Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Enzyme Inhibition Activity
2.3. Molecular Modeling Studies
2.4. 2D and 3D Cytotoxicity Studies
3. Materials and Methods
3.1. Chemistry
3.1.1. General procedure for the preparation of 1-(1-Methyl-1H-indol-3-yl)-2-(1-methyl-1H-pyrrolo [2,3-b]pyridin-3-yl)-ethane-1,2-dione (3a–j)
3.1.2. General procedure for the preparation of 5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-amines (4–5)
3.2. Software Overview
3.3. PDK1-4 Kinase Assay
3.4. Heat Shock Protein 90 (HSP90) Inhibition Assay
3.5. Experiments with Cultured Human Cancer Cells
3.6. Cell Cultures
3.7. MTT Assay
3.8. Spheroid Cultures
3.9. Acid Phosphatase (APH) Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phan, L.M.; Yeung, S.C.; Lee, M.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 2014, 11, 1–19. [Google Scholar] [PubMed]
- Stacpoole, P.W. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. J. Natl. Cancer Inst. 2017, 109, djx071. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Shamsi, A.; Mohammad, T.; Islam, A.; Hassan, M.I. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim. Biophys. Acta Rev. Cancer. 2021, 1876, 188568. [Google Scholar] [CrossRef]
- Harris, R.A.; Bowker-Kinley, M.M.; Huang, B.; Wu, P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzym. Regul. 2002, 42, 249–259. [Google Scholar] [CrossRef]
- Wynn, R.M.; Kato, M.; Chuang, J.L.; Tso, S.C.; Li, J.; Chuang, D.T. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity. J. Biol. Chem. 2008, 283, 25305–25315. [Google Scholar] [CrossRef]
- Tambe, Y.; Terado, T.; Kim, C.J.; Mukaisho, K.I.; Yoshida, S.; Sugihara, H.; Tanaka, H.; Chida, J.; Kido, H.; Yamaji, K.; et al. Antitumor activity of potent pyruvate dehydrogenase kinase 4 inhibitors from plants in pancreatic cancer. Mol. Carcinog. 2019, 58, 1726–1737. [Google Scholar] [CrossRef]
- Trinidad, A.G.; Whalley, N.; Rowlinson, R.; Delpuech, O.; Dudley, P.; Rooney, C.; Critchlow, S.E. Pyruvate dehydrogenase kinase 4 exhibits a novel role in the activation of mutant KRAS, regulating cell growth in lung and colorectal tumour cells. Oncogene. 2017, 36, 6164–6176. [Google Scholar] [CrossRef]
- Qin, C.; Yang, G.; Yang, J.; Ren, B.; Wang, H.; Chen, G.; Zhao, F.; You, L.; Wang, W.; Zhao, Y. Metabolism of pancreatic cancer: Paving the way to better anticancer strategies. Mol. Cancer. 2020, 19, 50. [Google Scholar] [CrossRef]
- Grasso, C.; Jansen, G.; Giovannetti, E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Crit. Rev. Oncol. Hematol. 2017, 114, 139–152. [Google Scholar] [CrossRef]
- Gunda, V.; Souchek, J.; Abrego, J.; Shukla, S.K.; Goode, G.D.; Vernucci, E.; Dasgupta, A.; Chaika, N.V.; King, R.J.; Li, S.; et al. MUC1-Mediated Metabolic Alterations Regulate Response to Radiotherapy in Pancreatic Cancer. Clin. Cancer Res. 2017, 23, 5881–5891. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [PubMed]
- Sutendra, G.; Michelakis, E.D. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front. Oncol. 2013, 3, 38. [Google Scholar] [CrossRef]
- Mehla, K.; Singh, P.K. Metabolic Subtyping for Novel Personalized Therapies Against Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, N.; Zhang, T.; Zhang, B.; Sajeevan, T.P.; Joseph, V.; Armstrong, L.; He, S.; Yan, X.; Naman, C.B. A Systematic Review of Recently Reported Marine Derived Natural Product Kinase Inhibitors. Mar. Drugs. 2019, 17, 493. [Google Scholar] [CrossRef]
- Luo, M.; Groaz, E.; De Jonghe, S.; Snoeck, R.; Andrei, G.; Herdewijn, P. Amidate Prodrugs of Cyclic 9-( S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine with Potent Anti-Herpesvirus Activity. ACS Med. Chem. Lett. 2018, 9, 381–385. [Google Scholar] [CrossRef]
- Sakemi, S.; Sun, H.H. Nortopsentins A., B, and C. Cytotoxic and antifungal imidazolediylbis[indoles] from the sponge Spongosorites ruetzleri. J. Org. Chem. 1991, 56, 4304–4307. [Google Scholar] [CrossRef]
- Bao, B.; Sun, Q.; Yao, X.; Hong, J.; Lee, C.O.; Sim, C.J.; Im, K.S.; Jung, J.H. Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J. Nat. Prod. 2005, 68, 711–715. [Google Scholar] [CrossRef]
- Bettayeb, K.; Tirado, O.M.; Marionneau-Lambot, S.; Ferandin, Y.; Lozach, O.; Morris, J.C.; Mateo-Lozano, S.; Drueckes, P.; Schächtele, C.; Kubbutat, M.H.; et al. A new class of cell death-inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases. Cancer Res. 2007, 67, 8325–8334. [Google Scholar] [CrossRef]
- Kohmoto, S.; Kashman, Y.; McConnell, O.J.; Rinehart, K.L.; Wright, A.; Koehn, F. Dragmacidin; a New Cytotoxic Bis (indole) Alkaloid from a Deep Water Marine Sponge, Dragmacidon sp. J. Org. Chem. 1988, 53, 3116–3118. [Google Scholar] [CrossRef]
- Cascioferro, S.; Parrino, B.; Petri, G.L.; Cusimano, M.G.; Schillaci, D.; Di Sarno, V.; Musella, S.; Giovannetti, E.; Cirrincione, G.; Diana, P. 2;6-Disubstituted imidazo[2;1-b][1;3;4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors. Eur. J. Med. Chem. 2019, 167, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Cascioferro, S.; Petri, G.L.; Parrino, B.; Carbone, D.; Funel, N.; Bergonzini, C.; Mantini, G.; Dekker, H.; Geerke, D.; Peters, G.J.; et al. Imidazo[2;1-b] [1;3;4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur. J. Med. Chem. 2020, 189, 112088. [Google Scholar] [CrossRef] [PubMed]
- Cascioferro, S.; Li Petri, G.; Parrino, B.; El Hassouni, B.; Carbone, D.; Arizza, V.; Perricone, U.; Padova, A.; Funel, N.; Peters, G.J.; et al. 3-(6-Phenylimidazo [2;1-b][1;3;4]thiadiazol-2-yl)-1H-Indole Derivatives as New Anticancer Agents in the Treatment of Pancreatic Ductal Adenocarcinoma. Molecules. 2020, 25, 329. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Cascioferro, S.; Parrino, B.; Carbone, D.; Pecoraro, C.; Schillaci, D.; Cusimano, M.G.; Cirrincione, G.; Diana, P. Thiazole Analogues of the Marine Alkaloid Nortopsentin as Inhibitors of Bacterial Biofilm Formation. Molecules. 2020, 26, 81. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.; Vestuto, V.; Ferraro, M.R.; Ciaglia, T.; Pecoraro, C.; Sommella, E.; Cascioferro, S.; Salviati, E.; Novi, S.; Tecce, M.F.; et al. Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification. Eur. J. Med. Chem. 2022, 234, 114233. [Google Scholar] [CrossRef] [PubMed]
- Di Franco, S.; Parrino, B.; Gaggianesi, M.; Pantina, V.D.; Bianca, P.; Nicotra, A.; Mangiapane, L.R.; Lo Iacono, M.; Ganduscio, G.; Veschi, V.; et al. CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. iScience. 2021, 24, 102664. [Google Scholar] [CrossRef]
- Carbone, D.; Parrino, B.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cirrincione, G.; Diana, P. 1,2,4-Oxadiazole Topsentin Analogs with Antiproliferative Activity against Pancreatic Cancer Cells; Targeting GSK3β Kinase. ChemMedChem. 2021, 16, 537–554. [Google Scholar] [CrossRef]
- Pecoraro, C.; Parrino, B.; Cascioferro, S.; Puerta, A.; Avan, A.; Peters, G.J.; Diana, P.; Giovannetti, E.; Carbone, D. A New Oxadiazole-Based Topsentin Derivative Modulates Cyclin-Dependent Kinase 1 Expression and Exerts Cytotoxic Effects on Pancreatic Cancer Cells. Molecules. 2022, 27, 19. [Google Scholar] [CrossRef]
- Kumar, R.; Sirohi, T.S.; Singh, H.; Yadav, R.; Roy, R.K.; Chaudhary, A.; Pandeya, S.N. 1,2,4-triazine analogs as novel class of therapeutic agents. Mini Rev. Med. Chem. 2014, 14, 168–207. [Google Scholar] [CrossRef]
- El-Wakil, M.H.; Ashour, H.M.; Saudi, M.N.; Hassan, A.M.; Labouta, I.M. Design; synthesis and molecular modeling studies of new series of antitumor 1;2;4-triazines with potential c-Met kinase inhibitory activity. Bioorg Chem. 2018, 76, 154–165. [Google Scholar] [CrossRef]
- Verma, T.; Sinha, M.; Bansal, N. Heterocyclic Compounds Bearing Triazine Scaffold and Their Biological Significance: A Review. Anticancer. Agents Med. Chem. 2020, 20, 4–28. [Google Scholar] [CrossRef]
- Song, J.; Cui, X.X.; Wu, B.W.; Li, D.; Wang, S.H.; Shi, L.; Zhu, T.; Zhang, Y.B.; Zhang, S.Y. Discovery of 1;2;4-triazine-based derivatives as novel neddylation inhibitors and anticancer activity studies against gastric cancer MGC-803 cells. Bioorg Med. Chem. Lett. 2020, 30, 126791. [Google Scholar] [CrossRef] [PubMed]
- Branowska, D.; Karczmarzyk, Z.; Wolińska, E.; Wysocki, W.; Morawiak, M.; Urbańczyk-Lipkowska, Z.; Bielawska, A.; Bielawski, K. 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, In Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study. Molecules 2020, 25, 2324. [Google Scholar] [CrossRef] [PubMed]
- Parrino, B.; Carbone, D.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Deng, D.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cusimano, M.G.; et al. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem. 2021, 209, 112892. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, U.H.; Huryn, D.M.; Keith, D.D. Preparation of substituted bisindolylmaleimides for the inhibition of cell proliferation. World Intellectual Property Organization WO9804551 A1, 5 February 1998. [Google Scholar]
- Kato, M.; Li, J.; Chuang, J.L.; Chuang, D.T. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure. 2007, 15, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.; Kokh, D.B.; Bomke, J.; Wegener, A.; Buchstaller, H.P.; Eggenweiler, H.M.; Matias, P.; Sirrenberg, C.; Wade, R.C.; Frech, M. Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat. Comm. 2017, 8, 2276. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.; Walker, R.C.; Zhang, W.; et al. AMBER 10; University of California: Davis, CA, USA, 2008. [Google Scholar]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef]
- Bassani, D.; Pavan, M.; Bolcato, G.; Sturlese, M.; Moro, S. Re-Exploring the Ability of Common Docking Programs to Correctly Reproduce the Binding Modes of Non-Covalent Inhibitors of SARS-CoV-2 Protease Mpro. Pharmaceuticals 2022, 15, 180. [Google Scholar] [CrossRef]
- Bolcato, G.; Cescon, E.; Pavan, M.; Bissaro, M.; Bassani, D.; Federico, S.; Spalluto, G.; Sturlese, M.; Moro, S. A Computational Workflow for the Identification of Novel Fragments Acting as Inhibitors of the Activity of Protein Kinase CK1δ. Int. J. Mol. Sci. 2021, 22, 9741. [Google Scholar] [CrossRef]
- Bassani, D.; Pavan, M.; Sturlese, M.; Moro, S. Sodium or Not Sodium: Should Its Presence Affect the Accuracy of Pose Prediction in Docking GPCR Antagonists? Pharmaceuticals 2022, 15, 346. [Google Scholar] [CrossRef]
- Moro, S.; Deflorian, F.; Bacilieri, M.; Spalluto, G. Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. Curr Pharm Des. 2006, 12, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, C.; De Franco, M.; Carbone, D.; Bassani, D.; Pavan, M.; Cascioferro, S.; Parrino, B.; Cirrincione, G.; Dall’Acqua, S.; Moro, S.; et al. 1,2,4-Amino-triazine derivatives as pyruvate dehydrogenase kinase inhibitors: Synthesis and pharmacological evaluation. Eur. J. Med. Chem. 2023, 249, 115134. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.; De Franco, M.; Pecoraro, C.; Bassani, D.; Pavan, M.; Cascioferro, S.; Parrino, B.; Cirrincione, G.; Dall’Acqua, S.; Moro, S.; et al. Discovery of the 3-Amino-1,2,4-triazine-Based Library as Selective PDK1 Inhibitors with Therapeutic Potential in Highly Aggressive Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 3679. [Google Scholar] [CrossRef] [PubMed]
- Sabbadin, D.; Moro, S. Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. J. Chem. Inf. Mod. 2014, 54, 372–376. [Google Scholar] [CrossRef]
- Bissaro, M.; Bolcato, G.; Pavan, M.; Bassani, D.; Sturlese, M.; Moro, S. Inspecting the Mechanism of Fragment Hits Binding on SARS-CoV-2 Mpro by Using Supervised Molecular Dynamics (SuMD) Simulations. ChemMedChem 2021, 16, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Pavan, M.; Bolcato, G.; Bassani, D.; Sturlese, M.; Moro, S. Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332. J. Enzyme Inhib. Med. Chem. 2021, 36, 1646–1650. [Google Scholar] [CrossRef]
- Bolcato, G.; Pavan, M.; Bassani, D.; Sturlese, M.; Moro, S. Ribose and Non-Ribose A2A Adenosine Receptor Agonists: Do They Share the Same Receptor Recognition Mechanism? Biomedicines 2022, 10, 515. [Google Scholar] [CrossRef]
- Hassankalhori, M.; Bolcato, G.; Bissaro, M.; Sturlese, M.; Moro, S. Shedding Light on the Molecular Recognition of Sub-Kilodalton Macrocyclic Peptides on Thrombin by Supervised Molecular Dynamics. Front. Mol. Biosci. 2021, 8, 707661. [Google Scholar] [CrossRef]
- Do, P.C.; Lee, E.H.; Le, L. Steered Molecular Dynamics Simulation in Rational Drug Design. J. Chem. Inf. Model. 2018, 58, 1473. [Google Scholar] [CrossRef]
- Pavan, M.; Menin, S.; Bassani, D.; Sturlese, M.; Moro, S. Qualitative Estimation of Protein-Ligand Complex Stability through Thermal Titration Molecular Dynamics Simulations. J. Chem. Inf. Mod. 2022, 62, 5715–5728. [Google Scholar] [CrossRef]
- Menin, S.; Pavan, M.; Salmaso, V.; Sturlese, M.; Moro, S. Thermal Titration Molecular Dynamics (TTMD): Not Your Usual Post-Docking Refinement. Int. J. Mol. Sci. 2023, 24, 3596. [Google Scholar] [CrossRef]
- Jubelin, C.; Muñoz-Garcia, J.; Griscom, L.; Cochonneau, D.; Ollivier, E.; Heymann, M.F.; Vallette, F.M.; Oliver, L.; Heymann, D. Three-dimensional in vitro culture models in oncology research. Cell. Biosci. 2022, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Bort, E.; Kieler, M.; Sharma, S.; Candido, J.B.; Loessner, D. 3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics. 2020, 10, 5074–5089. [Google Scholar] [CrossRef] [PubMed]
- Chemical Computing Group, ULC. Molecular Operating Environment (MOE). 2022. Available online: https://www.chemcomp.com/Products.html (accessed on 10 January 2023).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- QUACPAC 2.1.3.0: OpenEye Scientific Software, Santa Fe, NM. Available online: http://www.eyesopen.com (accessed on 10 January 2023).
- Korb, O.; Stützle, T.; Exner, T.E. PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design. In Proceedings of the Ant Colony Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels, Belgium, 4–7 September 2006; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Pellei, M.; Bagnarelli, L.; Luciani, L.; Del Bello, F.; Giorgioni, G.; Piergentili, A.; Quaglia, W.; De Franco, M.; Gandin, V.; Marzano, C.; et al. Synthesis and Cytotoxic Activity Evaluation of New Cu(I) Complexes of Bis(pyrazol-1-yl) Acetate Ligands Functionalized with an NMDA Receptor Antagonist. Int. J. Mol. Sci. 2020, 21, 2616. [Google Scholar] [CrossRef] [PubMed]
Cpd | R | R1 | Overall Yield% | 4 (%) 5 (%) | Cpd | R | R1 | Overall Yield% | 4 (%) 5 (%) |
---|---|---|---|---|---|---|---|---|---|
4a | H | H | 80 | 42 | 4f | Br | Cl | 79 | 40 |
5a | 38 | 5f | 39 | ||||||
4b | Br | H | 86 | 44 | 4g | H | F | 81 | 41 |
5b | 42 | 5g | 40 | ||||||
4c | H | Br | 94 | 49 | 4h | Br | F | 85 | 43 |
5c | 45 | 5h | 42 | ||||||
4d | Br | Br | 92 | 48 | 4i | H | OCH3 | 84 | 47 |
5d | 44 | 5i | 37 | ||||||
4e | H | Cl | 87 | 46 | 4j | Br | OCH3 | 96 | 48 |
5e | 41 | 5j | 48 |
Cpd | IC50 (µM) ± S.D. PDK1 | IC50 (µM) ± S.D. HSP90 | Cpd | IC50 (µM) ± S.D. PDK1 | IC50 (µM) ± S.D. HSP90 |
---|---|---|---|---|---|
4a | 0.30 ± 0.10 | - | 5a | 0.32 ± 0.10 | - |
4b | 0.33 ± 0.05 | - | 5b | 0.21 ± 0.07 | - |
4c | 0.26 ± 0.07 | - | 5c | 0.27 ± 0.08 | - |
4d | 0.04 ± 0.02 | 0.06 ± 0.02 | 5d | 0.05 ± 0.02 | 0.07 ± 0.01 |
4e | 0.29 ± 0.06 | - | 5e | 0.32 ± 0.10 | - |
4f | 0.12 ± 0.04 | 0.10 ± 0.03 | 5f | 0.08 ± 0.02 | 0.11 ± 0.04 |
4g | 0.19 ± 0.04 | - | 5g | 0.29 ± 0.10 | - |
4h | 0.06 ± 0.02 | - | 5h | 0.05 ± 0.03 | 0.09 ± 0.03 |
4i | 0.33 ± 0.10 | - | 5i | 0.31 ± 0.07 | - |
4j | 0.18 ± 0.06 | - | 5j | 0.04 ± 0.02 | 0.18 ± 0.04 |
DCA | 15,890 ± 256 | 29,740 ± 558 | DAP | 212 ± 48 | 698 ± 83 |
Cpd | IC50 (µM) ± S.D. BxPC-3 a | IC50 (µM) ± S.D. PSN-1 a | IC50 (µM) ± S.D. BxPC-3 b | IC50 (µM) ± S.D. PSN-1 b |
---|---|---|---|---|
4a | 15.7 ± 2.2 | 11.3 ± 2.0 | 141.3 ± 0.1 | 97.5 ± 2.8 |
4b | 23.5 ± 3.2 | 19.5 ± 2.9 | 223.7 ± 14.8 | 188.5 ± 13.8 |
4c | 9.5 ± 1.7 | 7.8 ± 1.5 | 76.8 ± 5.1 | 55.8 ± 3.5 |
4d | 30.2 ± 6.2 | 23.4 ± 3.7 | 175.5 ± 15.7 | 102.8 ± 9.1 |
4e | 32.3 ± 8.2 | 26.5 ± 4.3 | 159.5 ± 11.4 | 59.6 ± 4.5 |
4f | 18.4 ± 1.4 | 11.3 ± 1.8 | 168.9 ± 12.4 | 162.2 ± 6.8 |
4g | 6.5 ± 1.1 | 4.5 ± 1.3 | 71.5 ± 5.2 | 65.5 ± 6.8 |
4h | 22.3 ± 2.4 | 17.5 ± 2.8 | 187.5 ± 14.4 | 77.8 ± 3.8 |
4i | 31.2 ± 5.5 | 26.5 ± 4.0 | 189.4 ± 10.9 | 139.5 ± 7.5 |
4j | 30.5 ± 3.4 | 27.8 ± 3.8 | 159.7 ± 10.5 | 102.8 ± 8.7 |
5a | 27.2 ± 3.7 | 22.2 ± 2.7 | 169.5 ± 9.4 | 78.8 ± 8.5 |
5b | 9.4 ± 1.3 | 5.2 ± 0.9 | 68.5 ± 2.5 | 73.6 ± 6.8 |
5c | 13.7 ± 2.9 | 9.2 ± 1.9 | 156.5 ± 11.7 | 78.4 ± 5.8 |
5d | 26.7 ± 6.1 | 21.3 ± 3.5 | 198.5 ± 14.2 | 215.6 ± 13.6 |
5e | 16.5 ± 3.8 | 14.2 ± 3.1 | 199.7 ± 16.3 | 197.5 ± 12.4 |
5f | 22.4 ± 3.2 | 21.3 ± 4.4 | 229.4 ± 17.2 | 212.8 ± 14.4 |
5g | 19.8 ± 3.2 | 15.2 ± 4.6 | 79.7 ± 11.4 | 129.5 ± 11.8 |
5h | 0.05 ± 0.03 | 27.4 ± 5.1 | 208.3 ± 12.7 | 132.5 ± 5.9 |
5i | 0.31 ± 0.07 | 14.9 ± 3.2 | 153.4 ± 10.3 | 112.5 ± 9.1 |
5j | 0.04 ± 0.02 | 0.1 ± 0.03 | 79.5 ± 5.4 | 89.7 ± 5.7 |
DCA | >1000 | >1000 | 36200 ± 125 | 29800 ± 357 |
DAP | 16.5 ± 0.9 | 10.20 ± 1.6 | 78.2 ± 6.2 | 87.4 ± 8.9 |
Gemcitabine | 0.020 ± 0.003 | 0.10 ± 0.04 | 159.5 ± 5.6 | 102.6 ± 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, D.; De Franco, M.; Pecoraro, C.; Bassani, D.; Pavan, M.; Cascioferro, S.; Parrino, B.; Cirrincione, G.; Dall’Acqua, S.; Sut, S.; et al. Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Mar. Drugs 2023, 21, 288. https://doi.org/10.3390/md21050288
Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall’Acqua S, Sut S, et al. Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Marine Drugs. 2023; 21(5):288. https://doi.org/10.3390/md21050288
Chicago/Turabian StyleCarbone, Daniela, Michele De Franco, Camilla Pecoraro, Davide Bassani, Matteo Pavan, Stella Cascioferro, Barbara Parrino, Girolamo Cirrincione, Stefano Dall’Acqua, Stefania Sut, and et al. 2023. "Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma" Marine Drugs 21, no. 5: 288. https://doi.org/10.3390/md21050288
APA StyleCarbone, D., De Franco, M., Pecoraro, C., Bassani, D., Pavan, M., Cascioferro, S., Parrino, B., Cirrincione, G., Dall’Acqua, S., Sut, S., Moro, S., Gandin, V., & Diana, P. (2023). Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Marine Drugs, 21(5), 288. https://doi.org/10.3390/md21050288