Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = P. palustris

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2327 KiB  
Article
Characterization of Novel Species of Potassium-Dissolving Purple Nonsulfur Bacteria Isolated from In-Dyked Alluvial Upland Soil for Maize Cultivation
by Le Thi My Thu, Ly Ngoc Thanh Xuan, Tran Chi Nhan, Le Thanh Quang, Nguyen Duc Trong, Vo Minh Thuan, Tran Trong Khoi Nguyen, Phan Chi Nguyen, Le Vinh Thuc and Nguyen Quoc Khuong
Life 2024, 14(11), 1461; https://doi.org/10.3390/life14111461 - 12 Nov 2024
Cited by 1 | Viewed by 1600
Abstract
Potassium (K) is immobilized within the clay minerals, making it unavailable for plant use. Therefore, the current study aimed to (i) select isolates of purple nonsulfur bacteria that can dissolve K (K-PNSB) and (ii) evaluate the production of plant-growth-promoting substances by the K-PNSB [...] Read more.
Potassium (K) is immobilized within the clay minerals, making it unavailable for plant use. Therefore, the current study aimed to (i) select isolates of purple nonsulfur bacteria that can dissolve K (K-PNSB) and (ii) evaluate the production of plant-growth-promoting substances by the K-PNSB isolates. The results revealed that from in-dyked alluvial soils in hybrid maize fields, 61 K-PNSB isolates were obtained under the pH 5.50 conditions. The total dissolved K content (Kdis) by the 61 K-PNSB isolates fluctuated from 56.2 to 98.6 mg L−1. Therein, three isolates, including M-Sl-09, M-So-11, and M-So-14 had Kdis of 48.1–48.8 mg L−1 under aerobic dark condition (ADC) and 47.6–49.7 mg L−1 under microaerobic light condition (MLC). Moreover, these three isolates can also fix nitrogen (19.1–21.5 mg L−1 and 2.64–7.24 mg L−1), solubilize Ca-P (44.3–46.8 mg L−1 and 0.737–6.965 mg L−1), produce indole-3-acetic acid (5.34–7.13 and 2.40–3.23 mg L−1), 5-aminolevulinic acid (1.85–2.39 and 1.53–2.47 mg L−1), siderophores (1.06–1.52 and 0.92–1.26 mg L−1), and exopolymeric substances (18.1–18.8 and 52.0–56.0%), respectively, under ADC and MLC. The bacteria were identified according to their 16S rDNA as Cereibacter sphaeroides M-Sl-09, Rhodopseudomonas thermotolerans M-So-11, and Rhodospeudomonas palustris M-So-14. These potential bacteria should be further investigated as a plant-growth-promoting biofertilizer. Full article
(This article belongs to the Special Issue Trends in Microbiology 2024)
Show Figures

Figure 1

20 pages, 4849 KiB  
Article
Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats
by Muna Al-Tarshi, Sergey Dobretsov and Mohammed Al-Belushi
Microorganisms 2024, 12(8), 1561; https://doi.org/10.3390/microorganisms12081561 - 30 Jul 2024
Cited by 2 | Viewed by 1563
Abstract
Microbial composition across substrates in mangroves, particularly in the Middle East, remains unclear. This study characterized bacterial communities in sediment, water, Terebralia palustris snail guts, and plastic associated with Avicennia marina mangrove forests in two coastal lagoons in the Sea of Oman using [...] Read more.
Microbial composition across substrates in mangroves, particularly in the Middle East, remains unclear. This study characterized bacterial communities in sediment, water, Terebralia palustris snail guts, and plastic associated with Avicennia marina mangrove forests in two coastal lagoons in the Sea of Oman using 16S rDNA gene MiSeq sequencing. The genus Vibrio dominated all substrates except water. In the gut of snails, Vibrio is composed of 80–99% of all bacterial genera. The water samples showed a different pattern, with the genus Sunxiuqinia being dominant in both Sawadi (50.80%) and Qurum (49.29%) lagoons. There were significant differences in bacterial communities on different substrata, in particular plastic. Snail guts harbored the highest number of unique Operational Taxonomic Units (OTUs) in both lagoons, accounting for 30.97% OTUs in Sawadi and 28.91% OTUs in Qurum, compared to other substrates. Plastic in the polluted Sawadi lagoon with low salinity harbored distinct genera such as Vibrio, Aestuariibacter, Zunongwangia, and Jeotgalibacillus, which were absent in the Qurum lagoon with higher salinity and lower pollution. Sawadi lagoon exhibited higher species diversity in sediment and plastic substrates, while Qurum lagoon demonstrated lower species diversity. The principal component analysis (PCA) indicates that environmental factors such as salinity, pH, and nutrient levels significantly influence bacterial community composition across substrates. Variations in organic matter and potential anthropogenic influences, particularly from plastics, further shape bacterial communities. This study highlights the complex microbial communities in mangrove ecosystems, emphasizing the importance of considering multiple substrates in mangrove microbial ecology studies. The understanding of microbial dynamics and anthropogenic impacts is crucial for shaping effective conservation and management strategies in mangrove ecosystems, particularly in the face of environmental changes. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 3174 KiB  
Article
Biological Characteristics, Domesticated Cultivation Protocol, Antioxidant Activity, and Protective Effects against Cellular Oxidative Stress of an Underutilized Medicinal Mushroom: Fomitopsis palustris
by Yi Liang, Dan Dai, Wan-Qiu Chang, Yang Wang, Zhen-Hao Zhang, Dan Li, Bo Zhang and Yu Li
J. Fungi 2024, 10(6), 380; https://doi.org/10.3390/jof10060380 - 25 May 2024
Cited by 3 | Viewed by 2041
Abstract
Brown-rot fungus is one of the important medicinal mushrooms, which include some species within the genus Fomitopsis. This study identified wild macrofungi collected from a broad-leaved tree in Liaoning Province as Fomitopsis palustris using both morphological and molecular methods. To elucidate the [...] Read more.
Brown-rot fungus is one of the important medicinal mushrooms, which include some species within the genus Fomitopsis. This study identified wild macrofungi collected from a broad-leaved tree in Liaoning Province as Fomitopsis palustris using both morphological and molecular methods. To elucidate the potential medicinal and economic value of F. palustris, we conducted single-factor and orthogonal tests to optimize its mycelium culture conditions. Subsequently, we completed liquid culture and domestic cultivation based on these findings. Furthermore, crude polysaccharides were extracted from the cultivated fruiting bodies of F. palustris and their antioxidant activity was evaluated using chemical methods and cell-based models. The results showed that the optimal culture conditions for F. palustris mycelium were glucose as the carbon source, yeast extract powder as the nitrogen source, pH 6.0, and a temperature of 35 °C. Moreover, temperature was found to have the most significant impact on mycelial growth. The liquid strains were fermented for 6 days and then inoculated into a cultivation substrate composed of broadleaf sawdust, resulting in mature fruiting bodies in approximately 60 days. The crude polysaccharides extracted from the cultivated fruiting bodies of F. palustris (FPPs) possess in vitro scavenging abilities against DPPH radicals and OH radicals, as well as a certain ferric-reducing antioxidant power. Additionally, FPPs effectively mitigated H2O2-induced oxidative stress in RAW264.7cells by enhancing the intracellular activity of antioxidant enzymes such as SOD and CAT, scavenging excess ROS, and reducing MDA levels. This study provides preliminarily evidence of the potential medicinal and economic value of F. palustris and offers initial data for the future development and utilization of this species. Full article
Show Figures

Graphical abstract

13 pages, 1638 KiB  
Review
Currently Available Site Index Equations That Use On-Site Tree Measurements for Naturally Regenerated Longleaf Pine in Its Historical Range
by Curtis L. VanderSchaaf
Forests 2024, 15(5), 855; https://doi.org/10.3390/f15050855 - 14 May 2024
Cited by 1 | Viewed by 1414
Abstract
The longleaf pine (Pinus palustris P. Mill.) forest type occupied a much greater area in the United States prior to the arrival of Europeans, estimated to be around 37.2 million hectares. This area has been greatly reduced, and these ecosystems now occupy [...] Read more.
The longleaf pine (Pinus palustris P. Mill.) forest type occupied a much greater area in the United States prior to the arrival of Europeans, estimated to be around 37.2 million hectares. This area has been greatly reduced, and these ecosystems now occupy only about 1.2 to 1.6 million hectares. However, there has been a great interest in the restoration of this forest type mainly due to concerns about the loss of ecosystem services associated with these forests; the improved seedling quality and yield potentials bolster those efforts. Beyond that, existing stands are actively managed through different types of practices, including thinnings, prescribed burns often to manipulate the vegetation of other species, and the various timings of clearcuts. Thus, managers need tools to estimate site quality and ultimately productivity. A commonly used measure of site quality is site index, or the height of some defined dominant portion of the stand at a standardized base or index age. The primary objectives are to summarize the 16 existing equations to estimate site index and dominant height in naturally regenerated longleaf pine stands and to examine and visually compare their predicted behavior across a range of site quality and age conditions. Important considerations when using site index of anamorphism and polymorphism as well as base-age invariance are reviewed. Biologically, polymorphism is often considered advantageous since for many species differences in site quality not only result in different asymptotic dominant heights, but also varying rates in their approach to the asymptote. Of the 16 equations examined, only nine of them were polymorphic in nature, but all equations were base-age invariant. There is not an individual equation that is clearly superior because, for instance, it is either anamorphic in nature, is polymorphic but developed based on anamorphic curves, fit using data obtained from temporary plots, or it is limited geographically. Given these limitations, others can use this publication as a reference to determine which equation they feel is best for their particular situation. Full article
(This article belongs to the Special Issue Longleaf Pine Ecology, Restoration, and Management)
Show Figures

Figure 1

18 pages, 3546 KiB  
Article
Differentiating Historical Open Forests and Current Closed Forests of the Coastal Plain, Southeastern USA
by Robert Tatina, Brice B. Hanberry and John L. Willis
Forests 2024, 15(3), 532; https://doi.org/10.3390/f15030532 - 13 Mar 2024
Cited by 3 | Viewed by 1831
Abstract
The southeastern United States was historically characterized by open forests featuring fire-adapted species before land-use change. We compared tree composition and densities of historical tree surveys (1802 to 1841) to contemporary tree surveys, with the application of a similarity metric, in the Coastal [...] Read more.
The southeastern United States was historically characterized by open forests featuring fire-adapted species before land-use change. We compared tree composition and densities of historical tree surveys (1802 to 1841) to contemporary tree surveys, with the application of a similarity metric, in the Coastal Plain ecological province of Mississippi, southeastern USA. We detected the boundary between historical pine and oak-pine open forests and differentiated historical and current forests. In the Coastal Plain, historical open forests converted from fire-tolerant longleaf pine (Pinus palustris) dominance, with pines comprising 88% of all trees, to loblolly (Pinus taeda) and slash (P. elliottii) pines within monocultures (45% of all trees). Wetland and successional tree species increased to 33% of all trees. Contemporary forests have greater tree densities, transitioning from closed woodlands (range of 168 to 268 trees ha−1) to closed forests (336 trees ha−1). In the ecotonal boundary of the northern Coastal Plain between historical pine and pine-oak woodlands, the pine component shifted over space from 88% to 34% of all trees due to a greater oak component. Fire-tolerant shortleaf pine and oak dominance converted to planted loblolly pine (52% of all trees), while successional tree species increased (20% of all trees). Historical tree densities represented woodlands (range of 144 to 204 trees ha−1) but developed into closed forests (400 trees ha−1). Historical Coastal Plain longleaf pine woodlands differed more from historical ecotonal oak-pine woodlands than contemporary forests differed from each other, demonstrating unique historical ecosystems and landscape-scale homogenization of ecosystems through forestation. Full article
(This article belongs to the Special Issue Longleaf Pine Ecology, Restoration, and Management)
Show Figures

Figure 1

18 pages, 2328 KiB  
Review
Photo-Fermentative Bacteria Used for Hydrogen Production
by Soumya Gupta, Annabel Fernandes, Ana Lopes, Laura Grasa and Jesús Salafranca
Appl. Sci. 2024, 14(3), 1191; https://doi.org/10.3390/app14031191 - 31 Jan 2024
Cited by 44 | Viewed by 6988
Abstract
Photo-fermentation is an efficient hydrogen production pathway in which purple non-sulfur bacteria (PNSB) play an active role and produce hydrogen as a part of their metabolism under optimal conditions. These bacteria work under the influence of light to advance their metabolism and use [...] Read more.
Photo-fermentation is an efficient hydrogen production pathway in which purple non-sulfur bacteria (PNSB) play an active role and produce hydrogen as a part of their metabolism under optimal conditions. These bacteria work under the influence of light to advance their metabolism and use various substrates, such as simple sugars and volatile fatty acids, to produce hydrogen. This article presents a comparative review of several bacterial strains that have been efficiently used to produce hydrogen by photo-fermentation under different optimized conditions, including the substrate, its concentration, type and capacity of the bioreactor, light sources and intensities, and process conditions to achieve the maximum biohydrogen production rate. The analysis showed that the Rhodopseudomonas palustris is the main bacterium used for hydrogen production, with a maximum hydrogen production rate of 3.2 mM/h using 27.8 mM of glucose in a 165 mL serum bottle and 3.23 mM/h using 50 mM of glycerol at pH 7, followed by Rhodobacter sphaeroides, which gave a hydrogen production rate as high as 8.7 mM/h, using 40 mM of lactic acid, pH 7, and 30 °C temperature in a single-walled glass bioreactor. However, it is not preferred over R. palustris due to its versatile metabolism and ability to use an alternative mode if the conditions are not carefully adjusted, which can be a problem in hydrogen production. Full article
Show Figures

Figure 1

18 pages, 9605 KiB  
Article
Integrated Identification and Genetic Diversity of Potentially Invasive Clearwing Moths (Lepidoptera: Cossoidea: Sesiidae) in Korea
by Sora Kim, Jong-Kook Jung, Ikju Park, Bong-Woo Lee and Yong-Hun Kim
Insects 2024, 15(1), 79; https://doi.org/10.3390/insects15010079 - 22 Jan 2024
Cited by 3 | Viewed by 2669
Abstract
The populations of clearwing moth borers in Korea have recently caused extensive and severe damage to pin oaks (Quercus palustris Munchh.). We conducted field monitoring and molecular analyses to identify them in an integrated manner. Morphological examination and molecular analyses of the [...] Read more.
The populations of clearwing moth borers in Korea have recently caused extensive and severe damage to pin oaks (Quercus palustris Munchh.). We conducted field monitoring and molecular analyses to identify them in an integrated manner. Morphological examination and molecular analyses of the COI gene, based on intra- and interspecific genetic divergences (GDs), revealed that the borers were identified as two invasive species, Sphecodoptera sheni and Paranthrenella pinoakula sp. nov. The maximum intraspecific GD was found to be 1.9%, whereas the minimum interspecific GD was confirmed as 8.1%, indicating a distinct barcoding gap. Both the MJ network and NJ tree also showed that 18 haplotypes (Hs) were detected from the 52 COI sequences. The borers revealed a total of 17 Hs: (i) H1–H7 were detected in all seven regions with S. sheni; (ii) Wonju and Goyang populations of S. sheni revealed more than three Hs; (iii) H7 was closely connected with H8 of the Chinese population of S. sheni; (iv) H9–H10 were detected in other samples from the Wonju population with P. pinoakula sp. n. and were closely located with congeneric species. A maximum likelihood tree also revealed that P. pinoacula sp. n. nested within the congeneric species, genetically separating from S. sheni. Full article
(This article belongs to the Special Issue Systematics, Ecology and Evolution of Lepidoptera)
Show Figures

Graphical abstract

10 pages, 857 KiB  
Article
Prescribed Burning under Differing Forest Cover Types and Its Influence on Soil Water Infiltration Rates and Physical Properties in East Texas Forests
by Brian P. Oswald, Cassady P. Dunson and Kenneth W. Farrish
Forests 2023, 14(10), 2083; https://doi.org/10.3390/f14102083 - 18 Oct 2023
Cited by 2 | Viewed by 1530
Abstract
Little is known regarding the effects of prescribed burning on soil water infiltration and soil physical properties in Western Gulf Coast forests dominated by longleaf pine (Pinus palustris), shortleaf pine (P. echinata), or loblolly pine (P. taeda). [...] Read more.
Little is known regarding the effects of prescribed burning on soil water infiltration and soil physical properties in Western Gulf Coast forests dominated by longleaf pine (Pinus palustris), shortleaf pine (P. echinata), or loblolly pine (P. taeda). Soil water infiltration rates were measured pre-burn (before the fire), post-burn (one month after the fire), and at green-up (three months after the fire) in areas utilizing prescribed fire with different rotations and seasons. The National Forests and Grasslands of Texas predominantly perform dormant season burns every two to three years, while the Winston 8 Land and Cattle Ltd. Tree Farm often burned biannually during the dormant season, but occasionally during the growing season. Soil samples were also collected to determine the effects of prescribed burning on soil pH, bulk density, particle density, pore space, soil strength, O-horizon weight and depth (organic matter), and water-stable aggregates. There was a significant increase in soil water infiltration rates between pre-burn and post-burn and pre-burn and green-up, and between the two different burn intervals. Soil strength initially decreased slightly, but then increased over time. Soil-stable aggregates increased significantly over time, and soil physical properties that significantly changed included soil bulk density, pore space, water-stable soil aggregates, and soil strength. This study found there could be short-term (2–3 years) responses on soil physical properties and soil water infiltration rates from repeated burning treatments, regardless of overstory species. Full article
(This article belongs to the Special Issue Longleaf Pine Ecology, Restoration, and Management)
Show Figures

Figure 1

8 pages, 692 KiB  
Article
Comparing the Effects of Prescribed Burning on Soil Chemical Properties in East Texas Forests with Longleaf and Other Southern Pines in the Overstory
by Cassady P. Dunson, Brian P. Oswald and Kenneth W. Farrish
Forests 2023, 14(9), 1912; https://doi.org/10.3390/f14091912 - 20 Sep 2023
Cited by 4 | Viewed by 1390
Abstract
Little has been reported on the effects of repeated prescribed burning on southern United States’ forest soils, especially when site preparation is not the prescribed fire objective. This study was aimed at identifying any correlations between the soil chemical properties among differing burn [...] Read more.
Little has been reported on the effects of repeated prescribed burning on southern United States’ forest soils, especially when site preparation is not the prescribed fire objective. This study was aimed at identifying any correlations between the soil chemical properties among differing burn intervals and the effects prescribed burning has on them. Sampling was performed in 36 plots at three sites with two different burn intervals (2–3 years and biannually) and measured properties: (1) pre-burn (before the fire), (2) post-burn (one month after the fire), and (3) at vegetation green-up (three months after the fire). Sites varied by overstory species with longleaf pine (Pinus palustris) and shortleaf pine (Pinus echinata Mill.) in the overstory on one site, a mix of loblolly pine (P taeda L.) and shortleaf pine on another, and longleaf and loblolly pines on the third. SAS was used to determine the effects of prescribed burning between different time spans (pre-burn to post-burn, post-burn to green-up, and pre-burn to green-up) and between the two different burn intervals. We found that there could be short-term responses in soil chemical properties from repeated burning treatments including nitrogen in the forms of ammonium and nitrate, the carbon-to-nitrogen ratio, and electrical conductivity, all of which decreased following fire regardless of overstory species. Full article
(This article belongs to the Special Issue Longleaf Pine Ecology, Restoration, and Management)
15 pages, 9977 KiB  
Article
Nutrient Sequestration by Two Aquatic Macrophytes on Artificial Floating Islands in a Constructed Wetland
by Zhaozhe Chen and Ozeas S. Costa
Sustainability 2023, 15(8), 6553; https://doi.org/10.3390/su15086553 - 12 Apr 2023
Cited by 5 | Viewed by 2892
Abstract
Artificial floating islands (AFIs) have been documented as an efficient, environmentally friendly, and cost-effective solution to address nutrient pollution. However, most AFI studies to date have been conducted in controlled experiments, and AFI applications in natural settings, particularly in the U.S. Midwest, are [...] Read more.
Artificial floating islands (AFIs) have been documented as an efficient, environmentally friendly, and cost-effective solution to address nutrient pollution. However, most AFI studies to date have been conducted in controlled experiments, and AFI applications in natural settings, particularly in the U.S. Midwest, are limited. Here, we present the results of a combination of field and mesocosm experiments with two native aquatic plant species (Carex comosa and Eleocharis palustris) in a constructed wetland in north-central Ohio. Results showed that C. comosa outperformed E. palustris with respect to biomass accumulation and root system development. In natural conditions, C. comosa had a total dry biomass production of 58.5 ± 22.2 g/plug compared to 6.1 ± 3.2 g/plug in E. palustris. The maximum estimated mean nutrient storage for C. comosa was 20.24 g/m2 of N and 1.33 g/m2 of P, whereas it was 2.31 g/m2 of N and 0.17 g/m2 of P for E. palustris. In addition, the more developed root system of C. comosa suggests that AFIs containing this plant have better total nutrient removal capacity. The growth conditions of both species were significantly impacted by seasonal dynamics with respect to their biomass production and root elongation, as evidenced by reduced growth towards the end of the growing season. Full article
Show Figures

Figure 1

21 pages, 6759 KiB  
Article
The Influence of Shallow Peatland Water Quality on Characteristics of the Occurrence of Selected Herb Species in the Peatlands of Eastern Poland
by Artur Serafin, Magdalena Pogorzelec and Urszula Bronowicka-Mielniczuk
Int. J. Environ. Res. Public Health 2023, 20(4), 2788; https://doi.org/10.3390/ijerph20042788 - 4 Feb 2023
Cited by 3 | Viewed by 1788
Abstract
The aim of the analysis was to compare the physicochemical variables of the quality of shallow groundwater in the peatlands of Eastern Poland in the context of the occurrence of selected herb species with similar habitat requirements: bogbean (Menyanthes trifoliata), small [...] Read more.
The aim of the analysis was to compare the physicochemical variables of the quality of shallow groundwater in the peatlands of Eastern Poland in the context of the occurrence of selected herb species with similar habitat requirements: bogbean (Menyanthes trifoliata), small cranberry (Oxycoccus palustris), and purple marshlocks (Comarum palustre). The analysis of the quality variables of the shallow groundwater included the following physicochemical variables: reaction (pH), electrolytic conductivity (EC), dissolved organic carbon (DOC), total nitrogen (Ntot.), ammonium nitrogen (N-NH4), nitrite nitrogen (N-NO2), nitrate nitrogen (N-NO3), total phosphorus (Ptot.), phosphates (P-PO4), sulphates (SO2), sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg). Internal metabolism was shown to influence the hydro-chemical status of peatland water, free of substantial human impact. The variables tested were within the range of the habitat preferences of the herb species and indicated that they have a wide ecological tolerance. However, their identical habitat preferences were not reflected in identical values for the physicochemical variables of the water essential for building populations of these species. The occurrence of these plant species was also shown to be determined by the hydro-chemical characteristics of the habitat, but the characteristics of their occurrence did not indicate the hydro-chemical aspect of the habitat. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

18 pages, 3028 KiB  
Article
Habitat Characteristics and Mineral Nutrition Status of Rubus chamaemorus L. in Latvia
by Laura Āboliņa, Anita Osvalde and Andis Karlsons
Plants 2023, 12(3), 528; https://doi.org/10.3390/plants12030528 - 24 Jan 2023
Cited by 4 | Viewed by 2526
Abstract
In Latvia, cloudberries are considered a valuable delicacy and have aroused interest in the possibility of commercial cultivation, as currently, they are collected only in the wild. A complex study was carried out to provide insight into the growth conditions of wild cloudberry [...] Read more.
In Latvia, cloudberries are considered a valuable delicacy and have aroused interest in the possibility of commercial cultivation, as currently, they are collected only in the wild. A complex study was carried out to provide insight into the growth conditions of wild cloudberry in Latvia. The knowledge gained would provide a basis for the development of cloudberry cultivation technologies in the hemiboreal zone. Habitat characteristics, composition of surrounding vegetation, and plant mineral nutrition status were investigated in 18 study sites. Overall, the species composition of cloudberry study sites corresponded to two plant community classes: Cl. Vaccinio-Piceetea and Cl. Oxycocco-Sphagnetea. The most common species were Sphagnum magellanicum, Vaccinium myrtillus, and Oxycoccus palustris. The results clearly indicated acidic peat soils with high organic matter content and low degree of decomposition as being most suitable for cloudberry cultivation. High nutrient uptake capacity was found for wild cloudberry growing in nutrient-poor environments, as most of the leaf nutrients corresponded to the optimal levels determined for different cultivated berries. However, balanced fertilization to ensure successful plant vegetative and root growth would be recommended. The first results on wild cloudberry in Latvia indicated that optimization of P, S, B, and Mo should be the main focus. Full article
Show Figures

Figure 1

28 pages, 16180 KiB  
Article
Natural Populations from the Phytophthora palustris Complex Show a High Diversity and Abundance of ssRNA and dsRNA Viruses
by Leticia Botella, Marília Horta Jung, Michael Rost and Thomas Jung
J. Fungi 2022, 8(11), 1118; https://doi.org/10.3390/jof8111118 - 24 Oct 2022
Cited by 15 | Viewed by 4238
Abstract
We explored the virome of the “Phytophthora palustris complex”, a group of aquatic specialists geographically limited to Southeast and East Asia, the native origin of many destructive invasive forest Phytophthora spp. Based on high-throughput sequencing (RNAseq) of 112 isolates of “P. [...] Read more.
We explored the virome of the “Phytophthora palustris complex”, a group of aquatic specialists geographically limited to Southeast and East Asia, the native origin of many destructive invasive forest Phytophthora spp. Based on high-throughput sequencing (RNAseq) of 112 isolates of “P. palustris” collected from rivers, mangroves, and ponds, and natural forests in subtropical and tropical areas in Indonesia, Taiwan, and Japan, 52 putative viruses were identified, which, to varying degrees, were phylogenetically related to the families Botybirnaviridae, Narnaviridae, Tombusviridae, and Totiviridae, and the order Bunyavirales. The prevalence of all viruses in their hosts was investigated and confirmed by RT-PCR. The rich virus composition, high abundance, and distribution discovered in our study indicate that viruses are naturally infecting taxa from the “P. palustris complex” in their natural niche, and that they are predominant members of the host cellular environment. Certain Indonesian localities are the viruses’ hotspots and particular “P. palustris” isolates show complex multiviral infections. This study defines the first bi-segmented bunya-like virus together with the first tombus-like and botybirna-like viruses in the genus Phytophthora and provides insights into the spread and evolution of RNA viruses in the natural populations of an oomycete species. Full article
Show Figures

Figure 1

15 pages, 2498 KiB  
Article
Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in Agricultural and Forest Ecosystems with Laurel Wilt
by Kevin R. Cloonan, Wayne S. Montgomery, Teresa I. Narvaez, Daniel Carrillo and Paul E. Kendra
Insects 2022, 13(11), 971; https://doi.org/10.3390/insects13110971 - 22 Oct 2022
Cited by 9 | Viewed by 3294
Abstract
Redbay ambrosia beetle, Xyleborus glabratus, is an invasive wood-boring pest first detected in the USA in 2002 in Georgia. The beetle’s dominant fungal symbiont, Harringtonialauricola, causes laurel wilt, a lethal disease of trees in the Lauraceae. Over the past 20 [...] Read more.
Redbay ambrosia beetle, Xyleborus glabratus, is an invasive wood-boring pest first detected in the USA in 2002 in Georgia. The beetle’s dominant fungal symbiont, Harringtonialauricola, causes laurel wilt, a lethal disease of trees in the Lauraceae. Over the past 20 years, X. glabratus and laurel wilt have spread to twelve southeastern states, resulting in high mortality of native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Laurel wilt also threatens avocado (P. americana) in south Florida, but in contrast to the situation in forests, X. glabratus is detected at very low levels in affected groves. Moreover, other species of ambrosia beetle have acquired H. lauricola and now function as secondary vectors. To better understand the beetle communities in different ecosystems exhibiting laurel wilt, parallel field tests were conducted in an avocado grove in Miami-Dade County and a swampbay forest in Highlands County, FL. Sampling utilized ethanol lures (the best general attractant for ambrosia beetles) and essential oil lures (the best attractants for X. glabratus), alone and in combination, resulting in detection of 20 species. This study documents host-related differences in beetle diversity and population levels, and species-specific differences in chemical ecology, as reflected in efficacy of lures and lure combinations. Full article
Show Figures

Figure 1

10 pages, 1887 KiB  
Communication
Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events
by Tyler J. Mitchell and Paul A. Knapp
Atmosphere 2022, 13(10), 1731; https://doi.org/10.3390/atmos13101731 - 21 Oct 2022
Cited by 4 | Viewed by 2261
Abstract
Previous dendroclimatic studies have examined the relationship between total precipitation amounts and tree radial growth in the southeastern USA, yet recent studies indicate that specific precipitation event types and rainfall intensities influence longleaf pine (Pinus palustris Mill.) radial growth unequally. It remains [...] Read more.
Previous dendroclimatic studies have examined the relationship between total precipitation amounts and tree radial growth in the southeastern USA, yet recent studies indicate that specific precipitation event types and rainfall intensities influence longleaf pine (Pinus palustris Mill.) radial growth unequally. It remains unknown if other pine species respond similarly regarding specific precipitation types and intensities as most dendroclimatic studies have focused on precipitation amounts on monthly-to-annual scales without examining either the event type or intensity nor focusing on daily data. Here, we examine summertime climate–radial growth relationships in the southeastern USA for four native pine species (longleaf, shortleaf, Virginia, pitch) during 1940–2020. We examine and compare each species’ response to precipitation event types and intense rainfall events (IREs) and address if the temporal sensitivity to these events is species specific. Distinct temporal sensitivities exist among species, and there is a consistent association between convective, stationary front, and quasi-stationary precipitation and radial growth. All species except Virginia pine have significant (p < 0.001) associations between IREs and radial growth, even though IREs account for ~49% of summertime rainfall. These results suggest precipitation-type sensitivity to radial growth may have dendroclimatic implications. Full article
(This article belongs to the Special Issue Paleoclimate Reconstruction)
Show Figures

Figure 1

Back to TopTop