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Abstract: Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient
assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex
component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the
boar sperm viability, motility, and fertility. Pyruvate Dehydrogenase Kinases (PDKs) are the key
metabolic enzymes that regulate pyruvate dehydrogenase complex (PDHC) activity and also the
conversion from glycolysis to oxidative phosphorylation. In the present study, two PDK inhibitors,
Dichloroacetate (DCA) and Phenylbutyrate (4-PBA), were added to an extender and investigated to
determine their regulatory roles in liquid-stored boar sperm at 17 ◦C. The results indicated that PDK1
and PDK3 were predominantly located at the head and flagella of the boar sperm. The addition of
2 mM DCA and 0.5 mM 4-PBA significantly enhanced the sperm motility, plasma membrane integrity
(PMI), mitochondrial membrane potential (MMP), and ATP content. In addition, DCA and 4-PBA
exerted their effects by inhibiting PDK1 and PDK3, respectively. In conclusion, DCA and 4-PBA
were found to regulate the boar sperm metabolic activities via PDK1 and PDK3. These both can
improve the quality parameters of liquid-stored boar sperm, which will help to improve and optimize
liquid-stored boar semen after their addition in the extender.

Keywords: boar; liquid storage sperm; PDKs; DCA; 4-PBA

1. Introduction

Artificial insemination (AI) is a widely used breeding technology in commercial sow
breeding and is maximally performed with liquid-stored semen [1]. At present, more than
99% of AI in the boar industry is being carried out with semen stored at 15–20 ◦C for 1
to 5 days. In addition, 85% of all the inseminations are performed on the first or second
day of semen collection [2]. However, the continuous metabolic activities of sperm under
liquid storage conditions lead to the utilization of available nutrients and accumulation of
their metabolic end products, which results in decreased sperm viability and hence semen
quality [3,4]. Therefore, semen kept at room temperature for 1–2 days does not support
transportation in remote areas for an extended period of time and results in a decreased
conception rate and litter size. So, prolonging the storage time with a suitable extender
might increase the economic benefit and reproductive efficiency [5].

It is a well-known fact that the motility and viability of mammalian sperm depend on
available energy [6]. Sperm utilizes substances dissolved in seminal plasma and cytoplasm
for the purpose of energy production. These dissolved substances play essential roles in
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the maintenance of sperm motility, viability, and fertility [7]. However, due to the low
content of endogenous sugars, sperm rely mainly on exogenous sugars to fulfill their energy
requirements during liquid storage [8]. Usually, diluents contain glucose as a major source
of energy for sperm. In general, the composition of the extender affects the viability of
stored boar spermatozoa [9]. Glycolysis and oxidative phosphorylation (OXPHOS) are
two crucial pathways that produce energy for boar sperm [10]. Under anaerobic conditions,
pyruvate produced by glycolysis is converted to lactate by lactate dehydrogenase (LDH).
However, under aerobic conditions, pyruvate dehydrogenase complex (PDHC) facilitates
the oxidative decarboxylation of pyruvate to generate acetyl-CoA, which is a substrate of the
tricarboxylic acid (TCA) cycle [11]. PDHC is critical enzyme which connects glycolysis with
oxidative phosphorylation [12]. PDHC is a multi-enzyme complex consisting of PDHA,
DLAT, and DLD [13]. Pyruvate dehydrogenase (PDH) is one of the catalytic subunits of
PDHC and has been correlated with ATP synthesis and mitochondrial membrane potential
in mice testicular tissue [14]. Similarly, PDHC was found to be essential for human testicular
tissues [11]. PDHC and its E3 subunit (dihydrolipoamide dehydrogenase (DLD)) have
been reported to regulate intracellular lactate, pH, and calcium in hamster sperm [15].
Wang et al. [16] showed that pyruvate dehydrogenase complex component X (PDHX) was
positively correlated with boar sperm motility and fertility.

PDHC activity is mainly catalyzed by four pyruvate dehydrogenase kinases
(PDK1–4) [17]. These PDKs phosphorylate and inactivate PDHC, thus inhibiting the
oxidative metabolism of pyruvate in mitochondria and affecting cellular energy produc-
tion [18]. PDKs regulate oxidative stress and apoptosis along with energy metabolism.
Their abnormal regulation presumably contributes to diabetes, obesity, cancer, ischemia,
and metabolic acidosis [19–23]. Oxidative stress and mitochondrial dysfunction in the ovary
are hypothesized to be due to the elevated expression of PDK1 [24]. Imanaka et al. showed
that oocytes maintain higher rates of ATP production through the TCA cycle/OXPHOS
system by downregulating PDK and activating PDH [25]. Dichloroacetate (DCA), as a
specific inhibitor of PDK [26], promotes pyruvate metabolism by activating PDHC [27]. The
ability of DCA to reduce intracellular lactate concentrations and enhance the mitochondrial
oxidative metabolism by inhibiting PDKs has also been observed in numerous in vitro
and in vivo studies [28]. 4-PBA is present in different human organs and tissues at lower
concentrations [29], just like vitamin B1 [30]. 4-PBA has recently gained importance as
it treats various disorders and also acts as a PDK inhibitor. According to different stud-
ies, 4-PBA interacts with PDKs [31,32] and reduces the severity of lactic acidosis almost
similar to DCA [33]. A previous study of single-cell RNA sequencing revealed that PDK1,
PDK2, and PDK3 are highly expressed in male germ cells whereas PDK4 showed very
little [https://www.proteinatlas.org]. However, the effects of DCA and 4-PBA on sperm
functional activities are unknown.

Our previous study indicated that the activation of PDHX could significantly improve
boar sperm motility and survival [16]. However, the effects of PDKs on the regulation of
PDH and hence sperm energy metabolism, motility, and survival still need to be deciphered.
Therefore, this study aims to evaluate the effects of DCA and 4-PBA on the boar sperm
motility, plasma membrane integrity, mitochondrial membrane potential, and ATP content
during liquid storage and to investigate the molecular mechanism behind them.

2. Results
2.1. Addition of DCA or 4-PBA Improve Liquid-Stored Boar Sperm Viability

The effects of different concentrations of DCA and 4-PBA on the boar sperm viability
are shown in Tables 1 and 2. The results showed that a significant increase (p < 0.05) in
viability was observed from 48 to 72 h in the 2 mM DCA treatment and 24 to 96 h in the
0.5 mM 4-PBA compared with their respective control groups. However, no difference
(p > 0.05) was found between the 2 mM DCA group and the control group at 96 h, 120 h,
and 144 h. In particular, the sperm viability in the 2 mM DCA treatment was higher
(p < 0.05) than that of the other treatment groups from 48 to 96 h. Similarly, the 0.5 mM
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4-PBA treatment group also showed a significantly higher (p < 0.05) sperm viability than the
other treatment groups from 48 to 96 h. Therefore, the addition of 2 mM DCA and 0.5 mM
4-PBA was found to maintain the sperm viability better than the other concentrations.

Table 1. Effects of different concentrations of DCA on boar sperm viability during liquid storage.

Storage Time DCA Treatments
0 mM 0.5 mM 1 mM 2 mM 3 mM 4 mM

0 h 0.92 ± 0.02 a 0.90 ± 0.01 a 0.91 ± 0.01 a 0.91 ± 0.01 a 0.89 ± 0.01 a 0.86 ± 0.03 a

24 h 0.82 ± 0.01 ab 0.83 ± 0.01 ab 0.84 ± 0.00 ab 0.86 ± 0.01 a 0.78 ± 0.02 bc 0.76 ± 0.02 c

48 h 0.74 ± 0.01 bc 0.76 ± 0.01 b 0.76 ± 0.01 b 0.82 ± 0.01 a 0.75 ± 0.02 bc 0.70 ± 0.01 c

72 h 0.69 ± 0.01 b 0.69 ± 0.00 b 0.70 ± 0.01 b 0.76 ± 0.01 a 0.64 ± 0.01 c 0.58 ± 0.01 d

96 h 0.60 ± 0.01 ab 0.58 ± 0.00 bc 0.58 ± 0.00 bc 0.63 ± 0.02 a 0.55 ± 0.01 cd 0.50 ± 0.01 d

120 h 0.50 ± 0.01 ab 0.48 ± 0.01 ab 0.49 ± 0.01 ab 0.53 ± 0.00 a 0.46 ± 0.02 b 0.41 ± 0.01 c

144 h 0.43 ± 0.01 a 0.42 ± 0.01 a 0.43 ± 0.01 a 0.46 ± 0.01 a 0.41 ± 0.01 ab 0.37 ± 0.01 b

Note: Different letters within the same row show significant differences (p < 0.05).

Table 2. Effects of different concentrations of 4-PBA on boar sperm viability during liquid storage.

Storage Time 4-PBA Treatments
0 mM 0.25 mM 0.5 mM 1 mM 1.5 mM 2 mM

0 h 0.91 ± 0.01 a 0.92 ± 0.01 a 0.92 ± 0.01 a 0.92 ± 0.01 a 0.90 ± 0.02 a 0.89 ± 0.02 a

24 h 0.82 ± 0.01 bc 0.84 ± 0.02 ab 0.87 ± 0.01 a 0.82 ± 0.01 b 0.82 ± 0.01 ab 0.77 ± 0.01 c

48 h 0.75 ± 0.01 bc 0.77 ± 0.00 b 0.82 ± 0.01 a 0.78 ± 0.01 b 0.75 ± 0.01 bc 0.73 ± 0.01 c

72 h 0.71 ± 0.01 bc 0.72 ± 0.01 b 0.79 ± 0.01 a 0.73 ± 0.01 b 0.67 ± 0.01 cd 0.62 ± 0.01 d

96 h 0.59 ± 0.01 bc 0.61 ± 0.01 bc 0.68 ± 0.01 a 0.62 ± 0.02 b 0.56 ± 0.01 cd 0.53 ± 0.01 d

120 h 0.51 ± 0.01 ab 0.51 ± 0.03 ab 0.55 ± 0.01 a 0.52 ± 0.01 a 0.49 ± 0.01 ab 0.44 ± 0.01 b

144 h 0.44 ± 0.01 a 0.42 ± 0.01 ab 0.46 ± 0.01 a 0.44 ± 0.01 ab 0.43 ± 0.01 ab 0.39 ± 0.01 b

Note: Different letters within the same row show significant differences (p < 0.05).

2.2. Simultaneous Addition of 2 mM DCA and 0.5 mM 4-PBA Has No Synergistic Effect on
Liquid-Stored Boar Sperm Viability

To determine whether the addition of DCA and 4-PBA has a synergistic effect, 2 mM
DCA and 0.5 mM 4-PBA were simultaneously added. The results showed that the simulta-
neous addition of 2 mM DCA and 0.5 mM 4-PBA significantly increased (p < 0.05) the sperm
viability compared with the control group at 48 h. However, no significant differences were
observed among the DCA, 4-PBA, and DCA + 4-PBA treatment groups (p > 0.05) (Table 3).

Table 3. Effect of DCA and 4-PBA treatment alone or in combination on the viability of boar sperm.

Storage Time
Treatments

Control 2 mM DCA 0.5 mM 4-PBA 2 mM DCA +
0.5 mM 4-PBA

0 h 0.91 ± 0.01 a 0.92 ± 0.01 a 0.92 ± 0.01 a 0.92 ± 0.01 a

24 h 0.82 ± 0.01 bc 0.84 ± 0.02 ab 0.87 ± 0.01 a 0.82 ± 0.01 b

48 h 0.76 ± 0.02 b 0.82 ± 0.01 a 0.83 ± 0.00 a 0.81 ± 0.01 a

72 h 0.71 ± 0.01 c 0.75 ± 0.01 b 0.79 ± 0.01 a 0.74 ± 0.01 bc

96 h 0.59 ± 0.01 bc 0.64 ± 0.01 b 0.68 ± 0.01 a 0.57 ± 0.02 c

120 h 0.51 ± 0.01 a 0.54 ± 0.01 a 0.55 ± 0.01 a 0.50 ± 0.02 a

144 h 0.45 ± 0.02 a 0.45 ± 0.00 a 0.47 ± 0.01 a 0.44 ± 0.01 a

Note: Different letters within the same row show significant differences (p < 0.05).

2.3. Addition of 2 mM DCA and 0.5 mM 4-PBA Affect Boar Sperm Plasma Membrane Integrity
(PMI), Motility, Mitochondrial Function, and ROS Level

The maintenance of plasma membrane integrity (PMI) is essential for sperm viability
and functionality. The results indicated that, compared with the control, the PMI was
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significantly increased (p < 0.05) after the addition of 2 mM DCA and 0.5 mM 4-PBA at
48–72 h and 48–96 h, respectively (Figure 1B). Moreover, the addition of 0.5 mM 4-PBA
showed a significantly higher (p < 0.05) PMI than the 2 mM DCA treatment from 48–72 h.
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Figure 1. Effects of addition of 2 mM DCA and 0.5 mM 4-PBA. on boar sperm quality. (A) A Hypo-
osmotic swelling test (HOST) assay assesses the plasma membrane integrity. a: sperm with intact
plasma membrane, b: sperm with damaged plasma membranes; (B) plasma membrane integrity of
sperm; (C) total motility and progressive motility of sperm. The data are representative of at least
three independent experiments (mean ± SEM). “*” indicates statistical significance at p < 0.05 and
“**” indicates statistical significance at p < 0.01.

The addition of 2 mM DCA and 0.5 mM 4-PBA significantly (p < 0.05) improved the
total and progressive motilities of the sperm from 48–96 h (Figure 1C). Furthermore, the
supplementation of 0.5 mM 4-PBA showed a significantly higher (p < 0.05) progressive
motility from 48–96 h compared to the 2 mM DCA treatment.

To investigate the effects of DCA and 4-PBA on the sperm mitochondrial membrane
potential (∆Ψm), we evaluated the ∆Ψm and ATP contents (Figure 2). Mitochondrial
membrane potential is a good indicator of the ATP synthesizing ability of sperm. The
results showed that the ∆Ψm and ATP content significantly increased (p < 0.05) in the
DCA and 4-PBA treatment groups as compared to their control groups from 24 to 72 h;
however, no differences (p > 0.05) were observed between the DCA and 4-PBA groups
(Figure 2B,C). Similarly, we did not observe any significant differences (p > 0.05) in the
sperm mitochondrial membrane potential and ATP contents among the control, DCA, and
4-PBA groups at 96 h.

ROS are produced as a result of cellular metabolism that induce polyunsaturated fatty
acids’ peroxidation and damage the sperm plasma membrane. The results indicated that
there were no significant differences (p > 0.05) in the levels of ROS among the control and
treatment groups within 48 h (Figure 2D). However, the mean fluorescence intensity (MFI)
of DCF was significantly increased (p < 0.05) in the DCA group as compared to the control
group at 72 and 96 h. Moreover, the MFI significantly increased (p < 0.05) at 96 h in the
4-PBA group as compared to the control group.

2.4. Expression of PDKs in Boar Sperm

To determine whether all PDKs are expressed in boar sperm, the mRNA expression of
PDKs in the sperm was further evaluated by RT-PCR. The results showed the expression of
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PDK1, PDK2, and PDK3 in the boar sperm. Moreover, no expression of PDK4 was observed
in the boar sperm (Figure 3A).
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Figure 2. Effects of DCA or 4-PBA on boar sperm mitochondrial function and ROS levels.
(A) Assessment of the mitochondrial membrane potential (∆Ψm) by a JC-1 staining assay. a: high
∆Ψm, b: low ∆Ψm; (B) mitochondrial membrane potential of sperm; (C) ATP concentration of
sperm; (D) DCF fluorescence levels are generated by oxidation of non-fluorescent DCFH. The Y-axis
represents the mean fluorescence intensity (MFI). The data are representative of at least three inde-
pendent experiments (mean ± SEM). “*” indicates statistical significance at p < 0.05 and “**” indicates
statistical significance at p < 0.01.

2.5. Addition of DCA and 4-PBA Inhibit the Expressions of PDK1 and PDK3 in Boar Sperm

The RT-qPCR results showed that the expression of PDK1 in the DCA group was
significantly decreased (p < 0.05 at 24 h, and p < 0.01 at 48–96 h) than that in the control
group (Figure 3B). However, no significant differences (p > 0.05) were observed in the
expression of PDK2 and PDK3 between the DCA and control groups. Conversely, the
expression of PDK3 was significantly decreased (p < 0.01) in the 4-PBA group compared
to the control group from 24 to 96 h. In contrast, no significant differences (p > 0.05) were
observed in the expression of PDK1 and PDK2 between the 4-PBA and control groups.
In addition, the Western blot analysis (Figure 3C) further indicated that the protein level
of PDK1 was significantly decreased (p < 0.01) at 48 h in the DCA group compared to
the control group. In contrast, no significant differences (p > 0.05) were observed in
the expression of PDK2 and PDK3 between the DCA and control groups (Figure 3D).
Compared with the control, the protein level of PDK3 in the 4-PBA group was significantly
decreased (p < 0.01) at 48 h, whereas no significant differences (p > 0.05) were observed in
the expressions of PDK1 and PDK2 between the 4-PBA and control groups (Figure 3D).

2.6. Localization of PDK1 and PDK3 Proteins in Boar Sperm

To determine the localization of PDK1 and PDK3 in the boar sperm, we incubated the
sperm with anti-PDK1 and PDK3 antibodies. The results showed the distribution of PDK3
on the head and tail of the boar sperm. However, PDK1 was found to be mainly distributed
in the head region with a lesser distribution in the middle piece and tail of the boar sperm
(Figure 4A).
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Figure 3. Expression of PDKs in boar sperm. (A) PDK1, PDK2, PDK3, and PDK4 expression in sperm;
(B) heatmap of relative mRNA expression levels of PDK1, PDK2, and PDK3 in sperm treated with
DCA or 4-PBA for 0 h to 96 h. The X-axis represents the processing time, and the Y-axis represents
the relative gene expression; (C) the Western blot identified PDK1, PDK2, and PDK3 in sperm treated
with DCA or 4-PBA for 48 h; (D) the relative protein levels of PDK1, PDK2, and PDK3 in sperm
treated with DCA or 4-PBA at 48 h. “*” indicates statistical significance at p < 0.05 and “**” indicates
statistical significance at p < 0.01, ns, no significant.

2.7. Knockdown of PDK1 and PDK3 Improves Boar Sperm Viability

We knocked down PDK1 (si-PDK1) or PDK3 (si-PDK3) to verify the roles of PDK1
and PDK3 in the boar sperm and their regulation by DCA and 4-PBA. The results indicated
that the knocking down of PDK1 (si-PDK1) and PDK3 (si-PDK3) significantly (p < 0.01)
decreased the mRNA expressions of PDK1 and PDK3, respectively (Figure 4B). The total
viability of the boar sperm was significantly increased (p < 0.05) after electro-transfection
with si-PDK1 at 48–72 h (Figure 4C). Similarly, after 48 and 72 h, the sperm viabilities were
significantly higher (p < 0.05) after the knockdown of PDK1 (si-PDK1) in the DCA-treated or
untreated sperms compared with the si-NC and control groups. In contrast, no significant
difference (p > 0.05) in the sperm viability was observed between the groups either treated
or not treated with DCA (Figure 4C). Similarly, the sperm viability after the knockdown of
PDK3 (si-PDK3) with or without the 4-PBA treatment was significantly higher (p < 0.01) at
24 to 72 h and significant (p < 0.01) at 96 h (Figure 4D). However, no significant difference
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(p > 0.05) in the sperm viability was observed between the si-PDK3 groups with or without
4-PBA (Figure 4D). Therefore, these results indicated that DCA and 4-PBA exert their effects
on the sperm viability by inhibiting PDK1 and PDK3, respectively.
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3. Discussion

A previous study showed that DCA and 4-PBA affect the glucose metabolism in
cancer cells by regulating the mRNA and protein expressions of PDKs [34]. However,
no study has reported the effects of the addition of DCA and 4-PBA on boar sperm and
their interaction with PDKs. This study provides novel evidence that DCA and 4-PBA
are directly linked with PDKs in boar sperm and regulate their energy metabolism and
viability during liquid storage.

DCA is a structural analog of pyruvate dehydrogenase complex (PDHC) that can bind
to the pyruvate-binding site in the center of the R domain to inhibit the activity of PDKs [34].
By blocking PDKs, DCA can activate PDHC and hence increase the activity of the mito-
chondrial respiratory chain and ATP synthesis [35]. Similarly, Chen et al. treated 24 mice
with 4-PBA for a fortnight and observed an improvement in mitochondrial function [36]. It
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is well known that sperm characteristics, such as motility, are important to ensure fertility
potential and play a crucial role in the prediction of fertility. The combined aspects of sperm
function are prerequisites for normal in vivo fertilization and early embryonic develop-
ment [37,38]. In the present study, the boar sperm quality and mitochondrial function were
significantly improved after the treatment with DCA and 4-PBA, indicating that DCA and
4-PBA had a promoting effect on fertility. However, further studies are needed to explain
the role of DCA and 4-PBA in farrowing the rate and litter size to elucidate the long-term
effects of DCA and 4-PBA on sperm preservation. However, the effects of both additives on
the sperm parameters became less pronounced when the semen was stored for 96 h. The
elevated levels of ROS provide a plausible explanation during the longer storage. ROS are
by-products of oxygen metabolism inside sperm mitochondria [39]. The accumulating evi-
dence indicates that the threshold level of ROS is a requisite for normal sperm function [40].
At physiological concentrations, ROS induce sperm capacitation and acrosomal reaction,
which enable sperms to penetrate zona pellucida during fertilization [41]. Conversely,
excessive ROS production causes oxidative damage to biomolecules and poses detrimental
effects on the overall sperm quality (DNA integrity, membrane stability, energy production,
motility, capacitation) [42–44]. In this study, the increase in the ATP levels was followed by
an abnormal increase in ROS after the DCA or 4-PBA treatment similar to studies conducted
on cancer cells [45–47]. Interestingly, Zhao et al. [48] found that DCA can relieve oxidative
stress through the PDK2-PDH-Nrf2 channel. Similarly, Yang et al. [49] found that 4-PBA
significantly inhibited oxidative stress, reduced the shock-induced oxidative stress index,
such as the production of reactive oxygen species, and increased the levels of antioxidant
enzymes such as superoxide dismutase, catalase, and glutathione.

External factors like the seminal plasma composition and availability of oxygen regu-
late the homeostasis of metabolic pathways in sperm, which suggests that a mere change
in the external environment may disturb the metabolism of sperm [50]. Glycolysis and
oxidative phosphorylation are two of the main pathways that control the sperm function
and its fertilizing ability [51]. However, little is known about the exact metabolic pathway
that is used by boar sperm for the purpose of ATP production and hence required for its
movement and viability. The PDHC/PDK axis is known to be an essential part for the
regulation of glucose metabolism [52]. PDKs are known to affect cellular energy production
during pyruvate metabolism via the regulation of PDHC phosphorylation [12]. PDKs
comprise four members (PDK1–PDK4) in the mitochondrial matrix [53]. Although all
PDKs exhibit about a 70% structural similarity, they still have different relative affinities
for binding to PDHC (PDK > PDK1 ≈ PDK2 > PDK4) [54]. Moreover, these four PDKs
also exist in mammalian tissues with different tissue-specific distributions and kinetic
parameters [55]. PDK2 is most widely distributed in the heart, liver, and kidney, while
PDK4 is abundantly expressed in pancreatic islets and skeletal muscles. PDK3 and PDK1
show limited tissue distribution and PDK3 is more expressed in testes and lungs [56]. In
this study, the RT-PCR results showed that all PDKs (PDK1, PDK2, and PDK3) except PDK4
are expressed in sperm. Thus, we hypothesized that PDK1–3 might be the PDKs that play
a crucial role in boar sperm viability regulation.

Studies have demonstrated that DCA [57] and 4-PBA [33] can inhibit PDKs in tumor
cells and can restore the mitochondrial metabolism. 4-PBA is known to affect only PDK1,
PDK2, and PDK3. However, unlike 4-PBA, DCA can bind to all PDKs [30]. Our results
show that DCA treatment inhibits PDK1 expression in boar sperm, which is similar to the
results reported by Hur et al. [58] in gastric cancer cells. Similarly, DCA was reported to
inhibit PDK3 in melanoma cells [59]. In the present study, 4-PBA was found to inhibit PDK3
in boar sperm, whereas another study on fibroblasts reported the inhibition of PDK2 by
4-PBA [31]. This difference is not surprising because the targets of DCA and 4-PBA could
vary across different cell types [60,61]. Meanwhile, we observed that the inhibition of PDK1
(si-PDK1) or PDK3 (si-PDK3) followed by the addition of DCA or 4-PBA did not increase
the sperm viability. Therefore, it is confirmed that DCA inhibits PDK1 and 4-PBA inhibits
PDK3. Moreover, immunofluorescence localization showed that PDK1 and PDK3 were
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distributed in the head and midpiece of the boar sperm. It is known that mitochondria are
mainly distributed in the midpiece of sperm, which helps to elucidate the role of PDK1 and
PDK3 in the boar sperm metabolism.

PDK inhibitors usually regulate PDK activity by acting on four binding sites: a pyru-
vate binding site, nucleotide binding site, lipoamide binding site, and allosteric site [34].
DCA is a structural analog of PDHC substrate pyruvate, which can bind to the pyruvate
binding site in the center of the R domain to regulate the activity of PDKs [34]. 4-PBA
binds to the allosteric site of PDKs [34]. Central to mitochondrial function is the interaction
between PDKs and PDHC [62].

In conclusion, our findings provide reasonable molecular evidence and reveal a po-
tential link between DCA/PDK1, 4-PBA/PDK3, and sperm quality. The addition of 2 mM
DCA and 0.5 mM 4-PBA can improve liquid-stored boar sperm quality. Similarly, DCA and
4-PBA could be potential regulatory factors that can regulate the mitochondrial function
of sperm.

4. Materials and Methods
4.1. Animal Ethics Statement

All animal procedures involving animal treatments were performed in accordance
with the Institutional Animal Care and Use Committee in the College of Animal Science and
Technology, Sichuan Agricultural University, Sichuan, China (under permit no. 2021202037),
which conforms to the Regulations of the Administration of Affairs Concerning Experimen-
tal Animals (Ministry of Science and Technology, China, 2017).

4.2. Semen Collection and Treatment

The semen used in the experiments was collected from ten healthy and sexually active
Large White boars. We collected the fresh ejaculates transported to the laboratory in a
temperature-controlled container (17 ◦C). Semen samples with more than 80% motility and
85% normal morphology were used in this study, as presented in Figure 5.

All semen samples (n = 10) from each boar were pooled together, centrifuged
(1500 rpm/min, 5 min), and immediately suspended in an extender (NUTRIXcell Ultra;
IMV, Legrand, Paris, France) to obtain a final concentration of 1.5 × 109 sperm mL−1. Then,
we divided the semen samples into four aliquots. One aliquot was further divided into
six aliquots. Different doses of DCA (Sigma-Aldrich, St. Louis, MO, USA) were then
added to each aliquot to obtain the final 0, 0.5, 1, 2, 3, and 4 mM concentrations of DCA.
A second aliquot was similarly further divided to obtain the final 0, 0.25, 0.5, 1, 1.5, and
2 mM concentrations of 4-PBA (Sigma-Aldrich, St. Louis, MO, USA). After the addition of
different concentrations of DCA and 4-PBA, the sperm quality parameters were evaluated.
The third aliquot was further divided into four aliquots and then processed as follows:
(1) control: DCA and 4-PBA non-supplemented; (2) DCA: supplemented with 2 mM of
DCA; (3) 4-PBA: supplemented with 0.5 mM of 4-PBA; and (4) supplemented with 2 mM
DCA and 0.5 mM 4-PBA. The fourth aliquot was further divided into two aliquots to
perform the knockdown of PDK1 and PDK3, from which one aliquot was transfected with
20 nM siRNA of PDK1, siRNA of PDK3, and siRNA of NC for 12 h and the other one was
additionally incubated with DCA or 4-PBA after transfection. Finally, all the above semen
samples were incubated for 24, 48, 72, and 96 h under the same conditions.

4.3. Analysis of Sperm Quality Parameters
4.3.1. Sperm Viability Detection

We evaluated the sperm viability via eosin–nigrosine staining [63]. For this purpose,
20 µL of semen sample was mixed with 5 µL of eosin (Solarbio, Beijing, China) in a test tube
and left for 30 s. Then, the mixture was added to with 15 µL of nigrosine stain (Solarbio,
Beijing, China) for another 30 s. After incubation for 5 min at 37 ◦C, a smear was prepared
on a glass slide and at least 200 sperm were examined by a light microscope (Yongxin
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Optical Co., Ltd., Zhejiang, China). Live sperm remained unstained, while dead sperms
were stained pink or red.
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4.3.2. Sperm Motility Detection

Samples were evaluated by a computer-assisted semen analyzer (CASA, Minitube,
Tiefenbach, Germany). Before measuring sperm motility, the sperm counting chamber
(Leja®, Nieuw-Vennep, the Netherlands) was pre-heated at 37 ◦C on the hot stage of the
system, and the CASA was debugged until the camera image was clear [64]. Five microliters
of semen was dropped on the pre-heated glass slide, and five visual fields containing more
than 200 sperm were selected to measure the sperm total and progressive motilities.
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4.3.3. Detection of Sperm Plasma Membrane Integrity

Hypo-osmotic swelling test (HOST) was used to measure the sperm plasma membrane
integrity [65]. Briefly, 200 µL of the semen was mixed with 1 mL of HOST solution and
incubated at 37 ◦C for 30 min. A light microscope (Yongxin Optical Co., Ltd., Zhejiang,
China) was used to evaluate the plasma membrane status of the sperm with no less than
200 sperm per replicate. Sperm with integrated and intact plasma membranes had swollen
and bent tails, while sperms with dysfunctional plasma membranes had a straight and
non-swollen tail (Figure 1A).

4.3.4. Detection of Mitochondrial Membrane Potential (∆Ψm)

∆Ψm was evaluated using JC-1 Mitochondrial Membrane Potential Detection Kit
(Solarbio, Beijing, China), according to the manufacturer’s instructions. Briefly, the sperm
were stained with JC-1 (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolyl carbocyanine
iodide) and incubated at 37 ◦C in the dark for 20 min. Then, the samples were centrifuged
at 600× g at 4 ◦C for 5 min, and the supernatant was discarded. After that, the precipitate
was resuspended in PBS, and 5 µL from this suspension was dropped on a plane glass
slide and covered with cover slip. Approximately 200 sperm were observed under an
epifluorescence microscope (Olympus, Tokyo, Japan). Sperm showing red fluorescence in
the midpiece were considered to have a high ∆Ψm (Figure 2A).

4.3.5. Detection of ATP Concentration

The ATP content of sperm was assessed using the ATP Assay Kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China), according to the manufacturer’s instructions
and the protocol formulated by Feng et al. [66]. Briefly, 20 µL semen and an equal volume
of working solution were uniformly mixed and loaded onto a 96-well plate. Following
10 min incubation at room temperature, the luminescence signals were measured in trip-
licate in 96-well plates using a multimode microplate reader (Thermo Fisher Scientific,
Waltham, MA, USA). The ATP content in the semen samples was calculated from an ATP
standard curve.

4.3.6. Evaluation of ROS Content

The amount of ROS in sperm cells was detected by DCFH-DA staining [67]. The
experiment was performed by following the instructions provided in the manual of the
Reactive Oxygen Species Assay Kit (S0033M, Beyotime Institute of Biotechnology, Nantong,
China). Briefly, the sperm samples were centrifuged at 800× g for 5 min, and the super-
natant was discarded. Then, the sperms were re-suspended in 200 µL working solution
of Dichlorodihydrofluorescein diacetate (DCFH-DA) and incubated at 37 ◦C in the dark
for 30 min. Sperms were rinsed three times with PBS and then re-suspended in the PBS
for evaluation. A flow cytometer (FACSVerse, BD Biosciences, Franklin Lakes, NJ, USA)
was used to evaluate the DCF fluorescence level generated from the non-fluorescent DCFH
oxidation. We performed all the above-mentioned experiments three times to obtain three
biological replicates and the results are presented as an average of these replicates.

4.4. Total RNA Extraction and Quantitative Real-Time PCR (RT-qPCR) Analysis

We extracted the total RNA of the sperm with Trizol LS Reagent kit (Invitrogen,
Carlsbad, CA, USA), as described previously [68]. RNAs with OD260/280 values of
1.8–2.0 were selected for the subsequent reverse transcription. Evo M-MLV RT mix kit
(Code no. AG11728, Hunan, China) and SYBR Green Pro Taq HS 266 qPCR kit (Code no.
11701, Hunan, China) were used for reverse transcription, according to the manufacturer’s
instructions. Amplifications were performed in a CFX 96 Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA) using the master mix volume (10 µL) comprising 5 µL SYBR
Green I Premix, 0.5 µL each of the forward and reverse primers, 1 µL of cDNA, and 3 µL
of RNase-free water. Three biological replicates were set for each group. All primers
were designed according to their counterparts in GenBank using the NCBI Primer-Blast
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search tool or from the published literature (Table 4). The relative mRNA quantifications
were performed by comparing the genes of interest with the Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), and the results were calculated using the 2−∆∆CT method [69].

Table 4. Primer information for RT-qPCR and RT-PCR.

Gene Sequence (5′-3′) Tm (◦C) Size (bp)

GAPDH
F: ACCCAGAAGACTGTGGATGG

60.0 346R: CATGGCCTCCAAGGAGTAAG

PDK1
F: TGAGAGCAACGATGGAGCAC

55.0 106R: CCTCGGTCACTCATCTTCACA

PDK2
F: GTCTATGTCCCCTCCCACCT

60.0 100R: ATGGGAGAGTGAGGCTGGAT

PDK3
F: AAGAACCGTGTCATGGGAGAG

57.0 157R: CTCTGAACCAATCCCACCGA

PDK4
F: GCTGGTGACTGGTGTATCCC

55.0 138R: CACGCACACATTCAGGAAGC

4.5. Reverse Transcription–Polymerase Chain Reaction (RT-PCR) Analysis

The total RNA of sperm was extracted using a Trizol LS Reagent kit (Invitrogen, Carls-
bad, CA, United States), as described previously [68]. RNA with the optimal OD260/280 of
1.8–2.0 was selected for the subsequent reverse transcription. Evo M-MLV RT mix kit (Code
no. AG11728, Hunan, China) and 2×TransYaq-T PCR SuperMix (TransGen Biotech, AS122,
Beijing, China) were used for reverse transcription, according to the manufacturer’s instruc-
tions. Subsequently, PCR products were separated using 3% agarose gel electrophoresis.
The voltage was set to 150 V and the gels were run for 1 h. After electrophoresis, the glue
blocks were removed, observed, and photographed with a gel imager. Three replicates
were run for each group.

4.6. Western Blot

Western blotting analysis was carried out according to the method used by Wang
et al. [70] with some required modifications. Total protein was extracted from sperm using
an RIPA lysis buffer (Beyotime Biotechnology, B0013B, Shanghai, China). Total protein
concentration was measured using a BCA protein detection kit (ComWin Biotechnology
Co., Ltd. AR0146, Taizhou, China). The SDS-PAGE technique was employed to separate
the dissolved proteins on 10% pre-casted Hepes gel (Beyotime Biotechnology, P0508S,
Shanghai, China) and transferred to a PVDF membrane (Beyotime Biotechnology, FFP32,
Shanghai, China). The membranes were then blocked with a blocking buffer (Beyotime
Biotechnology, P0252, Shanghai, China) at room temperature for 1 h. Afterward, the
membranes were incubated overnight with diluted primary antibody solutions at 4 ◦C. The
primary antibodies used in this study were anti-PDK1 (1:1500, ABclonal, A8930, Wuhan,
China), anti-PDK2 (1:1500, ABclonal, A4737, Wuhan, China), anti-PDK3 (1:1500, ABclonal,
A8028, China), and β-tubulin (1:1000; Proteintec, 10094-1-AP, Wuhan, China). Notably,
each incubation was an individual experiment. The membranes were subsequently washed
three times with Tris-buffered saline containing 0.1% Tween-20 (TBST) and incubated with
secondary antibody, viz., goat anti-rabbit IgG conjugated with HRP (1:4000, Proteintech,
SA00001-2, Wuhan, China) for 1 h on a shaker at 37 ◦C. According to the manufacturer’s
instructions, enhanced chemiluminescence (ECL) detection was then performed using the
BeyoEcl Moon kit (Beyotime Biotechnology, P0018FS, Shanghai, China). Protein bands
on PVDF membranes were detected using an eBlot Touch Imager (Yibote Optoelectronic
Technology, Shanghai, China), and the intensities of the bands were quantified with ImageJ
software. At least three independent experiments were performed.
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4.7. Immunolocalization of PDK1 and PDK3 in Boar Sperm

Indirect immunofluorescence [70] was used to determine the localization of PDK1 and
PDK3 proteins on boar sperm. For this purpose, we first fixed the sperm precipitates with
4% paraformaldehyde for 10 min, washed with PBS, and then permeabilized with 0.5%
Triton X-100 (Beyotime Biotechnology, Shanghai, China). Subsequently, the samples were
incubated with 5% bovine serum albumin (BSA) (Sigma-Aldrich, USA) for 30 min. After
that, the samples were incubated with primary antibodies, including anti-PDK1 (ABclonal,
A8930, Wuhan, China) and anti-PDK3 (ABclonal, A8028, Wuhan, China) antibodies diluted
(1:100) in Western primary antibody diluent (Beyotime Biotechnology, Shanghai, China) at
37 ◦C for 1 h. After that, the samples were washed three times and then incubated for 1 h
at 37 ◦C with secondary antibody (anti-rabbit IgG (H + L)). This secondary antibody was
conjugated with CoraLite 594 (Proteintech, SA00013-4, Chicago, USA) and was diluted with
Western secondary antibody diluent (Beyotime Biotechnology, Shanghai, China) at a ratio
of 1:50. After three washings with PBST (PBS, 1% Tween, and 0.02 g glycine), sperms were
observed and evaluated using a fluorescence microscope equipped with a DP70 camera
(Olympus, Tokyo, Japan).

4.8. Sperm Electro-Transfection

Electro-transfection was performed according to Yuan’s electro-transfection method [71].
Cell Manipulation ECM-2001 (BTX, Holliston, MA, USA) was used to transfect the sperm
with siRNA-targeting PDK1 and PDK3 mRNAs in order to reduce their expressions. Pulse
conditions were adjusted as 4 × 300 V for 100 µs. After siRNA transfection (knockdown),
sperm were stored under the same conditions used for other sperm groups, and transfection
efficiency was detected at 12 h.

4.9. Statistical Analysis

SPSS 26.0 software was used for one-way analysis of variance (ANOVA), and all the
values were expressed as mean ± standard deviation (SD). Tukey’s method was used for
multiple comparisons. The relative PDK gene expression levels were quantified by the
2−∆∆CT method. The gray values of protein bands were calculated using ImageJ (v.1.48).
p < 0.05 and p < 0.01 were considered statistically significant.

5. Conclusions

This is the first study that investigates the effects of DCA and 4-PBA on boar sperm
quality during liquid storage. We demonstrated that the addition of DCA and 4-PBA
improved the boar sperm quality by inhibiting PDK1 and PDK3, respectively. Both PDK1
and PDK3 were found to regulate the mitochondrial function, plasma membrane stability,
and ATP level. In conclusion, we propose that DCA and 4-PBA can be added in boar semen
extenders to prolong the time of liquid semen storage as it results in the maintenance of the
sperm viability and motility for a longer duration.
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