Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = PDK inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7888 KB  
Article
Identification of Methylstat as a Potential Therapeutic Agent for Human Glioma Cells by Targeting Cell Cycle Arrest
by Haoge Yao, Tingyi Meng, Yingying Yang, Huaping Tao, Wenwen Lu, Mingqi Liu, Xiaofeng Zhao, Mengsheng Qiu and Aifen Yang
Pharmaceuticals 2025, 18(9), 1344; https://doi.org/10.3390/ph18091344 - 8 Sep 2025
Viewed by 909
Abstract
Background/Objectives: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with a poor prognosis and limited therapeutic options. This study aimed to repurpose methylstat, a selective histone demethylase inhibitor, as a novel anti-glioma agent. We characterized its anti-proliferative [...] Read more.
Background/Objectives: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with a poor prognosis and limited therapeutic options. This study aimed to repurpose methylstat, a selective histone demethylase inhibitor, as a novel anti-glioma agent. We characterized its anti-proliferative efficacy, elucidated mechanisms of cell cycle regulation, and evaluated its blood–brain barrier (BBB) permeability potential. Methods: Compounds with transcriptional profiles enriched for cell cycle arrest and tumor-suppressive pathways were identified via Connectivity Map (CMAP) analysis. Methylstat was selected based on its high connectivity score and favorable physicochemical properties. In vitro assays were performed to evaluate its effects on cell viability, proliferation, cell cycle progression, and expression of related molecular markers in U251 and HOG glioma cell lines. Molecular docking and 200 ns molecular dynamics (MD) simulations were performed to evaluate the binding mode and stability of the Methylstat–JMJD2A complex. An in vitro BBB model was established to assess the ability of Methylstat to cross the BBB. Results: Methylstat significantly inhibited glioma cell proliferation in a dose-dependent manner without inducing apoptosis. It caused G1-phase arrest in U251 cells and G2-phase arrest in HOG cells. Mechanistically, methylstat downregulated cyclins and cyclin-dependent kinases via the p53/p21 pathway. Additionally, methylstat reduced the expression of JMJD2A and its downstream targets, including PDK1, AKT, and mTOR. Molecular docking studies and 200 ns MD simulations confirmed the stable binding of methylstat to the catalytic pocket of JMJD2A, effectively inhibiting its enzymatic activity. HPLC analysis confirmed that methylstat could penetrate the in vitro BBB model to varying extents. Conclusions: Methylstat is a promising small-molecule agent that effectively suppresses glioma cell growth by modulating key cell cycle regulators. Its ability to cross the BBB highlights its potential as a novel therapeutic strategy for GBM and other brain tumors. Full article
Show Figures

Graphical abstract

18 pages, 2979 KB  
Article
The Combination of Ibrutinib with BH3 Mimetics or Dichloroacetate Is Effective in B-CLL
by Joaquín Marco-Brualla, Oscar Gonzalo, Gemma Azaceta, Isabel Izquierdo, Luis Palomera, Martín Villalba, Isabel Marzo and Alberto Anel
Cells 2025, 14(17), 1343; https://doi.org/10.3390/cells14171343 - 29 Aug 2025
Viewed by 1130
Abstract
Since its discovery, the BTK inhibitor ibrutinib has redefined the standard treatments for hematological cancers, such as chronic lymphocytic leukemia (CLL). However, concerns exist regarding its secondary effects in humans and its occasional lack of efficacy in certain malignancies. Therefore, combined therapies with [...] Read more.
Since its discovery, the BTK inhibitor ibrutinib has redefined the standard treatments for hematological cancers, such as chronic lymphocytic leukemia (CLL). However, concerns exist regarding its secondary effects in humans and its occasional lack of efficacy in certain malignancies. Therefore, combined therapies with ibrutinib have emerged as promising new approaches. In this study, we aimed to explore its therapeutic potential through different approaches. For this purpose, we combined this drug with the BH3 mimetics ABT-199 and ABT-737, which inhibit anti-apoptotic members of the Bcl-2 family, and with the PDK1 inhibitor dichloroacetate (DCA), respectively. As cell models, we used ex vivo samples from patients and also selected the in vitro CLL cell line Mec-1, generating two sub-lines overexpressing Bcl-XL and Mcl-1, a common feature in this cancer. Results demonstrated a synergistic effect for both approaches, in all tumor cells tested, for both cytostatic and cytotoxic effects. Mechanistically, the expression of Bcl-2-family proteins was explored, exhibiting increases in pro-apoptotic, but also in anti-apoptotic, proteins upon ibrutinib treatment and a relative increase in the amount of the pro-apoptotic protein PUMA after treatment with DCA. Our data provides new insights into combined therapies with ibrutinib for CLL, which further expands our knowledge and the potential of this drug for cancer treatment. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

23 pages, 4774 KB  
Article
Chlorogenic Acid and Cinnamaldehyde in Breast Cancer Cells: Predictive Examination of Pharmacokinetics and Binding Thermodynamics with the Key Mediators of PI3K/Akt Signaling
by Yusuff Olayiwola and Lauren Gollahon
Biomedicines 2025, 13(8), 1810; https://doi.org/10.3390/biomedicines13081810 - 24 Jul 2025
Cited by 1 | Viewed by 1336
Abstract
Background/Objective: In the pursuit of identifying novel therapeutic agents against breast cancer, a major priority is finding agents that effectively and safely inhibit the signaling pathways sustaining cancer cells. To better focus research efforts in validating such candidates, this in silico study assessed [...] Read more.
Background/Objective: In the pursuit of identifying novel therapeutic agents against breast cancer, a major priority is finding agents that effectively and safely inhibit the signaling pathways sustaining cancer cells. To better focus research efforts in validating such candidates, this in silico study assessed the pharmacokinetic profiles, thermodynamics, and binding affinity of chlorogenic acid and cinnamaldehyde with the upstream mediators of the Akt pathway implicated in breast cancer cells. Methods: Various software and online tools were used to conduct molecular docking of the small molecules with the proteins PI3K, Akt, and PDK1, and to examine their absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile. Results: The results show strong binding energy (all within the range of those of FDA-approved drugs) and thermostability between the compounds and the proteins. The phytochemicals were predicted to have moderate oral bioavailability and tissue distribution, and were identified as substrates of drug metabolizing enzymes, but not deactivated. Conclusion: Although these predictive data warrant confirmation in a biological system, they suggest that the compounds have good pharmacokinetics and are strong inhibitors of the Akt pathway, with great potential to shut down breast cancer cell invasion and migration. These data also inform more efficient experimental designs for our planned in vivo studies. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

27 pages, 4223 KB  
Article
Prolyl Hydroxylase Inhibitor-Mediated HIF Activation Drives Transcriptional Reprogramming in Retinal Pigment Epithelium: Relevance to Chronic Kidney Disease
by Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla and József Balla
Cells 2025, 14(14), 1121; https://doi.org/10.3390/cells14141121 - 21 Jul 2025
Cited by 1 | Viewed by 1570
Abstract
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved [...] Read more.
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved in eye diseases, this study examined the effects of HIF-PHIs on metabolism and gene expression in retinal pigment epithelium (RPE) cells. Results revealed that PHIs differentially induced angiogenic (VEGFA, ANG) and glycolytic (PDK1, GLUT1) gene expression, with Roxadustat causing the strongest transcriptional changes. However, Roxadustat-induced angiogenic signals did not promote endothelial tube formation. Moreover, it did not induce oxidative stress, inflammation, or significant antioxidant gene responses in ARPE-19 cells. Roxadustat also reduced the inflammatory cytokine response to tumor necrosis factor-α, including IL-6, IL-8, and MCP-1, and did not exacerbate VEGF expression under high-glucose conditions. Overall, Roxadustat triggered complex gene expression changes without promoting inflammation or oxidative stress in RPE cells. Despite these findings, ophthalmologic monitoring is advised during PHI treatment in CKD patients receiving HIF-PHIs. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

23 pages, 27683 KB  
Article
Anticancer Potential of Cymbopogon citratus L. Essential Oil: In Vitro and In Silico Insights into Mitochondrial Dysfunction and Cytotoxicity in Cancer Cells
by Tamara Maksimović, Daliana Minda, Codruța Șoica, Alexandra Mioc, Marius Mioc, Daiana Colibășanu, Alexandra Teodora Lukinich-Gruia, Maria-Alexandra Pricop, Calin Jianu and Armand Gogulescu
Plants 2025, 14(9), 1341; https://doi.org/10.3390/plants14091341 - 29 Apr 2025
Cited by 2 | Viewed by 2191
Abstract
This study aims to assess the potential anticancer activity of lemongrass essential oil (LEO) using in vitro and in silico methods. The steam hydrodistillation of the aerial parts yielded 3.2% (wt) LEO. The GC-MS analysis of the LEO revealed the presence of α-citral [...] Read more.
This study aims to assess the potential anticancer activity of lemongrass essential oil (LEO) using in vitro and in silico methods. The steam hydrodistillation of the aerial parts yielded 3.2% (wt) LEO. The GC-MS analysis of the LEO revealed the presence of α-citral (37.44%), β-citral (36.06%), linalool acetate (9.82%), and d-limonene (7.05%) as major components, accompanied by several other minor compounds. The antioxidant activity, assessed using the DPPH assay, revealed that LEO exhibits an IC50 value of 92.30 μg/mL. The cytotoxic effect of LEO, as well as LEO solubilized with Tween-20 (LEO-Tw) and PEG-400 (LEO-PEG), against a series of cancer cell lines (A375, RPMI-7951, MCF-7, and HT-29) was assessed using the Alamar Blue assay; the results revealed a high cytotoxic effect against all cell lines used in this study. Moreover, neither one of the tested concentrations of LEO, LEO-PG, or LEO-TW significantly affected the viability of healthy HaCaT cells, thus showing promising selectivity characteristics. Furthermore, LEO, LEO-PG, and LEO-TW increased ROS production and decreased the mitochondrial membrane potential (MMP) in all cancer cell lines. Moreover, LEO treatment decreased all mitochondrial respiratory rates, thus suggesting its ability to induce impairment of mitochondrial function. Molecular docking studies revealed that LEO anticancer activity, among other mechanisms, could be attributed to PDK1 and PI3Kα, where the major contributors are among the minor components of the essential oil. The highest active theoretical inhibitor against both proteins was β-caryophyllene oxide. Full article
Show Figures

Graphical abstract

18 pages, 8111 KB  
Article
Combined Therapeutic Strategies Based on the Inhibition of Non-Oncogene Addiction to Improve Tumor Response in EGFR- and KRAS-Mutant Non-Small-Cell Lung Cancer
by Luisa Amato, Daniela Omodei, Caterina De Rosa, Annalisa Ariano, Sara Capaldo, Camilla Carmela Tufano, Rossella Buono, Cristina Terlizzi, Anna Nardelli, Vitale Del Vecchio, Rosanna Palumbo, Concetta Tuccillo, Floriana Morgillo, Federica Papaccio, Virginia Tirino, Francesca Iommelli, Carminia Maria Della Corte and Viviana De Rosa
Cancers 2024, 16(23), 3941; https://doi.org/10.3390/cancers16233941 - 25 Nov 2024
Cited by 4 | Viewed by 2308
Abstract
Background: Oncogene-driven NSCLC is usually treated with targeted therapies using tyrosine kinase inhibitors (TKIs) to inhibit oncogene downstream signaling pathways, affecting tumor survival and proliferation. EGFR- and KRAS-mutant NSCLCs are the most represented subtypes, and they are treated in clinical practice with oncogene-targeting [...] Read more.
Background: Oncogene-driven NSCLC is usually treated with targeted therapies using tyrosine kinase inhibitors (TKIs) to inhibit oncogene downstream signaling pathways, affecting tumor survival and proliferation. EGFR- and KRAS-mutant NSCLCs are the most represented subtypes, and they are treated in clinical practice with oncogene-targeting drugs in the first and second line, respectively. Unfortunately, the development of oncogene-independent resistant clones limits TKI efficacy. Here, we used non-oncogene addiction (NOA) as an innovative therapeutic strategy to target other essential proteins that support changes in tumor phenotype. Specifically, we tested, for the first time, a combination of inhibitors, namely ATR, involved in DNA damage response, and pyruvate dehydrogenase kinases (PDKs), involved in energy metabolism. Methods: Sensitive PC9 and the corresponding EGFR-TKI-resistant PC9/OR, EGFR-mutant H1975, and KRAS-mutant A549 NSCLC cells, were treated with TKIs (osimertinib and selumetinib, respectively). In parallel, cells were exposed to two combination regimens: one using the TKI with an ATR inhibitor and the other one combining the two selected NOA inhibitors (ATR inhibitor, M4344; and PDK inhibitor, DCA). Results: The effect of these two combined approaches, compared to TKI alone, produced similar results in terms of cell proliferation, cell death, and migration. Thus, depending on tumor biology, selecting between the proposed therapeutic strategies will be different, to maximize tumor response. Conclusions: The major translational relevance of this study is to exploit new targets for the development of innovative and improved therapeutic strategies with NOA drugs, over combinations including target genes within the oncogene pathway, to overcome resistance to TKI therapies in patients with NSCLC who are oncogene-addicted. Full article
Show Figures

Figure 1

23 pages, 9906 KB  
Article
In Vitro Cytotoxic Potential and In Vivo Antitumor Effects of NOS/PDK-Inhibitor T1084
by Marina Filimonova, Anna Shitova, Ljudmila Shevchenko, Olga Soldatova, Valentina Surinova, Vitaly Rybachuk, Alexander Kosachenko, Kirill Nikolaev, Irina Volkova, Grigory Demyashkin, Tatjana P. Stanojkovic, Zeljko Zizak, Sergey Ivanov, Petr Shegay, Andrey Kaprin and Alexander Filimonov
Int. J. Mol. Sci. 2024, 25(17), 9711; https://doi.org/10.3390/ijms25179711 - 8 Sep 2024
Cited by 3 | Viewed by 2012
Abstract
Previously, we showed the antitumor activity of the new NOS/PDK inhibitor T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). The present study included an assessment of in vitro cytotoxicity against human malignant and normal cells according to the MTT-test and in vivo antitumor effects in solid tumor models [...] Read more.
Previously, we showed the antitumor activity of the new NOS/PDK inhibitor T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). The present study included an assessment of in vitro cytotoxicity against human malignant and normal cells according to the MTT-test and in vivo antitumor effects in solid tumor models in comparison with precursor compounds T1023 (NOS inhibitor; 1-isobutanoyl-2-isopropylisothiourea hydrobromide) and Na-DCA (PDK inhibitor; sodium dichloroacetate), using morphological, histological, and immunohistochemical methods. The effects of T1084 and T1023 on the in vitro survival of normal (MRC-5) and most malignant cells (A375, MFC-7, K562, OAW42, and PC-3) were similar and quantitatively equal. At the same time, melanoma A375 cells showed 2–2.5 times higher sensitivity (IC50: 0.39–0.41 mM) to the cytotoxicity of T1023 and T1084 than other cells. And only HeLa cells showed significantly higher sensitivity to the cytotoxicity of T1084 compared to T1023 (IC50: 0.54 ± 0.03 and 0.81 ± 0.02 mM). Comparative studies of the in vivo antitumor effects of Na-DCA, T1023, and T1084 on CC-5 cervical cancer and B-16 melanoma in mice were conducted with subchronic daily i.p. administration of these agents at an equimolar dose of 0.22 mmol/kg (33.6, 60.0, and 70.7 mg/kg, respectively). Cervical cancer CC-5 fairly quickly evaded the effects of both Na-DCA and T1023. So, from the end of the first week of Na-DCA or T1023 treatment, the tumor growth inhibition (TGI) began to decrease from 40% to an insignificant level by the end of the observation. In contrast, in two independent experiments, CC-5 showed consistently high sensitivity to the action of T1084: a significant antitumor effect with high TGI (43–58%) was registered throughout the observation, without any signs of neoplasia adaptation. The effect of precursor compounds on melanoma B-16 was either minimal (for Na-DCA) or moderate (for T1023) with TGI only 33%, which subsequently decreased by the end of the experiment. In contrast, the effect of T1084 on B-16 was qualitatively more pronounced and steadily increasing; it was accompanied by a 3-fold expansion of necrosis and dystrophy areas, a decrease in proliferation, and increased apoptosis of tumor cells. Morphologically, the T1084 effect was 2-fold superior to the effects of T1023—the TGI index reached 59–62%. This study suggests that the antitumor effects of T1084 develop through the interaction of NOS-dependent and PDK-dependent pathophysiological effects of this NOS/PDK inhibitor. The NOS inhibitory activity of T1084 exerts an anti-angiogenic effect on neoplasia. At the same time, the PDK inhibitory activity of T1084 enhances the cytotoxicity of induced intratumoral hypoxia and suppresses the development of neoplasia adaptation to anti-angiogenic stress. Such properties allow T1084 to overcome tumor resistance and realize a stable synergistic antitumor effect. Full article
Show Figures

Figure 1

25 pages, 9278 KB  
Review
Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor–Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer
by Wonyoung Park, Jung Ho Han, Shibo Wei, Eun-Sun Yang, Se-Yun Cheon, Sung-Jin Bae, Dongryeol Ryu, Hwan-Suck Chung and Ki-Tae Ha
Int. J. Mol. Sci. 2024, 25(2), 807; https://doi.org/10.3390/ijms25020807 - 9 Jan 2024
Cited by 11 | Viewed by 6110
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its [...] Read more.
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic effects. The study findings suggest that natural products can be promising inhibitors of glycolytic enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors as innovative therapeutic modalities for NSCLC. Full article
(This article belongs to the Special Issue Molecular Mechanism Study of Natural Products for Human Health)
Show Figures

Figure 1

14 pages, 2410 KB  
Article
A Potent PDK4 Inhibitor for Treatment of Heart Failure with Reduced Ejection Fraction
by Kenichi Aizawa, Akari Ikeda, Shota Tomida, Koki Hino, Yuuki Sugita, Tomoyasu Hirose, Toshiaki Sunazuka, Hiroshi Kido, Shigeyuki Yokoyama and Ryozo Nagai
Cells 2024, 13(1), 87; https://doi.org/10.3390/cells13010087 - 30 Dec 2023
Cited by 10 | Viewed by 4557
Abstract
Heart failure with reduced ejection fraction (HFrEF) is characterized not only by reduced left ventricular ejection fraction (EF) but is also combined with symptoms such as dyspnea, fatigue, and edema. Several pharmacological interventions have been established. However, a treatment targeting a novel pathophysiological [...] Read more.
Heart failure with reduced ejection fraction (HFrEF) is characterized not only by reduced left ventricular ejection fraction (EF) but is also combined with symptoms such as dyspnea, fatigue, and edema. Several pharmacological interventions have been established. However, a treatment targeting a novel pathophysiological mechanism is still needed. Evidence indicating that inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may be cardioprotective has been accumulating. Thus, we focused on vitamin K3 and used its framework as a new PDK4 inhibitor skeleton to synthesize new PDK4 inhibitors that show higher activity than the existing PDK4 inhibitor, dichloroacetic acid, and tested their cardioprotective effects on a mouse heart failure model. Among these inhibitors, PDK4 inhibitor 8 improved EF the most, even though it did not reverse cardiac fibrosis or wall thickness. This novel, potent PDK4 inhibitor may improve EF of failing hearts by regulating bioenergetics via activation of the tricarboxylic acid cycle. Full article
Show Figures

Figure 1

16 pages, 3298 KB  
Article
Phenylbutyrate and Dichloroacetate Enhance the Liquid-Stored Boar Sperm Quality via PDK1 and PDK3
by Zhihua Guo, Yan Zhang, Anqi Huang, Qingyong Ni and Changjun Zeng
Int. J. Mol. Sci. 2023, 24(23), 17091; https://doi.org/10.3390/ijms242317091 - 4 Dec 2023
Cited by 2 | Viewed by 2520
Abstract
Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the boar sperm viability, motility, and fertility. [...] Read more.
Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the boar sperm viability, motility, and fertility. Pyruvate Dehydrogenase Kinases (PDKs) are the key metabolic enzymes that regulate pyruvate dehydrogenase complex (PDHC) activity and also the conversion from glycolysis to oxidative phosphorylation. In the present study, two PDK inhibitors, Dichloroacetate (DCA) and Phenylbutyrate (4-PBA), were added to an extender and investigated to determine their regulatory roles in liquid-stored boar sperm at 17 °C. The results indicated that PDK1 and PDK3 were predominantly located at the head and flagella of the boar sperm. The addition of 2 mM DCA and 0.5 mM 4-PBA significantly enhanced the sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and ATP content. In addition, DCA and 4-PBA exerted their effects by inhibiting PDK1 and PDK3, respectively. In conclusion, DCA and 4-PBA were found to regulate the boar sperm metabolic activities via PDK1 and PDK3. These both can improve the quality parameters of liquid-stored boar sperm, which will help to improve and optimize liquid-stored boar semen after their addition in the extender. Full article
(This article belongs to the Special Issue Nutritional and Hormonal Control of Glucose Metabolism)
Show Figures

Figure 1

21 pages, 5287 KB  
Article
Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma
by Daniela Carbone, Michele De Franco, Camilla Pecoraro, Davide Bassani, Matteo Pavan, Stella Cascioferro, Barbara Parrino, Girolamo Cirrincione, Stefano Dall’Acqua, Stefania Sut, Stefano Moro, Valentina Gandin and Patrizia Diana
Mar. Drugs 2023, 21(5), 288; https://doi.org/10.3390/md21050288 - 4 May 2023
Cited by 28 | Viewed by 4593
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC. Full article
Show Figures

Figure 1

35 pages, 7750 KB  
Article
Design, Synthesis and Biological Evaluation of Novel MDH Inhibitors Targeting Tumor Microenvironment
by Sreenivasulu Godesi, Jeong-Ran Han, Jang-Keun Kim, Dong-Ik Kwak, Joohan Lee, Hossam Nada, Minkyoung Kim, Hyun-A Yang, Joo-Young Im, Hyun Seung Ban, Chang Hoon Lee, Yongseok Choi, Misun Won and Kyeong Lee
Pharmaceuticals 2023, 16(5), 683; https://doi.org/10.3390/ph16050683 - 2 May 2023
Cited by 9 | Viewed by 4229
Abstract
MDH1 and MDH2 enzymes play an important role in the survival of lung cancer. In this study, a novel series of dual MDH1/2 inhibitors for lung cancer was rationally designed and synthesized, and their SAR was carefully investigated. Among the tested compounds, compound [...] Read more.
MDH1 and MDH2 enzymes play an important role in the survival of lung cancer. In this study, a novel series of dual MDH1/2 inhibitors for lung cancer was rationally designed and synthesized, and their SAR was carefully investigated. Among the tested compounds, compound 50 containing a piperidine ring displayed an improved growth inhibition of A549 and H460 lung cancer cell lines compared with LW1497. Compound 50 reduced the total ATP content in A549 cells in a dose-dependent manner; it also significantly suppressed the accumulation of hypoxia-inducible factor 1-alpha (HIF-1α) and the expression of HIF-1α target genes such as GLUT1 and pyruvate dehydrogenase kinase 1 (PDK1) in a dose-dependent manner. Furthermore, compound 50 inhibited HIF-1α-regulated CD73 expression under hypoxia in A549 lung cancer cells. Collectively, these results indicate that compound 50 may pave the way for the development of next-generation dual MDH1/2 inhibitors to target lung cancer. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 3851 KB  
Article
MicroRNA, mRNA, and Proteomics Biomarkers and Therapeutic Targets for Improving Lung Cancer Treatment Outcomes
by Qing Ye, Rebecca Raese, Dajie Luo, Shu Cao, Ying-Wooi Wan, Yong Qian and Nancy Lan Guo
Cancers 2023, 15(8), 2294; https://doi.org/10.3390/cancers15082294 - 14 Apr 2023
Cited by 14 | Viewed by 4055
Abstract
The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = [...] Read more.
The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = 109) and 91.7% in unsupervised classification and 92.3% in supervised classification in the validation set (n = 375). Based on association with patient survival (n = 1016), 10 miRNAs were identified as potential tumor suppressors (hsa-miR-144, hsa-miR-195, hsa-miR-223, hsa-miR-30a, hsa-miR-30b, hsa-miR-30d, hsa-miR-335, hsa-miR-363, hsa-miR-451, and hsa-miR-99a), and 4 were identified as potential oncogenes (hsa-miR-21, hsa-miR-31, hsa-miR-411, and hsa-miR-494) in lung cancer. Experimentally confirmed target genes were identified for the 73 diagnostic miRNAs, from which proliferation genes were selected from CRISPR-Cas9/RNA interference (RNAi) screening assays. Pansensitive and panresistant genes to 21 NCCN-recommended drugs with concordant mRNA and protein expression were identified. DGKE and WDR47 were found with significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated molecular machinery, an inhibitor of PDK1/Akt BX-912, an anthracycline antibiotic daunorubicin, and a multi-targeted protein kinase inhibitor midostaurin were discovered as potential repositioning drugs for treating lung cancer. These findings have implications for improving lung cancer diagnosis, optimizing treatment selection, and discovering new drug options for better patient outcomes. Full article
(This article belongs to the Special Issue Innovative Treatment Strategies for Lung Cancer and Radiotherapy)
Show Figures

Figure 1

13 pages, 2405 KB  
Article
Pyruvate Dehydrogenase Kinase 4 Deficiency Increases Tumorigenesis in a Murine Model of Bladder Cancer
by Benjamin L. Woolbright, Ganeshkumar Rajendran, Erika Abbott, Austin Martin, Ryan Didde, Katie Dennis, Robert A. Harris and John A. Taylor
Cancers 2023, 15(6), 1654; https://doi.org/10.3390/cancers15061654 - 8 Mar 2023
Cited by 6 | Viewed by 2978
Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial isozyme in the PDK family (PDK1-4) partially responsible for phosphorylation of pyruvate dehydrogenase (PDH). Phosphorylation of PDH is thought to result in a pro-proliferative shift in metabolism that sustains growth of cancer cells. Previous data [...] Read more.
Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial isozyme in the PDK family (PDK1-4) partially responsible for phosphorylation of pyruvate dehydrogenase (PDH). Phosphorylation of PDH is thought to result in a pro-proliferative shift in metabolism that sustains growth of cancer cells. Previous data from our lab indicate the pan-PDK inhibitor dichloroacetate (DCA) or acute genetic knockdown of PDK4 blocks proliferation of bladder cancer (BCa) cells. The goal of this study was to determine the role of PDK4 in an in vivo BCa model, with the hypothesis that genetic depletion of PDK4 would impair formation of BCa. PDK4−/− or WT animals were exposed to N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN) for 16 weeks, and tumors were allowed to develop for up to 7 additional weeks. PDK4−/− mice had significantly larger tumors at later time points. When animals were treated with cisplatin, PDK4−/− animals still had larger tumors than WT mice. PDK4 expression was assessed in human tissue and in mice. WT mice lost expression of PDK4 as tumors became muscle-invasive. Similar results were observed in human samples, wherein tumors had less expression of PDK4 than benign tissue. In summary, PDK4 has a complex, multifunctional role in BCa and may represent an underrecognized tumor suppressor. Full article
(This article belongs to the Special Issue Targeting Tumor Niches for Cancer Chemoprevention and Treatment)
Show Figures

Figure 1

25 pages, 5049 KB  
Article
Discovery of the 3-Amino-1,2,4-triazine-Based Library as Selective PDK1 Inhibitors with Therapeutic Potential in Highly Aggressive Pancreatic Ductal Adenocarcinoma
by Daniela Carbone, Michele De Franco, Camilla Pecoraro, Davide Bassani, Matteo Pavan, Stella Cascioferro, Barbara Parrino, Girolamo Cirrincione, Stefano Dall’Acqua, Stefano Moro, Valentina Gandin and Patrizia Diana
Int. J. Mol. Sci. 2023, 24(4), 3679; https://doi.org/10.3390/ijms24043679 - 12 Feb 2023
Cited by 39 | Viewed by 4643
Abstract
Pyruvate dehydrogenase kinases (PDKs) are serine/threonine kinases, that are directly involved in altered cancer cell metabolism, resulting in cancer aggressiveness and resistance. Dichloroacetic acid (DCA) is the first PDK inhibitor that has entered phase II clinical; however, several side effects associated with weak [...] Read more.
Pyruvate dehydrogenase kinases (PDKs) are serine/threonine kinases, that are directly involved in altered cancer cell metabolism, resulting in cancer aggressiveness and resistance. Dichloroacetic acid (DCA) is the first PDK inhibitor that has entered phase II clinical; however, several side effects associated with weak anticancer activity and excessive drug dose (100 mg/kg) have led to its limitation in clinical application. Building upon a molecular hybridization approach, a small library of 3-amino-1,2,4-triazine derivatives has been designed, synthesized, and characterized for their PDK inhibitory activity using in silico, in vitro, and in vivo assays. Biochemical screenings showed that all synthesized compounds are potent and subtype-selective inhibitors of PDK. Accordingly, molecular modeling studies revealed that a lot of ligands can be properly placed inside the ATP-binding site of PDK1. Interestingly, 2D and 3D cell studies revealed their ability to induce cancer cell death at low micromolar doses, being extremely effective against human pancreatic KRAS mutated cancer cells. Cellular mechanistic studies confirm their ability to hamper the PDK/PDH axis, thus leading to metabolic/redox cellular impairment, and to ultimately trigger apoptotic cancer cell death. Remarkably, preliminary in vivo studies performed on a highly aggressive and metastatic Kras-mutant solid tumor model confirm the ability of the most representative compound 5i to target the PDH/PDK axis in vivo and highlighted its equal efficacy and better tolerability profile with respect to those elicited by the reference FDA approved drugs, cisplatin and gemcitabine. Collectively, the data highlights the promising anticancer potential of these novel PDK-targeting derivatives toward obtaining clinical candidates for combatting highly aggressive KRAS-mutant pancreatic ductal adenocarcinomas. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop