Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = PEBP family genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3171 KiB  
Article
Genome-Wide Identification and Functional Analysis of the PEBP Gene Family in Begonia semperflorens ‘Super Olympia’ Reveal Its Potential Role in Regulating Flowering
by Congcong Fu, Mengru Zhao, Huiting Xia, Puyu Ren, Weichao Liu, Qirui Wang and Kaiming Zhang
Int. J. Mol. Sci. 2025, 26(13), 6291; https://doi.org/10.3390/ijms26136291 - 29 Jun 2025
Viewed by 413
Abstract
The phosphatidylethanolamine-binding protein (PEBP) gene family, known for its pivotal role in controlling floral transition, regulates flowering time, and, thus, shapes the continuous-flowering trait in ornamental plants. In this study, we conducted the first genome-wide identification and bioinformatics analysis of the PEBP gene [...] Read more.
The phosphatidylethanolamine-binding protein (PEBP) gene family, known for its pivotal role in controlling floral transition, regulates flowering time, and, thus, shapes the continuous-flowering trait in ornamental plants. In this study, we conducted the first genome-wide identification and bioinformatics analysis of the PEBP gene family in Begonia semperflorens ‘Super Olympia’, a variety that exhibits year-round flowering. Via phylogenetic analysis, a total of 10 BsPEBP genes were identified and categorized into four subfamilies: the FT-like (two members), TFL1-like (three members), PEBP-like (three members), and MFT-like (two members) subfamilies. Gene structure analysis revealed highly conserved motif compositions among family members, and protein tertiary structure prediction indicated the dominance of random coils in their structures. Promoter cis-acting element analysis revealed light-responsive, hormone-responsive (ABA, GA, and JA), and abiotic stress-responsive elements in the BsPEBP genes, suggesting their potential integration into multiple regulatory pathways. The tissue-specific expression profiles revealed that BsPEBP6 was significantly upregulated in floral organs, whereas TFL1-like subfamily members were predominantly expressed in vegetative tissues. These findings imply that the FT-like and TFL1-like genes antagonistically regulate the continuous-flowering trait of B. semperflorens ‘Super Olympia’ through their respective roles in promoting and repressing flowering. Our findings provide a preliminary theoretical foundation for elucidating the molecular mechanisms by which the PEBP gene family regulates flowering time in ornamental plants and offer valuable insights for developing breeding strategies aimed at flowering time modulation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4389 KiB  
Article
Genome-Wide Identification and Expression Profiling of Phosphatidylethanolamine-Binding Protein (PEBP) Genes in Helianthus annuus L.
by Yiyi Sun, Yanwen Wang, Jingyan Bai, Jiatong Guo, Guiting Li, Qiuzhen Tian, Shuping Lv, Hengchun Cao, Xiaojie Yang and Lingyun Liu
Int. J. Mol. Sci. 2025, 26(10), 4602; https://doi.org/10.3390/ijms26104602 - 11 May 2025
Viewed by 571
Abstract
The phosphatidylethanolamine-binding protein (PEBP) gene family is critical for regulating plant growth, development, and flowering. Sunflower (Helianthus annuus L.) is the fourth most important oilseed crop globally. However, the genomic structure and functional diversity of PEBP genes in sunflower remain unexplored. Leveraging [...] Read more.
The phosphatidylethanolamine-binding protein (PEBP) gene family is critical for regulating plant growth, development, and flowering. Sunflower (Helianthus annuus L.) is the fourth most important oilseed crop globally. However, the genomic structure and functional diversity of PEBP genes in sunflower remain unexplored. Leveraging the recently assembled telomere-to-telomere (T2T) sunflower genome, a genome-wide analysis of the HaPEBP family was carried out. A total of 12 PEBP genes were identified in sunflower and categorized into three subfamilies: TFL1-like, FT-like, and MFT-like. Phylogenetic and synteny analyses revealed that tandem duplication events have substantially contributed to the evolution and expansion of the HaPEBP gene family. Furthermore, the analysis of the promoter regions revealed 77 distinct cis-acting elements, including 35 related to light signaling and growth regulation, highlighting their potential involvement in the regulation of flowering and development in sunflower. Expression profile analysis using RNA-seq data across various tissues indicated that FT-like and TFL1-like HaPEBP genes may be the key regulators of flowering time and plant architecture in sunflower varieties. This study offers valuable insights into the structural, evolutional, and functional dynamics of the HaPEBP gene family and holds significant implications for sunflower breeding strategies aimed at optimizing flowering time and plant architecture traits. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 4697 KiB  
Article
Assessing Functional Conservation Amongst FT- and TFL1-like Genes in Globe Artichoke
by Rick Berentsen, María José Domenech, Peter Visser, Francisco Madueño, Vicente Balanzà and Reyes Benlloch
Plants 2025, 14(9), 1364; https://doi.org/10.3390/plants14091364 - 30 Apr 2025
Viewed by 504
Abstract
Globe artichoke [Cynara cardunculus var. scolymus (L.)] is a perennial composite cultivated for its immature inflorescences. Over time, the market for growers has steadily shifted away from vegetatively propagated varieties and towards seed-propagated hybrids. Since the latter tend to produce relatively late [...] Read more.
Globe artichoke [Cynara cardunculus var. scolymus (L.)] is a perennial composite cultivated for its immature inflorescences. Over time, the market for growers has steadily shifted away from vegetatively propagated varieties and towards seed-propagated hybrids. Since the latter tend to produce relatively late in the season, advancing the moment of flowering remains a major objective for breeders, who can benefit from insight gained into the genetic architecture of this trait. In plants, the timing of flowering is strongly regulated at the genetic level to ensure reproductive success. Genetic studies in model and non-model species have identified gene families playing crucial roles in flowering time control. One of these is the phosphatidylethanolamine-binding protein (PEBP) family, a conserved group of genes that, in plants, not only regulate the vegetative-to-reproductive phase transition, but also the development of inflorescences. In this work, we identified seven PEBP family members in the globe artichoke genome, belonging to three major clades: MOTHER OF FT AND TFL1 (MFT)-like, TERMINAL FLOWER 1 (TFL1)-like, and FLOWERING LOCUS T (FT)-like. Our results further show that CcFT expression is upregulated after the floral transition and partially complements the ft-10 mutant, whilst CcTFL1 is expressed in the shoot apex and developing inflorescences and complements the tfl1-1 mutant. These results suggest that the flowering-suppressing function of CcTFL1 is conserved in globe artichoke whereas conservation of the floral promoting function of CcFT remains uncertain. Full article
Show Figures

Graphical abstract

11 pages, 1148 KiB  
Review
The Role of FT/TFL1 Clades and Their Hormonal Interactions to Modulate Plant Architecture and Flowering Time in Perennial Crops
by Lillian Magalhães Azevedo, Raphael Ricon de Oliveira and Antonio Chalfun-Junior
Plants 2025, 14(6), 923; https://doi.org/10.3390/plants14060923 - 15 Mar 2025
Viewed by 1117
Abstract
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved [...] Read more.
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved and interconnected pathways among angiosperms, predominantly involving age, vernalization, gibberellin, temperature, photoperiod, and autonomous pathways. These pathways interact with environmental cues and orchestrate the transition from vegetative growth to reproductive stages. Related to this, there are two key genes belonging to the same Phosphatidylethanolamine-binding proteins family (PEBP), the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), which activate and repress the floral initiation, respectively, in different plant species. They compete for transcription factors such as FLOWERING LOCUS D (FD) and 14-3-3 to form floral activation complexes (FAC) and floral repression complexes (FRC). The FT/TFL1 mechanism plays a pivotal role in meristem differentiation, determining developmental outcomes as determinate or indeterminate. This review aims to explore the roles of FT and TFL1 in plant architecture and floral induction of annual and perennial species, together with their interactions with plant hormones. In this context, we propose that plant development can be modulated by the response of FT and/or TFL1 to plant growth regulators (PGRs), which emerge as potential tools for mitigating the adverse effects of environmental changes on plant reproductive processes. Thus, understanding these mechanisms is crucial to address the challenges of agricultural practices, especially in the face of climate change. Full article
(This article belongs to the Special Issue Mechanisms of Plant Hormones in Plant Development and Reproduction)
Show Figures

Figure 1

13 pages, 2821 KiB  
Article
Characterization of PEBP-like Genes and Function of Capebp1 and Capebp5 in Fruiting Body Regeneration in Cyclocybe aegerita
by Nan Tao, Bopu Cheng, Yuanhao Ma, Ping Liu, Hongmei Chai, Yongchang Zhao and Weimin Chen
J. Fungi 2024, 10(8), 537; https://doi.org/10.3390/jof10080537 - 31 Jul 2024
Viewed by 1298
Abstract
Phosphatidylethanolamine-binding proteins (PEBPs) play a crucial role in the growth and development of various organisms. Due to the low sequence similarity compared to plants, humans, and animals, the study of pebp genes in fungi has not received significant attention. The redifferentiation of fruiting [...] Read more.
Phosphatidylethanolamine-binding proteins (PEBPs) play a crucial role in the growth and development of various organisms. Due to the low sequence similarity compared to plants, humans, and animals, the study of pebp genes in fungi has not received significant attention. The redifferentiation of fruiting bodies is exceedingly rare in fungal development. Hitherto, only a few studies have identified the Capebp2 gene as being associated with this phenomenon in Cyclocybe aegerita. Thus, exploring the role of pebp genes in fruiting body development is imperative. In the present study, four Capebp genes (Capebp1, Capebp3, Capebp4, and Capebp5) were cloned from the AC0007 strain of C. aegerita based on genome sequencing and gene prediction. The findings indicate that the pebp family, in C. aegerita, comprises a total of five genes. Moreover, the sequence similarity was low across the five CAPEBP protein sequences in C. aegerita, and only a few conserved sequences, such as HRY and RHF, were identical. Expression analyses revealed that, similarly to Capebp2, the four Capebp genes exhibit significantly higher expression levels in the fruiting bodies than in the mycelium. Furthermore, overexpressed and RNA interference Capebp1 or Capebp5 transformants were analyzed. The results demonstrate that overexpression of Capebp1 or Capebp5 could induce the regeneration of the lamella or fruiting body, whereas the knockdown of Capebp1 or Capebp5 could lead to the accelerated aging of fruiting bodies. These findings highlight a significant role of Capebp genes in the generation of C. aegerita fruiting bodies and provide a foundation for further exploration into their involvement in basidiomycete growth and development. Full article
(This article belongs to the Special Issue Breeding and Metabolism of Edible Fungi)
Show Figures

Figure 1

16 pages, 6827 KiB  
Article
Comparative Genomic Analysis of PEBP Genes in Cucurbits Explores the Interactors of Cucumber CsPEBPs Related to Flowering Time
by Lianxue Fan, Ziyi Zhu, Xiaoru Lin, Xia Shen, Tianjiao Yang, Haixin Wang and Xiuyan Zhou
Int. J. Mol. Sci. 2024, 25(7), 3815; https://doi.org/10.3390/ijms25073815 - 29 Mar 2024
Cited by 3 | Viewed by 1567
Abstract
The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes [...] Read more.
The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 8671 KiB  
Article
Genome-Wide Identification of the PEBP Family Gene in Three Cymbidium Species and Its Expression Patterns Analysis in C. ensifolium
by Jinliao Chen, Fei Wang, Yangting Zhang, Ruiyue Zheng, Xiaopei Wu, Ye Ai, Sagheer Ahmad, Zhongjian Liu and Donghui Peng
Horticulturae 2024, 10(3), 252; https://doi.org/10.3390/horticulturae10030252 - 6 Mar 2024
Viewed by 1789
Abstract
The PEBP gene family is involved in many biological processes in plants, including plant growth and development, flowering regulation, light response, and abiotic stress response. But there is little information about the role of the PEBP gene family in Cymbidium species. In this [...] Read more.
The PEBP gene family is involved in many biological processes in plants, including plant growth and development, flowering regulation, light response, and abiotic stress response. But there is little information about the role of the PEBP gene family in Cymbidium species. In this study, we identified 11, 9, and 7 PEBP genes in C. ensifolium, C. sinense, and C. goeringii, respectively, and mapped them to the chromosomes. We also studied the physicochemical characteristics of the proteins encoded by these PEBPs and analyzed their intra-species collinearity, gene structure, conserved motifs, and cis-acting elements. Furthermore, a total of forty PEBP genes from C. sinense, C. ensifolium, C. goeringii, Phalaenopsis, and Arabidopsis were divided into three clades based on the phylogenetic tree. The expression patterns of 11 PEBP genes in different tissues and organs of C. ensifolium were analyzed based on transcriptome data, indicating that the CePEBPs might play an important role in the growth and development, especially in the flower bud organs (1–5 mm). CePEBP5 plays an indispensable role in both the vegetative and reproductive growth cycles of C. ensifolium. CePEBP1 is essential for root development, while CePEBP1, CePEBP3, CePEBP5, and CePEBP10 regulate the growth and development of different floral organ tissues at various stages. The findings of this study can do a great deal to understand the roles of the PEBP gene family in Cymbidium. Full article
Show Figures

Figure 1

12 pages, 34407 KiB  
Article
Genome-Wide Identification of PEBP Gene Family in Two Dendrobium Species and Expression Patterns in Dendrobium chrysotoxum
by Meng-Meng Zhang, Xuewei Zhao, Xin He, Qinyao Zheng, Ye Huang, Yuanyuan Li, Shijie Ke, Zhong-Jian Liu and Siren Lan
Int. J. Mol. Sci. 2023, 24(24), 17463; https://doi.org/10.3390/ijms242417463 - 14 Dec 2023
Cited by 4 | Viewed by 1867
Abstract
The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses [...] Read more.
The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses on their conserved domains and motifs, phylogenetic relationships, chromosome distribution, collinear correlation, and cis elements. The classification results showed that the 22 PEBPs were mainly divided into three clades, as follows: FT, MFT, and TFL1. A sequence analysis showed that most PEBP proteins contained five conserved domains, while a gene structure analysis revealed that 77% of the total PEBP genes contained four exons and three introns. The promoter regions of the 22 PEBPs contained several cis elements related to hormone induction and light response. This suggests these PEBPs could play a role in regulating flower development by controlling photoperiod and hormone levels. Additionally, a collinearity analysis revealed three pairs of duplicate genes in the genomes of both D. chrysotoxum and D. nobile. Furthermore, RT-qPCR has found to influence the regulatory effect of DchPEBPs on the development of flower organs (sepals, petals, lip, ovary, and gynostemium) during the flowering process (bud, transparent stage, and initial bloom). The results obtained imply that DchPEBP8 and DchPEBP9 play a role in the initial bloom and that DchPEBP7 may inhibit flowering processes. Moreover, DchPEBP9 may potentially be involved in the development of reproductive functionality. PEBPs have regulatory functions that modulate flowering. FT initiates plant flowering by mediating photoperiod and temperature signals, while TFL1 inhibits flowering processes. These findings provide clues for future studies on flower development in Dendrobium. Full article
Show Figures

Figure 1

15 pages, 5173 KiB  
Article
Identification and Functional Analysis of the Phosphatidylethanolamine-Binding Protein (PEBP) Gene Family in Liriodendron Hybrids
by Miao Hu, Lipan Liu, Ping Hu, Xiaoling Yu, Hua Zhou, Shujuan Liu, Tengyun Liu, Faxin Yu and Aihong Yang
Forests 2023, 14(10), 2103; https://doi.org/10.3390/f14102103 - 20 Oct 2023
Viewed by 1698
Abstract
The plant phosphatidylethanolamine-binding protein (PEBP) gene family plays important roles in regulating flowering time and vegetative growth. Compared with its parents, Liriodendron hybrids (Liriodendron chinense (Hemsl.) Sarg. × L. tulipifera L.), have obvious heterosis in terms of higher seed germination, fast growth, [...] Read more.
The plant phosphatidylethanolamine-binding protein (PEBP) gene family plays important roles in regulating flowering time and vegetative growth. Compared with its parents, Liriodendron hybrids (Liriodendron chinense (Hemsl.) Sarg. × L. tulipifera L.), have obvious heterosis in terms of higher seed germination, fast growth, bright flower colors, and long growth seasons. However, the genome-wide identification and functional analysis of PEBP genes that contribute to the heterosis of Liriodendron hybrids have not been studied. In this study, we characterized four members of expressed LhPEBP genes in Liriodendron hybrids and divided them into three subfamilies based on their phylogenetic relationships: FT-like (LhFT), TFL1-like (LhTFL1), and MFT-like (LhMFT1 and LhMFT2). A functional analysis of Arabidopsis showed that the overexpression of LhFT significantly promoted flowering, and the LhTFL1 gene induced a wide dispersion of the flowering timing. LhMFTs function differently, with LhMFT2 suppressing flowering, while LhMFT1 accelerates it and had a stronger promoting effect on the early stage of seed germination. Additionally, the seed germination of the LhMFT lines was relatively less influenced by ABA, while the transgenic LhFT and LhTFL1 lines were sensitive to both ABA and GA3. These results provide valuable insights into the functions of LhPEBP genes in flowering and seed germination. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 6303 KiB  
Article
Genome-Wide Characterization of PEBP Gene Family and Functional Analysis of TERMINAL FLOWER 1 Homologs in Macadamia integrifolia
by Jing Yang, Conghui Ning, Ziyan Liu, Cheng Zheng, Yawen Mao, Qing Wu, Dongfa Wang, Mingli Liu, Shaoli Zhou, Liling Yang, Liangliang He, Yu Liu, Chengzhong He, Jianghua Chen and Jin Liu
Plants 2023, 12(14), 2692; https://doi.org/10.3390/plants12142692 - 19 Jul 2023
Cited by 4 | Viewed by 2462
Abstract
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to [...] Read more.
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. Recent studies have shown that members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in regulating plant architecture and flowering time in various plants. In this study, thirteen members of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies: MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower phenotypes in the tfl1–14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in controlling the inflorescence architecture and flowering time. This study will provide insight into the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved traits in plant architecture and flowering time. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

21 pages, 5783 KiB  
Article
Exploring the Potential Role of Ribosomal Proteins to Enhance Potato Resilience in the Face of Changing Climatic Conditions
by Eliana Valencia-Lozano, Lisset Herrera-Isidrón, Jorge Abraham Flores-López, Osiel Salvador Recoder-Meléndez, Braulio Uribe-López, Aarón Barraza and José Luis Cabrera-Ponce
Genes 2023, 14(7), 1463; https://doi.org/10.3390/genes14071463 - 18 Jul 2023
Cited by 2 | Viewed by 2376
Abstract
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the [...] Read more.
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the development of potato varieties through genome editing holds great promise. In this study, we performed a comprehensive transcriptomic analysis to investigate microtuber development and identified several differentially expressed genes, with a particular focus on ribosomal proteins—RPL11, RPL29, RPL40 and RPL17. Our results reveal, by protein–protein interaction (PPI) network analyses, performed with the highest confidence in the STRING database platform (v11.5), the critical involvement of these ribosomal proteins in microtuber development, and highlighted their interaction with PEBP family members as potential microtuber activators. The elucidation of the molecular biological mechanisms governing ribosomal proteins will help improve the resilience of potato crops in the face of today’s changing climatic conditions. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 6124 KiB  
Article
Genome-Wide Identification of PEBP Gene Family in Solanum lycopersicum
by Yimeng Sun, Xinyi Jia, Zhenru Yang, Qingjun Fu, Huanhuan Yang and Xiangyang Xu
Int. J. Mol. Sci. 2023, 24(11), 9185; https://doi.org/10.3390/ijms24119185 - 24 May 2023
Cited by 22 | Viewed by 4532
Abstract
The PEBP gene family is crucial for the growth and development of plants, the transition between vegetative and reproductive growth, the response to light, the production of florigen, and the reaction to several abiotic stressors. The PEBP gene family has been found in [...] Read more.
The PEBP gene family is crucial for the growth and development of plants, the transition between vegetative and reproductive growth, the response to light, the production of florigen, and the reaction to several abiotic stressors. The PEBP gene family has been found in numerous species, but the SLPEBP gene family has not yet received a thorough bioinformatics investigation, and the members of this gene family are currently unknown. In this study, bioinformatics was used to identify 12 members of the SLPEBP gene family in tomato and localize them on the chromosomes. The physicochemical characteristics of the proteins encoded by members of the SLPEBP gene family were also examined, along with their intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements. In parallel, a phylogenetic tree was built and the collinear relationships of the PEBP gene family among tomato, potato, pepper, and Arabidopsis were examined. The expression of 12 genes in different tissues and organs of tomato was analyzed using transcriptomic data. It was also hypothesized that SLPEBP3, SLPEBP5, SLPEBP6, SLPEBP8, SLPEBP9, and SLPEBP10 might be related to tomato flowering and that SLPEBP2, SLPEBP3, SLPEBP7, and SLPEBP11 might be related to ovary development based on the tissue-specific expression analysis of SLPEBP gene family members at five different stages during flower bud formation to fruit set. This article’s goal is to offer suggestions and research directions for further study of tomato PEBP gene family members. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 2911 KiB  
Review
PEBP Signaling Network in Tubers and Tuberous Root Crops
by Hendry Susila and Yekti Asih Purwestri
Plants 2023, 12(2), 264; https://doi.org/10.3390/plants12020264 - 6 Jan 2023
Cited by 11 | Viewed by 3928
Abstract
Tubers and tuberous root crops are essential carbohydrate sources and staple foods for humans, second only to cereals. The developmental phase transition, including floral initiation and underground storage organ formation, is controlled by complex signaling processes involving the integration of environmental and endogenous [...] Read more.
Tubers and tuberous root crops are essential carbohydrate sources and staple foods for humans, second only to cereals. The developmental phase transition, including floral initiation and underground storage organ formation, is controlled by complex signaling processes involving the integration of environmental and endogenous cues. FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1/CENTRORADIALIS (TFL1/CEN), members of the phosphatidylethanolamine-binding protein (PEBP) gene family, play a central role in this developmental phase transition process. FT and FT-like proteins have a function to promote developmental phase transition, while TFL1/CEN act oppositely. The balance between FT and TFL1/CEN is critical to ensure a successful plant life cycle. Here, we present a summarized review of the role and signaling network of PEBP in floral initiation and underground storage organ formation, specifically in tubers and tuberous root crops. Lastly, we point out several questions that need to be answered in order to have a more complete understanding of the PEBP signaling network, which is crucial for the agronomical improvement of tubers and tuberous crops. Full article
(This article belongs to the Special Issue Control of Flowering Time and Their Environmental Regulation in Crops)
Show Figures

Figure 1

17 pages, 3075 KiB  
Article
Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic
by Einat Shemesh-Mayer, Adi Faigenboim, Tomer E. Ben Michael and Rina Kamenetsky-Goldstein
Int. J. Mol. Sci. 2022, 23(22), 13876; https://doi.org/10.3390/ijms232213876 - 10 Nov 2022
Cited by 8 | Viewed by 2916
Abstract
Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 [...] Read more.
Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 the huge genome of garlic was fully sequenced. We provide conjoint genomic and transcriptome analysis of the regulatory network in flowering garlic genotypes. The genome analysis revealed phosphatidylethanolamine-binding proteins (PEBP) and LEAFY (LFY) genes that were not found at the transcriptome level. Functions of TFL-like genes were reduced and replaced by FT-like homologs, whereas homologs of MFT-like genes were not found. The discovery of three sequences of LFY-like genes in the garlic genome and confirmation of their alternative splicing suggest their role in garlic florogenesis. It is not yet clear whether AsLFY1 acts alone as the “pioneer transcription factor” or AsLFY2 also provides these functions. The presence of several orthologs of flowering genes that differ in their expression and co-expression network advocates ongoing evolution in the garlic genome and diversification of gene functions. We propose that the process of fertility deprivation in garlic cultivars is based on the loss of transcriptional functions of the specific genes. Full article
(This article belongs to the Special Issue Comparative Genomics and Functional Genomics Analysis in Plants)
Show Figures

Figure 1

29 pages, 27965 KiB  
Article
Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis
by Eliana Valencia-Lozano, Lisset Herrera-Isidrón, Jorge Abraham Flores-López, Osiel Salvador Recoder-Meléndez, Aarón Barraza and José Luis Cabrera-Ponce
Int. J. Mol. Sci. 2022, 23(22), 13835; https://doi.org/10.3390/ijms232213835 - 10 Nov 2022
Cited by 5 | Viewed by 3053
Abstract
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with [...] Read more.
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein–protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs–MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9–may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop