Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Uwharrie Mountains/Uwharrie National Forest
2.1.2. Sauratown Mountains/Pilot Mountain State Park
2.2. Tree-Ring Data
2.3. Climate Data
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Humboldt, A.; Bonpland, A. Essai Sur La Géographie Des Plantes; Chez Levrault, Schoell et Compagnie: Paris, France, 1805. [Google Scholar]
- Coile, T. The Effect of Rainfall and Temperature on the Annual Radial Growth of Pine in the Southern United States. Ecol. Monogr. 1936, 6, 533–562. [Google Scholar] [CrossRef]
- Schumacher, F.X.; Day, B.B. The Influence of Precipitation upon the Width of Annual Rings of Certain Timber Trees. Ecol. Monogr. 1939, 9, 387–429. [Google Scholar] [CrossRef]
- Devall, M.S.; Grender, J.M.; Koretz, J. Dendroecological Analysis of a Longleaf Pine Pinus Palustris Forest in Mississippi. Vegetatio 1991, 93, 1–8. [Google Scholar] [CrossRef]
- Meldahl, R.; Pederson, N.; Kush, J.; Varner, J. Dendrochronological Investigations of Climate and Competitive Effects on Longleaf Pine Growth. In Tree Ring Analysis: Biological, Methodological and Environmental Aspects; CABI Publishing: Wallingford, UK, 1999; pp. 265–285. [Google Scholar]
- Bhuta, A.A.; Kennedy, L.M.; Pederson, N. Climate-Radial Growth Relationships of Northern Latitudinal Range Margin Longleaf Pine (Pinus Palustris P. Mill.) in the Atlantic Coastal Plain of Southeastern Virginia. Tree-Ring Res. 2009, 65, 105–115. [Google Scholar] [CrossRef]
- Henderson, J.P.; Grissino-Mayer, H.D. Climate–Tree Growth Relationships of Longleaf Pine (Pinus Palustris Mill.) in the Southeastern Coastal Plain, USA. Dendrochronologia 2009, 27, 31–43. [Google Scholar] [CrossRef]
- Knapp, P.A.; Maxwell, J.T.; Soulé, P.T. Tropical Cyclone Rainfall Variability in Coastal North Carolina Derived from Longleaf Pine (Pinus Palustris Mill.): AD 1771–2014. Clim. Chang. 2016, 135, 311–323. [Google Scholar] [CrossRef]
- Patterson, T.W.; Cummings, L.W.; Knapp, P.A. Longleaf Pine (Pinus Palustris Mill.) Morphology and Climate/Growth Responses along a Physiographic Gradient in North Carolina. Prof. Geogr. 2016, 68, 238–248. [Google Scholar] [CrossRef]
- Mitchell, T.J.; Patterson, T.W.; Knapp, P.A. Comparison of Climate–Growth Responses of Montane and Piedmont Longleaf Pine (Pinus Palustris Mill.) Chronologies in North Carolina. Trees 2019, 33, 615–620. [Google Scholar] [CrossRef]
- Mitchell, T.; Knapp, P.; Patterson, T. Changes in Southeastern USA Summer Precipitation Event Types Using Instrumental (1940–2018) and Tree-Ring (1790–2018) Data. Environ. Res. Commun. 2019, 1, 111005. [Google Scholar] [CrossRef]
- Lassetter, R. The Dendrochronological Investigation in the Clinch River Drainage, Tennessee. Master’s Thesis, University of Arizona, Tucson, Arizona, 1938. [Google Scholar]
- Schulman, E. Dendrochronology in Pines of Arkansas. Ecology 1942, 23, 309–318. [Google Scholar] [CrossRef]
- Friend, A.L.; Hafley, W.L. Climatic Limitations to Growth in Loblolly and Shortleaf Pine (Pinus Taeda and P. Echinata): A Dendroclimatological Approach. For. Ecol. Manag. 1989, 26, 113–122. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.D.; Butler, D.R. Effects of Climate on Growth of Shortleaf Pine (Pinus Echinata Mill.) in Northern Georgia: A Dendroclimatic Study. Southeast. Geogr. 1993, 33, 65–81. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Guyette, R.P. Long-Term Growth and Climate Response of Shortleaf Pine at the Missouri Ozark Forest Ecosystem Project. In Proceedings of the 14th Central Hardwood Forest Conference, Wooster, OH, USA, 16–19 March 2004. [Google Scholar]
- Hooten, M.B.; Wikle, C.K. Shifts in the Spatio-Temporal Growth Dynamics of Shortleaf Pine. Environ. Ecol. Stat. 2007, 14, 207–227. [Google Scholar] [CrossRef]
- Cerny, K.C.; Stahle, D.W.; Bragg, D.C. A Frontier Shortleaf Pine Stand in the Old-Growth Cross Timbers of Oklahoma. J. Torrey Bot. Soc. 2016, 143, 224–238. [Google Scholar] [CrossRef]
- Watkins, K.; Patterson, T.; Knapp, P. Investigating the Climatic Sensitivity of Shortleaf Pine on a Southeastern US College Campus. Southeast. Geogr. 2018, 58, 146–163. [Google Scholar] [CrossRef]
- Copenheaver, C.A.; Grinter, L.E.; Lorber, J.H.; Neatrour, M.A.; Spinney, M.P. A Dendroecological and Dendroclimatic Analysis of Pinus Virginiana and Pinus Rigida at Two Slope Positions in the Virginia Piedmont. Castanea 2002, 67, 302–315. [Google Scholar]
- Abrams, M.D.; Orwig, D. Structure, Radial Growth Dynamics and Recent Climatic Variations of a 320-Year-Old Pinus Rigida Rock Outcrop Community. Oecologia 1995, 101, 353–360. [Google Scholar] [CrossRef]
- Pederson, N.; Cook, E.R.; Jacoby, G.C.; Peteet, D.M.; Griffin, K.L. The Influence of Winter Temperatures on the Annual Radial Growth of Six Northern Range Margin Tree Species. Dendrochronologia 2004, 22, 7–29. [Google Scholar] [CrossRef]
- Patterson, T.; Maxwell, R.S.; Harley, G.L.; Oliver, J.S.; Speer, J.H.; Collins, S.; Downe, M.; Gannon, B.; Ma, L.; Raso, C.; et al. Climate–Growth Relationships of Pinus Rigida (Mill.) at the Species’ Northern Range Limit, Acadia National Park, ME. Northeast. Nat. 2016, 23, 490–500. [Google Scholar] [CrossRef]
- Mitchell, T.J.; Knapp, P.A.; Ortegren, J.T. Tropical Cyclone Frequency Inferred from Intra-Annual Density Fluctuations in Longleaf Pine in Florida, USA. Clim. Res. 2019, 78, 249–259. [Google Scholar] [CrossRef]
- Knapp, P.A.; Soulé, P.T.; Maxwell, J.T.; Ortegren, J.T.; Mitchell, T.J. Tropical Cyclone Precipitation Regimes since 1750 and the Great Suppression of 1843–1876 along Coastal North Carolina, USA. Int. J. Climatol. 2021, 41, 200–210. [Google Scholar] [CrossRef]
- Bregy, J.C.; Maxwell, J.T.; Robeson, S.M.; Harley, G.L.; Elliott, E.A.; Heeter, K.J. US Gulf Coast Tropical Cyclone Precipitation Influenced by Volcanism and the North Atlantic Subtropical High. Commun. Earth Environ. 2022, 3, 164. [Google Scholar]
- Mitchell, T.J.; Knapp, P.A.; Patterson, T.W. The Importance of Infrequent, High-Intensity Rainfall Events for Longleaf Pine (Pinus Palustris Mill.) Radial Growth and Implications for Dendroclimatic Research. Trees For. People 2020, 1, 100009. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, Arizona, 2010. [Google Scholar]
- Soulé, P.T.; Knapp, P.A. Radial Growth Rate Responses of Western Juniper (Juniperus Occidentalis Hook.) to Atmospheric and Climatic Changes: A Longitudinal Study from Central Oregon, USA. Forests 2019, 10, 1127. [Google Scholar] [CrossRef] [Green Version]
- Knapp, P.A.; Soule, P.T. Increasing Water-Use Efficiency and Age-Specific Growth Responses of Old-Growth Ponderosa Pine Trees in the Northern Rockies. Glob. Chang. Biol. 2011, 17, 631–641. [Google Scholar] [CrossRef]
- Howard, I.M.; Stahle, D.W. Tree-Ring Reconstruction of Single-Day Precipitation Totals over Eastern Colorado. Mon. Weather Rev. 2020, 148, 597–612. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Torbenson, M.C.; Howard, I.M.; Griffin, D.; Diaz, J.V.; Cook, B.I.; Williams, A.P.; Watson, E.; et al. Dynamics, Variability, and Change in Seasonal Precipitation Reconstructions for North America. J. Clim. 2020, 33, 3173–3195. [Google Scholar] [CrossRef]
- Wise, E.K. Sub-Seasonal Tree-Ring Reconstructions for More Comprehensive Climate Records in US West Coast Watersheds. Geophys. Res. Lett. 2021, 48, e2020GL091598. [Google Scholar] [CrossRef]
- Griffin-Nolan, R.J.; Slette, I.J.; Knapp, A.K. Deconstructing Precipitation Variability: Rainfall Event Size and Timing Uniquely Alter Ecosystem Dynamics. J. Ecol. 2021, 109, 3356–3369. [Google Scholar] [CrossRef]
- Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How Ecologists Define Drought, and Why We Should Do Better. Glob. Chang. Biol. 2019, 25, 3193–3200. [Google Scholar] [CrossRef]
- Slette, I.J.; Smith, M.D.; Knapp, A.K.; Vicente-Serrano, S.M.; Camarero, J.J.; Beguería, S. Standardized Metrics Are Key for Assessing Drought Severity. Glob. Chang. Biol. 2020, 26, e1–e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, C.S.; Buras, A.; Esquivel-Muelbert, A.; Jump, A.S.; Rigling, A.; Rammig, A. Standardized Drought Indices in Ecological Research: Why One Size Does Not Fit All. Glob. Chang. Biol. 2020, 26, 322–324. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Powers, J.; Cochard, H.; Choat, B. Hanging by a Thread? Forests and Drought. Science 2020, 368, 261–266. [Google Scholar] [CrossRef]
- Patterson, T.W.; Knapp, P.A. Observations on a Rare Old-Growth Montane Longleaf Pine Forest in Central North Carolina, USA. Nat. Areas J. 2016, 36, 153–161. [Google Scholar] [CrossRef]
- Kuppinger, D.M.; Rich, A. Fire in Central Piedmont as Recorded by Fire Scars at Pilot Mountain State Park, NC. Phys. Geogr. 2020, 41, 238–253. [Google Scholar] [CrossRef]
- Holmes, R.L. Quality Control of Crossdating and Measuring. Users Manual for Computer Program COFECHA. In Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin; University of Arizona: Tucson, Arizona, 1986. [Google Scholar]
- Bunn, A.G. A Dendrochronology Program Library in R (DplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Soulé, P.T.; Knapp, P.A.; Maxwell, J.T.; Mitchell, T.J. A Comparison of the Climate Response of Longleaf Pine (Pinus Palustris Mill.) Trees among Standardized Measures of Earlywood, Latewood, Adjusted Latewood, and Totalwood Radial Growth. Trees 2021, 35, 1065–1074. [Google Scholar] [CrossRef]
- Meko, D.M.; Baisan, C.H. Pilot Study of Latewood-Width of Conifers as an Indicator of Variability of Summer Rainfall in the North American Monsoon Region. Int. J. Climatol. 2001, 21, 697–708. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS) Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Nardini, A. Can Trees Harden up to Survive Global Change-Type Droughts? Tree Physiol. 2021, 41, 2004–2007. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Kunkel, K.; Arnold, J. Precipitation Change in the United States. In Climate Science Special Report: Fourth National Climate Assessment, Volume I; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
Species * | Correlation with Convective Precipitation | Correlation with Stationary Front Precipitation | Correlation with Quasi-Stationary Precipitation | Quasi-Stationary Precipitation/Total Precipitation Ratio |
---|---|---|---|---|
Longleaf pine | 0.35 | 0.40 | 0.50 | |
[0.14, 0.53] | [0.19, 0.57] | [0.31, 0.65] | 86.4% | |
p < 0.05 | p < 0.01 | p < 0.005 | ||
Shortleaf pine | 0.40 | 0.44 | 0.54 | |
[0.19, 0.57] | [0.24, 0.61] | [0.36, 0.68] | 86.4% | |
p < 0.01 | p < 0.01 | p < 0.005 | ||
Virginia pine | 0.17 | 0.36 | 0.41 | |
[−0.06, 0.38] | [0.15, 0.54] | [0.20, 0.58] | 83.0% | |
p > 0.99 | p < 0.03 | p < 0.01 | ||
Pitch pine | 0.26 | 0.37 | 0.40 | |
[0.03, 0.46] | [0.15, 0.55] | [0.19, 0.57] | 90.3% | |
p = 0.568 | p < 0.03 | p < 0.01 |
Species * | Correlation with Precipitation | Correlation with IRE Precipitation | Correlation with Non-IRE Precipitation | IRE Precipitation/Total Precipitation Ratio | IRE Correlation/Total Precipitation Correlation |
---|---|---|---|---|---|
Longleaf pine | 0.59 | 0.55 | 0.19 | ||
[0.42, 0.71] | [0.37, 0.68] | [−0.03, 0.39] | 50.2% | 93.2% | |
p < 0.001 | p < 0.001 | p > 0.99 | |||
Shortleaf pine | 0.63 | 0.54 | 0.28 | ||
[0.47, 0.74] | [0.36, 0.68] | [0.06, 0.47] | 50.2% | 85.7% | |
p < 0.001 | p < 0.001 | p = 0.345 | |||
Virginia pine | 0.37 | 0.32 | 0.18 | ||
[0.17, 0.55] | [0.11, 0.51] | [−0.04, 0.38] | 53.3% | 86.5% | |
p < 0.02 | p = 0.052 | p > 0.99 | |||
Pitch pine | 0.51 | 0.50 | 0.24 | ||
[0.33, 0.65] | [0.31, 0.65] | [0.02, 0.43] | 43.2% | 98.0% | |
p < 0.001 | p < 0.001 | p = 0.262 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, T.J.; Knapp, P.A. Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events. Atmosphere 2022, 13, 1731. https://doi.org/10.3390/atmos13101731
Mitchell TJ, Knapp PA. Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events. Atmosphere. 2022; 13(10):1731. https://doi.org/10.3390/atmos13101731
Chicago/Turabian StyleMitchell, Tyler J., and Paul A. Knapp. 2022. "Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events" Atmosphere 13, no. 10: 1731. https://doi.org/10.3390/atmos13101731
APA StyleMitchell, T. J., & Knapp, P. A. (2022). Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events. Atmosphere, 13(10), 1731. https://doi.org/10.3390/atmos13101731