μm |
[97] | 3 samples, Hong Kong, 8–50 particles/L | - | - | - | 1 to 10 μm |
[98] | Eight different locations, Spain and Canary Islands, May, July 2022, 12.5 ± 4.9 MPs/m3 | Fragment (46.4%), Film (7.1%), Fiber (46.4%) | Fragment and Film: PA, PES, PP, ACR, PTFE, PE, PS, PU, PLA, PVC Fiber: PA, PES, PP, ACR, PTFE, PE | - | 41.0–379.5 μm |
[99] | China, 49.67 ± 17.49 items/L | Film (52.35%), Pellet (46.31%), Fiber (1.34%). | Cellulose (0.67%) | - | 10–50 μm (75.50%), >301 μm (2.68%) |
[100] | 4 tap water samples, Chongqing, China, 1.4 particles/L | Fiber (42% Approx.) | Mostly PET, PE | - | <40 μm (Approx. 62%) |
[101] | England, Scotland, and Wales, UK, September 2021 to June 2022, Avg: 0.025 MP/L | - | PA (37%), PET (32%), PP (48%), PS (52%), PE (2%), PVC (12%), PU (18%), EVOH (40%), CA (27%), PMMA (17%), ABS (8%), PC (1%), POM (26%), EVAc (16%), PAN (10%), PBT (22%), PLA (17%), SI (8%) | - | >25 μm, 30 to 90 μm (32–91%) |
Ref. | Region, Sampling Collection Year and Abundance | Shape of MPs | Materials of MPs | Color of MPs | Sizes of MPs |
---|---|---|---|---|---|
[24] | Turkey, 30 soft drinks, PET bottles, 5 to 15 particles/L | Fiber (60%), Fragment (34%), Film (6%) | PA (42%), PET (34%), PE (24%) | Transparent (57%), Blue (28%), Grey (12%), Red (2%), Black (1%) | 50–100 μm (31.0%), <100 μm (49%), >100 μm (51%) |
[97] | 9 samples, Hong Kong, ≥50 μm: 8–50 particles/L, <50 μm: 1570–17,817 particles/L | - | - | - | <50 μm, ≥50 μm |
[99] | China, Bottled water:(Plastic and Glass), 72.32 ± 44.64 items/L | Film (60.39%), Pellet (37%), Fiber (2.61%) | Cellulose (71.2%), PVC, PET, Rubber | - | 10–50 μm (67.85 ± 8.40%), >301 μm (3.60 ± 2.83%) |
[102] | Kermanshah province, Iran, 11 samples, Avg: 8.5 ± 10.2 particles/L | Fragment (93%), Fiber (7%) | PET, PS, PP | Colorless (>95%), Black (5%) | - |
[103] | Germany, 32 samples, PET and Glass bottles, Avg: 2649 ± 2857 to 6292 ± 10,521 particles/L | - | PP, PE, PET | - | <5 μm (90%), <1.5 μm (40%) |
[104] | 130 samples, Italy, Bottled materials: PET, recycled PET (rPET), Glass, PET: 5.09 ± 3.28 particles/L, rPET: 3.33 ± 1.34 particles/L, Glass: 8.65 ± 5.39 particles/L | Fragment (90.8%), Fiber | PE (74.5%), PET (21.7%), PS (2.9%), PET + PS (0.9%) | Transparent, White, Green, Blue | <10 μm (0.62%), 10–20 μm (3.92%), 20–50 μm (34.43%), 50–100 μm (35.05%), >100 μm (25.98%) |
[105] | PET bottled, Spain, 0.64–1.58 MPs/L | Fibre (68.1%), Fragment (30.8%), Film (1.1%) | PES (79%), PE (14.8%), PA (2.5%), PS (1.2%), PP (1.2%), SIL (1.2%) | White, Transparent | 76–130 μm |
[106] | 259 bottled samples, China, USA, Brazil, India, Indonesia, Mexico, Lebanon, Thailand, For each bottle: avg 10.4 MPs/L | Fragment (66%), Fiber (13%), Film (12%), Foam (5%), Pellet (3%) | PP (54%), Nylon (16%), PS (11%), PE (10%), PEST (6%) | - | 6.5–100 μm |
[107] | Barcelona, Spain, 14 samples, <1000 ng/L | - | PET (33%), PE (55%), PP (10%) | - | 700 nm to 20 μm |
[108] | Thailand, PET-bottled (65 samples), Glass bottled (30 samples), PET bottled: Avg: 140 ± 19 MPs/L, Glass bottled: Avg: 52 ± 4 MPs/L | Fiber, Fragment | PE, PET, PP, PA. For ≥ 50 μm: PET (28.4%), PE (24.2%), PP (18.1%), PA (7.2%), etc. | - | 6.5–20 μm, 20–50 μm, ≥50 μm |
[109] | 9 samples, West Godavari region of Andhra Pradesh, India, September to October 2024, Avg: 2.89 ± 0.48 items/L | Fiber (21.42% to 100.0%), Fragment (0 to 25%) | PP (53.7%), PET (34.3%), Nylon (6.0%), PVC (3.0%), PA (1.5%), Cellulose (1.5%) | Transparent (34.3%), Blue (29.9%), Pink (16.4%), Yellow (6.0%), Black (6.0%), Green (4.5%), Violet (3.0%) | 500 to 1000 μm (53.73%), 1000–2000 μm (23.8%), 2000–5000 μm (11.9%), <500 μm (8.9%) |
[110] | Turkey, 150 bottle samples, natural (105) and mineral (45) waters, 1 to 40 particles/L | Fiber (52%), Fragment (32%), Film (9%) | PE (33%), PP (31%), PET (25%), PA (11%) | Blue (46%), Transparent (18%), Grey (19%), Black (14%), Purple (3%) | 10 μm (5%), 30 μm (15%), 50 μm (26%), 70 and 90 μm (each 20%), >100 μm (14%) |
[111] | Catania province, Italy, August to October, 2019, 656.8 ± 632.9 mg/L | - | - | - | 2.44 ± 0.66 mm |
[112] | Five samples, Germany, Glass bottles, 49 ± 3 MP/m3 | - | PE, PP, PVC, PS, PTFE, PA, PES, PLA | - | >11 μm, 11–50 μm (18–71%) |
[113] | China, PET bottles, 23 samples, 2 particles/bottle to 23 particles/bottle | Fiber (33.3– 100.0%), Fragment | PP (0.93%), PS (4.65%), PE (6.05%), PET (6.98%), PU (1.86%), PVC (1.4%), PA (4.19%), PAM, PAA, EVA, Cellulose (71.16%) | - | 0.1–0.3 mm (29.20–49.20%), 0.05–0.1 mm (19.39–37.10%), 1 mm–5 mm (4.75–12.26%), 0.025 mm to 0.05 mm (0.35–14.16%), 0.3–0.5 mm (8.42–15.59%) |
[114] | UK, August 2020 | Sphere | PET, PP | Transparent | Type A: 66 (16.1%), 433 nm (83.9%), Type B: 140 nm (64.8%), 605 nm (31.4%), 5 μm (3.8%) |
[115] | 8 samples, Malaysia, PET bottles, June to November, 2021, 8 to 22 particles/L, Avg: 11.7 ± 4.6 particles/L | Fragment (90.1%), Fiber (9.1%) | PET, PP | Transparent (96.5%), Blue (2.7%), Green (0.8%) | <1 mm (83%), 300 to 500 μm (28%), 100 and 300 μm (31%) |
[116] | 100 samples, South Eastern, Nigeria, Fragment: 42.83 MP particles/0.75 L, Film: 1.16 MP particles/0.75 L, Pellet/Granule: 10.82 particles/ 0.75 L | Fragment, Film, Granule, Pellet | PET (45.08%), PE (24.79%), PDMS (17.90%), PVC (12.23%) | - | 20 to 100 μm |
[117] | Chile, Dec 2021, Avg: 391 ± 125 particles/L | Fiber | HDPE, PET, PP | - | 5–20 μm (57%), |
[118] | Nine samples, Netherlands, March 2021, 7–364 particles/L (Avg: 96 particles/L) | - | PET and PU (81.9%), PA (8.9%), PVC (4.9%) | - | - |
[119] | Four samples, Poland, 4167–14,556 particles/m3 | Fragment (12%), Microbead (2 to 10%), Granule | - | Colored | - |
[120] | 20 samples, Netherlands, 28 and 85 items/500 mL | - | - | - | 10–310 μm |
Ref. | Region, Sampling Collection Year and Abundance | Shape of MPs | Materials of MPs | Color of MPs | Sizes of MPs |
---|---|---|---|---|---|
[21] | Northwestern Pacific Ocean, August to September 2017, 104 items/km2 | Sheet (26.7%), Line (8.9%), Granule (39.7%), Film (24.7%) | PE (57.8%), PP (36.0%), Nylon (3.4%), PVC (1.1%), PS (0.6%), PET (0.2%), Rubber (0.9%) | White (57.4%), Transparent (22.8%), Green (6.6%), Black (6.4%), Blue (2.8%), Yellow (2.5%), Purple (1.5%) | <0.5 mm (0.4%), 0.5 to 1.0 mm (52/2%), 1–2.5 mm (29.8%), 2.5–5.0 mm (17.6%) |
[22] | Bohai Sea, China, August and October 2016, February and May 2017, Avg: 0.35 ± 0.13 particles/m3 | Line (38%), Fragment (35%), Foam (13%), Fiber (12%), Pellet, Film | PE (43%), PP (34%), PS (19%), PET (13%) | White (58%), Green (22%), Transparent (8%), Yellow (4%), Black (3%), Red, Blue | Macroplastics (5%), mesoplastics (26%), microplastics (69%) |
[23] | Kattegat/Skagerrak Sea, Denmark, October to November 2020, 11–87 particles/m3 | Fragment (56%), Fiber (44%) | PES (46%), PP (16%), PE (6%) | - | <300 μm |
[121] | Mediterranean Sea, Spain, Greece, France, Italy and Cyprus, May 2013, 22 to 1934 g/km2 | Pellet/Granule (1.8%), Film (5.9%), Foam (2.3%), Fragment (87.7%) | - | - | 0.25–100 mm, >100 mm |
[122] | Sea of Japan, Japan, July to September, 2014, Avg: 3.7 items/m3 | Fragment | - | - | 1 mm to >10 mm |
[123] | Baltic Sea, Sweden, June, July 2014, 4.2 × 105 plastics/km2 to 4.7 × 104 plastics/km2 | Fiber (82%), Fragment | PP (53%), PE (24%) | Blue, Red, Black, Green | Avg: 335 μm |
[124] | Atlantic Sea, Germany, South Africa, November 2015, Avg: 1.15 ± 1.45 particles/m3 | Fiber (94%) | Rayon (67%), PA, PP, PVC, Acrylic, Polyester, PS, PU | Blue (72%), Transparent (9%), Pink (8%), Others (Purple, Brown, Red, Green, Grey, Black, Yellow, White: 11%) | 0.25–5 mm, <5 mm (96%) |
[125] | East China Sea to the Arctic Ocean, July to October 2017, 0.48 to 7.62 items/m3 | Fiber (83.8%), Fragment (10.6%), Line (5.6%) | PET (71.2%), Rayon (8.8%), PA, PS, PE, PP | Black (52.5%), Red (21.3%), White (18.4%), Transparent (7.5%) | 0 to 1 mm (40.6%), 1 to 2 mm (41.3%), 2 to 3 mm (11.9%), 3 to 4 mm (5.6%), 4 to 5 mm (0.6%) |
[126] | Baltic Sea, Gulf of Riga, Latvia, May to September 2018, 0.09 to 4.43 particles/m3 | Fiber (66.1%), Fragment (30.2%), Film, Bead, Foam | PE (77.9%), PP (11.1%), PS (0.8%), PES (0.1%), Nylon (0.1%) | White (30.1%), Black (24.6%) Blue (20.5%), Pink (5.6%), Green (4.4%), Grey, Transparent, Purple, Yellow, Orange, Brown | 0.3–1 mm (53.2%), 1–5 mm (43.4%), 5–10 mm (2.8%) |
[127] | Central-southern Tyrrhenian Sea, Western Ionian Sea, Italy, July to August, 2017, Avg: 0.197 ± 0.130 items/m2 | Fragment (79%), Film (17%), Filament (2%), Pellet, Microbead, and Foam (each less than 2%) | PE (77.2%), PP (21.2%) | White, Opaque, and Transparent (83%) | 1–2.5 mm (57%) |
[128] | Southern Beaufort Sea, Arctic Ocean, Canada, USA, August to September 2022, 937 to 28,081 pieces/km2 | Fragment (96.6%), Line | PDMS (36.2%), PE (27.6%), PU (13.8%), PET (8.6%). PVC and PA (each 3.4%) | - | Avg: 2.31 mm, 0.5–1.0 mm (41.4%), 1.0–2.0 mm (36.2%), Mesoplastics (3.4%) |
[129] | Korean Southwest Sea, China, Japan, Republic of Korea, 0.46 ± 0.27 particles/L | Fragment (69%), Fiber (31%) | PE (53%), PP (14%), Polyester (13%), Acryl (1%), Alkyd (19%) | 0.02–0.3 mm (69%), 0.3–0.6 mm (16%) | |
[130] | Bohai Sea, China, August, 2016, Avg: 0.33 ± 0.34 particles/m3 | Fragment (46%), Line (24%), Film (22%), Foam (5%), Fiber (3%) | PE, PP, PS, PET, PU, PVC | White (68%), Yellow (6%), Transparent (11%), Green (10%), Blue, Red, Black | >2.5 mm (7%), 0.5–2.5 mm (38%), 0.3–5 mm (55%) |
[131] | Gulf of Gabes, southern Mediterranean Sea, Tunisia, October–November, 2017, Avg: 63,739 items/km2 | Fragment, Film, Filament, Pellet, Foam | PE, PP | White, Blue, Black, Green, Red, Yellow, Orange, Grey, Purple | 0.2 to 5 mm |
[132] | Southeast Black sea, Turkey, Georgia, November 2014, February 2015, Avg: 1.2 ± 1.1 × 103 particles/m3 (November), 0.6 ± 0.55 × 103 particles/m3 (February) | Fiber (49.4%), Film (30.6%), Fragment (20%) | - | - | 0.2–5 mm (92%) |
[133] | Ross Sea (Antarctica), Summer 2010, 0.0032 to 1.18 particles/m3 | Fragment (37%), Fiber (54%) | PE and PP (57.1%), Polyester (28.6%), PTFE (5.7%), PMMA (5.7%), PA (2.9%) | - | - |
[134] | Gulf of Lion (NW Mediterranean Sea), France, February 2014 to April 2016, 6 × 103 items/km2 to 1 × 106 items/km2 | - | - | - | 1.48 ± 0.88 mm |
[135] | Sea of Marmara, Turkey, Summer 2017, Avg: 1.263 item/m2 | Fragment (61.2%), Film, Foam, Granule | PP, PS | White (30.6%), Black, Blue, Brown, Gray, Green, Red, Orange, Pink, Purple, Transparent | 1 to 50 mm |
[136] | Bering Sea, Chukchi Sea, China, July to October 2017, 0.018 to 0.31 items/m3 | Fiber (95.9%), Fragment (3.6%), Film (0.5%) | PET (67.5%), PP (10.5%), PA (7.4%) PE (5.9%), AC (3.9%), Rayon (2.9%) | White (70.5%), Black (13.5%), Red (7.2%) | <1 mm (52.5%) |
[137] | South of Caspian Sea, Iran, May, 2019, 710 units/m3 | Fiber (97%), Fragment (3%) | PET, PS, Nylon | Black-Grey (49%), Blue-Green (17%), Yellow-Orange (16%), Red-Pink, White-Transparent | 100–250 μm (23%), 250–500 μm (20%), 500–1000 μm (15%), >1000 μm (42%) |
[138] | Baltic Sea, Finland, 0–1.6 and 0–766 ng/m3 | Fragment (97.6%), Fiber (2.4%) | PE (47%), PP (26%), PET (25%), PA, PS, ABS | - | 0 to 700 μm |
[139] | Western Arctic Sea, USA, Canada, July–August 2019 (ice), October–November 2020 (water), Avg: (ice: 23 ± 11 MPs/L, water: 1.9 MPs/L) | Fiber, Fragment, Bead | PVC | - | - |
[140] | Port of Gdynia, Baltic Sea, Poland, 0.082 to 0.524 mg/m3 | Fragment, Film, Fiber, Sphere | PE, PP, PS, LDPE, HDPE, Nylon, PA, Acrylic, PVC, Polyester | Transparent, Black, White, Yellow, Blue, Green | 0.3–5 mm |
[141] | Chukchi Sea, western Arctic Ocean, Japan, October 2020, September–October 2021, 0 to 18,815 pieces/km2 | Fragment (74.4%), Pellet (14%), Line (11.6%) | PE (34.9%), PP (18.6%), PU (16.3%), PET, PVC, PA (each 4.7%) | - | - |
[142] | Southern Weddell Sea off Antarctica, 0.5 to 267.2 MPs/m3 | Fiber | PP, PA | - | 11–500 μm, 11–300 μm (>98%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhowmik, A.; Saha, G. Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources. Microplastics 2025, 4, 24. https://doi.org/10.3390/microplastics4020024
Bhowmik A, Saha G. Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources. Microplastics. 2025; 4(2):24. https://doi.org/10.3390/microplastics4020024
Chicago/Turabian StyleBhowmik, Awnon, and Goutam Saha. 2025. "Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources" Microplastics 4, no. 2: 24. https://doi.org/10.3390/microplastics4020024
APA StyleBhowmik, A., & Saha, G. (2025). Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources. Microplastics, 4(2), 24. https://doi.org/10.3390/microplastics4020024