Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = P-type epitaxial growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2944 KiB  
Article
Enhancing the Performance of Si/Ga2O3 Heterojunction Solar-Blind Photodetectors for Underwater Applications
by Nuoya Li, Zhixuan Liao, Linying Peng, Difei Xue, Kai Peng and Peiwen Lv
Nanomaterials 2025, 15(14), 1137; https://doi.org/10.3390/nano15141137 - 21 Jul 2025
Viewed by 368
Abstract
Epitaxial growth of β-Ga2O3 nanowires on silicon substrates was realized by the low-pressure chemical vapor deposition (LPCVD) method. The as-grown Si/Ga2O3 heterojunctions were employed in the Underwater DUV detection. It is found that the carrier type as [...] Read more.
Epitaxial growth of β-Ga2O3 nanowires on silicon substrates was realized by the low-pressure chemical vapor deposition (LPCVD) method. The as-grown Si/Ga2O3 heterojunctions were employed in the Underwater DUV detection. It is found that the carrier type as well as the carrier concentration of the silicon substrate significantly affect the performance of the Si/Ga2O3 heterojunction. The p-Si/β-Ga2O3 (2.68 × 1015 cm−3) devices exhibit a responsivity of up to 205.1 mA/W, which is twice the performance of the devices on the n-type substrate (responsivity of 93.69 mA/W). Moreover, the devices’ performance is enhanced with the increase in the carrier concentration of the p-type silicon substrates; the corresponding device on the high carrier concentration substrate (6.48 × 1017 cm−3) achieves a superior responsivity of 845.3 mA/W. The performance enhancement is mainly attributed to the built-in electric field at the p-Si/n-Ga2O3 heterojunction and the reduction in the Schottky barrier under high carrier concentration. These findings would provide a strategy for optimizing carrier transport and interface engineering in solar-blind UV photodetectors, advancing the practical use of high-performance solar-blind photodetectors for underwater application. Full article
Show Figures

Figure 1

14 pages, 3212 KiB  
Article
Designs of Charge-Balanced Edge Termination Structures for 3.3 kV SiC Power Devices Using PN Multi-Epitaxial Layers
by Sangyeob Kim and Ogyun Seok
Micromachines 2025, 16(1), 47; https://doi.org/10.3390/mi16010047 - 30 Dec 2024
Viewed by 1339
Abstract
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P+ rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively [...] Read more.
We demonstrated 3.3 kV silicon carbide (SiC) PiN diodes using a trenched ring-assisted junction termination extension (TRA-JTE) with PN multi-epitaxial layers. Multiple P+ rings and width-modulated multiple trenches were utilized to alleviate electric-field crowding at the edges of the junction to quantitively control the effective charge (Qeff) in the termination structures. The TRA-JTE forms with the identical P-type epitaxial layer, which enables high-efficiency hole injection and conductivity modulation. The effects of major design parameters for the TRA-JTE, such as the number of trenches (Ntrench) and depth of trenches (Dtrench), were analyzed to obtain reliable blocking capabilities. Furthermore, the single-zone-JTE (SZ-JTE), ring-assisted-JTE (RA-JTE), and trenched-JTE (T-JTE) were also evaluated for comparative analysis. Our results show that the TRA-JTE exhibited the highest breakdown voltage (BV), exceeding 4.2 kV, and the strongest tolerance against variance in doping concentration for the JTE (NJTE) compared to both the RA-JTE and T-JTE due to the charge-balanced edge termination by multiple P+ rings and trench structures. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

11 pages, 2530 KiB  
Article
Direct Selective Epitaxy of 2D Sb2Te3 onto Monolayer WS2 for Vertical p–n Heterojunction Photodetectors
by Baojun Pan, Zhenjun Dou, Mingming Su, Ya Li, Jialing Wu, Wanwan Chang, Peijian Wang, Lijie Zhang, Lei Zhao, Mei Zhao and Sui-Dong Wang
Nanomaterials 2024, 14(10), 884; https://doi.org/10.3390/nano14100884 - 19 May 2024
Cited by 3 | Viewed by 2060
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for [...] Read more.
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p–n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 μs/503 μs, respectively. Full article
Show Figures

Figure 1

13 pages, 8452 KiB  
Article
Growth and Properties of Ultra-Thin PTCDI-C8 Films on GaN(0001)
by Katarzyna Lament, Miłosz Grodzicki, Radosław Wasielewski, Piotr Mazur and Antoni Ciszewski
Crystals 2024, 14(3), 201; https://doi.org/10.3390/cryst14030201 - 20 Feb 2024
Cited by 1 | Viewed by 1946
Abstract
Ultra-thin PTCDI-C8 films are vapor-deposited under ultra-high vacuum (UHV) conditions onto surfaces of p- or n-doped GaN(0001) samples. The X-ray photoelectron spectroscopy (XPS) results reveal a lack of strong chemical interaction between the PTCDI-C8 molecule and the substrate. Changes in the electronic structure [...] Read more.
Ultra-thin PTCDI-C8 films are vapor-deposited under ultra-high vacuum (UHV) conditions onto surfaces of p- or n-doped GaN(0001) samples. The X-ray photoelectron spectroscopy (XPS) results reveal a lack of strong chemical interaction between the PTCDI-C8 molecule and the substrate. Changes in the electronic structure of the substrate or the adsorbed molecules due to adsorption are not noticed at the XPS spectra. Work function changes have been measured as a function of the film thickness. The position of the HOMO level for films of thicknesses 3.2–5.5 nm has been determined. Energy diagrams of the interface between p- and n-type GaN(0001) substates and the PTCDI-C8 films are proposed. The fundamental molecular building blocks of the PTCDI-C8 films on GaN(0001), assembled by self-organization, have been identified. They are rows of PTCDI-C8 molecules stacked in “stand-up” positions in reference to the substrate, supported by the π–π bonds which are formed between the molecular cores of the molecules and monomolecular layers constituted by rows which are tilted in reference to the layer plane. The layers are epitaxially oriented. The epitaxial relation between the rows and the crystallographic directions of the substrate are determined. A model of the PTCDI-C8 film’s growth on GaN(0001) substrate is proposed. The 3D islands of PTCDI-C8 molecules formed on the substrate surface during film deposition are thermodynamically unstable. The Volmer–Weber type of growth observed here is a kinetic effect. Rewetting processes are noticeable after film aging at room temperature or annealing at up to 100 °C. Full article
Show Figures

Figure 1

11 pages, 5306 KiB  
Article
Epitaxial Growth and Characterization of Nanoscale Magnetic Topological Insulators: Cr-Doped (Bi0.4Sb0.6)2Te3
by Pangihutan Gultom, Chia-Chieh Hsu, Min Kai Lee, Shu Hsuan Su and Jung-Chung-Andrew Huang
Nanomaterials 2024, 14(2), 157; https://doi.org/10.3390/nano14020157 - 11 Jan 2024
Cited by 1 | Viewed by 1861
Abstract
The exploration initiated by the discovery of the topological insulator (BixSb1−x)2Te3 has extended to unlock the potential of quantum anomalous Hall effects (QAHEs), marking a revolutionary era for topological quantum devices, low-power electronics, and spintronic [...] Read more.
The exploration initiated by the discovery of the topological insulator (BixSb1−x)2Te3 has extended to unlock the potential of quantum anomalous Hall effects (QAHEs), marking a revolutionary era for topological quantum devices, low-power electronics, and spintronic applications. In this study, we present the epitaxial growth of Cr-doped (Bi0.4Sb0.6)2Te3 (Cr:BST) thin films via molecular beam epitaxy, incorporating various Cr doping concentrations with varying Cr/Sb ratios (0.025, 0.05, 0.075, and 0.1). High-quality crystalline of the Cr:BST thin films deposited on a c-plane sapphire substrate has been rigorously confirmed through reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) analyses. The existence of a Cr dopant has been identified with a reduction in the lattice parameter of BST from 30.53 ± 0.05 to 30.06 ± 0.04 Å confirmed by X-ray diffraction, and the valence state of Cr verified by X-ray photoemission (XPS) at binding energies of ~573.1 and ~583.5 eV. Additionally, the influence of Cr doping on lattice vibration was qualitatively examined by Raman spectroscopy, revealing a blue shift in peaks with increased Cr concentration. Surface characteristics, crucial for the functionality of topological insulators, were explored via Atomic Force Microscopy (AFM), illustrating a sevenfold reduction in surface roughness as the Cr concentration increased from 0 to 0.1. The ferromagnetic properties of Cr:BST were examined by a superconducting quantum interference device (SQUID) with a magnetic field applied in out-of-plane and in-plane directions. The Cr:BST samples exhibited a Curie temperature (Tc) above 50 K, accompanied by increased magnetization and coercivity with increasing Cr doping levels. The introduction of the Cr dopant induces a transition from n-type ((Bi0.4Sb0.6)2Te3) to p-type (Cr:(Bi0.4Sb0.6)2Te3) carriers, demonstrating a remarkable suppression of carrier density up to one order of magnitude, concurrently enhancing carrier mobility up to a factor of 5. This pivotal outcome is poised to significantly influence the development of QAHE studies and spintronic applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

45 pages, 10823 KiB  
Review
Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications
by Ory Maimon and Qiliang Li
Materials 2023, 16(24), 7693; https://doi.org/10.3390/ma16247693 - 18 Dec 2023
Cited by 15 | Viewed by 4634
Abstract
Power electronics are becoming increasingly more important, as electrical energy constitutes 40% of the total primary energy usage in the USA and is expected to grow rapidly with the emergence of electric vehicles, renewable energy generation, and energy storage. New materials that are [...] Read more.
Power electronics are becoming increasingly more important, as electrical energy constitutes 40% of the total primary energy usage in the USA and is expected to grow rapidly with the emergence of electric vehicles, renewable energy generation, and energy storage. New materials that are better suited for high-power applications are needed as the Si material limit is reached. Beta-phase gallium oxide (β-Ga2O3) is a promising ultra-wide-bandgap (UWBG) semiconductor for high-power and RF electronics due to its bandgap of 4.9 eV, large theoretical breakdown electric field of 8 MV cm−1, and Baliga figure of merit of 3300, 3–10 times larger than that of SiC and GaN. Moreover, β-Ga2O3 is the only WBG material that can be grown from melt, making large, high-quality, dopable substrates at low costs feasible. Significant efforts in the high-quality epitaxial growth of β-Ga2O3 and β-(AlxGa1−x)2O3 heterostructures has led to high-performance devices for high-power and RF applications. In this report, we provide a comprehensive summary of the progress in β-Ga2O3 field-effect transistors (FETs) including a variety of transistor designs, channel materials, ohmic contact formations and improvements, gate dielectrics, and fabrication processes. Additionally, novel structures proposed through simulations and not yet realized in β-Ga2O3 are presented. Main issues such as defect characterization methods and relevant material preparation, thermal studies and management, and the lack of p-type doping with investigated alternatives are also discussed. Finally, major strategies and outlooks for commercial use will be outlined. Full article
(This article belongs to the Special Issue Ultra-Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

17 pages, 8300 KiB  
Article
Epitaxial Growth of Cobalt Oxide Thin Films on Sapphire Substrates Using Atmospheric Pressure Mist Chemical Vapor Deposition
by Hou-Guang Chen, Huei-Sen Wang, Sheng-Rui Jian, Tung-Lun Yeh and Jing-Yi Feng
Coatings 2023, 13(11), 1878; https://doi.org/10.3390/coatings13111878 - 1 Nov 2023
Cited by 5 | Viewed by 2713
Abstract
This study demonstrated the epitaxial growth of single-phase (111) CoO and (111) Co3O4 thin films on a-plane sapphire substrates using an atmospheric pressure mist chemical vapor deposition (mist-CVD) process. The phase structure of the grown cobalt oxide films was [...] Read more.
This study demonstrated the epitaxial growth of single-phase (111) CoO and (111) Co3O4 thin films on a-plane sapphire substrates using an atmospheric pressure mist chemical vapor deposition (mist-CVD) process. The phase structure of the grown cobalt oxide films was manipulated by controlling the growth temperature and process ambient, confirmed through X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, the electrical properties of Co3O4 films were significantly improved after thermal annealing in oxygen ambient, exhibiting a stable p-type conductivity with an electrical resistivity of 8.35 Ohm cm and a carrier concentration of 4.19 × 1016 cm−3. While annealing CoO in oxygen atmosphere, the Co3O4 films were found to be most readily formed on the CoO surface due to the oxidation reaction. The orientation of the atomic arrangement of formed Co3O4 was epitaxially constrained by the underlying CoO epitaxial layer. The oxidation of CoO to Co3O4 was largely driven by outward diffusion of cobalt cations, resulting in the formation of pores in the interior of formed Co3O4 films. Full article
Show Figures

Figure 1

16 pages, 9602 KiB  
Perspective
Plasmonic Modification of Epitaxial Nanostructures for the Development of a Highly Efficient SERS Platform
by Ewa Dumiszewska, Aleksandra Michałowska, Libor Nozka, Dariusz Czolak and Jan Krajczewski
Crystals 2023, 13(11), 1539; https://doi.org/10.3390/cryst13111539 - 26 Oct 2023
Cited by 1 | Viewed by 1732
Abstract
Epitaxy is the process of crystallization of monocrystalline layers and nanostructures on a crystalline substrate. It allows for the crystallization of various semiconductor layers on a finite quantity of semiconductor substrates, like GaAs, InP, GaP, InGaP, GaP, and many others. The growth of [...] Read more.
Epitaxy is the process of crystallization of monocrystalline layers and nanostructures on a crystalline substrate. It allows for the crystallization of various semiconductor layers on a finite quantity of semiconductor substrates, like GaAs, InP, GaP, InGaP, GaP, and many others. The growth of epitaxial heterostructures is very complicated and requires special conditions and the precise control of the growth temperature, the pressure in the reactor, and the flow of the precursors. It is used to grow epitaxial structures in lasers, diodes, detectors, photovoltaic structures, and so on. Semiconductors themselves are not suitable materials for application in surface-enhanced Raman spectroscopy (SERS) due to poor plasmonic properties in the UV/VIS range caused by missing free electrons in the conduction band due to the existing band gap. A plasmonic material is added on top of the nanostructured pattern, allowing for the formation of mixed photon–plasmon modes called localized surface plasmon-polaritons which stand behind the SERS effect. Typically, gold and silver are used as functional plasmonic layers. Such materials could be deposited via chemical or physical process. Attention has also been devoted to other plasmonic materials, like ones based on the nitrides of metals. The SERS performance of a functional surface depends both on the response of the plasmonic material and the morphology of the underlying semiconductor epitaxial layer. In the context of SERS, epitaxial growth allows for the fabrication of substrates with well-defined 3D nanostructures and enhanced electromagnetic properties. In this work, we described the possible potential plasmonic modification, composed of various coatings such as noble metals, TiN, and others, of well-developed epitaxial nanostructures for the construction of a new type of highly active SERS platforms. This abstract also highlights the role of epitaxial growth in advancing SERS, focusing on its principles, methods, and impact. Furthermore, this work outlines the potential of epitaxial growth to push the boundaries of SERS. The ability to design substrates with tailored plasmonic properties opens avenues for ultralow concentration detection. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

25 pages, 393 KiB  
Article
A Study on Solutions for a Class of Higher-Order System of Singular Boundary Value Problem
by Biswajit Pandit, Amit K. Verma and Ravi P. Agarwal
Symmetry 2023, 15(9), 1729; https://doi.org/10.3390/sym15091729 - 8 Sep 2023
Viewed by 955
Abstract
In this article, we propose a fourth-order non-self-adjoint system of singular boundary value problems (SBVPs), which arise in the theory of epitaxial growth by considering hte equation [...] Read more.
In this article, we propose a fourth-order non-self-adjoint system of singular boundary value problems (SBVPs), which arise in the theory of epitaxial growth by considering hte equation 1rβrβ1rβ(rβΘ)=12rβK11μΘ2+2μΘΘ+K12μφ2+2μφφ+λ1G1(r),1rβrβ1rβ(rβφ)=12rβK21μΘ2+2μΘΘ+K22μφ2+2μφφ+λ2G2(r), where λ10 and λ20 are two parameters, μ=pr2β2,pR+, G1,G2L1[0,1] such that M1*G1(r)M1>0,M2*G2(r)M2>0 and K12>0, K110, and K21>0, K220 are constants that are connected by the relation (K12+K22)(K11+K21) and β>1. To study the governing equation, we consider three different types of homogeneous boundary conditions. We use the transformation t=r1+β1+β to deduce the second-order singular boundary value problem. Also, for β=p=G1(r)=G2(r)=1, it admits dual solutions. We show the existence of at least one solution in continuous space. We derive a sign of solutions. Furthermore, we compute the approximate bound of the parameters to point out the region of nonexistence. We also conclude bounds are symmetric with respect to two different transformations. Full article
(This article belongs to the Special Issue Symmetry in Nonlinear and Convex Analysis)
11 pages, 3112 KiB  
Article
Improvement of Mg-Doped GaN with Shutter-Controlled Process in Plasma-Assisted Molecular Beam Epitaxy
by Ying-Chieh Wang, Ikai Lo, Yu-Chung Lin, Cheng-Da Tsai and Ting-Chang Chang
Crystals 2023, 13(6), 907; https://doi.org/10.3390/cryst13060907 - 1 Jun 2023
Viewed by 2342
Abstract
Mg-doped GaN was grown by plasma-assisted molecular beam epitaxy (PAMBE) on a Fe-doped GaN template substrate by employing a shutter-controlled process. The transition from n-type to p-type conductivity of Mg-doped GaN in relation to the N/Ga flux ratio was studied. The [...] Read more.
Mg-doped GaN was grown by plasma-assisted molecular beam epitaxy (PAMBE) on a Fe-doped GaN template substrate by employing a shutter-controlled process. The transition from n-type to p-type conductivity of Mg-doped GaN in relation to the N/Ga flux ratio was studied. The highest p-type carrier concentration in this series was 3.12 × 1018 cm−3 under the most N-rich condition. By modulating the shutters of different effusion cells for the shutter-controlled process, a wide growth window for p-type GaN was obtained. It was found that the presence of Mg flux effectively prevents the formation of structural defects in GaN epi-layers, resulting in the improvement of crystal quality and carrier mobility. Full article
(This article belongs to the Special Issue Materials and Devices Grown via Molecular Beam Epitaxy)
Show Figures

Figure 1

20 pages, 3622 KiB  
Article
Structural Properties and Energy Spectrum of Novel GaSb/AlP Self-Assembled Quantum Dots
by Demid S. Abramkin, Mikhail O. Petrushkov, Dmitrii B. Bogomolov, Eugeny A. Emelyanov, Mikhail Yu. Yesin, Andrey V. Vasev, Alexey A. Bloshkin, Eugeny S. Koptev, Mikhail A. Putyato, Victor V. Atuchin and Valery V. Preobrazhenskii
Nanomaterials 2023, 13(5), 910; https://doi.org/10.3390/nano13050910 - 28 Feb 2023
Cited by 15 | Viewed by 2374
Abstract
In this work, the formation, structural properties, and energy spectrum of novel self-assembled GaSb/AlP quantum dots (SAQDs) were studied by experimental methods. The growth conditions for the SAQDs’ formation by molecular beam epitaxy on both matched GaP and artificial GaP/Si substrates were determined. [...] Read more.
In this work, the formation, structural properties, and energy spectrum of novel self-assembled GaSb/AlP quantum dots (SAQDs) were studied by experimental methods. The growth conditions for the SAQDs’ formation by molecular beam epitaxy on both matched GaP and artificial GaP/Si substrates were determined. An almost complete plastic relaxation of the elastic strain in SAQDs was reached. The strain relaxation in the SAQDs on the GaP/Si substrates does not lead to a reduction in the SAQDs luminescence efficiency, while the introduction of dislocations into SAQDs on the GaP substrates induced a strong quenching of SAQDs luminescence. Probably, this difference is caused by the introduction of Lomer 90°-dislocations without uncompensated atomic bonds in GaP/Si-based SAQDs, while threading 60°-dislocations are introduced into GaP-based SAQDs. It was shown that GaP/Si-based SAQDs have an energy spectrum of type II with an indirect bandgap and the ground electronic state belonging to the X-valley of the AlP conduction band. The hole localization energy in these SAQDs was estimated equal to 1.65–1.70 eV. This fact allows us to predict the charge storage time in the SAQDs to be as long as >>10 years, and it makes GaSb/AlP SAQDs promising objects for creating universal memory cells. Full article
(This article belongs to the Special Issue Study on Quantum Dot and Quantum Dot-Based Device)
Show Figures

Figure 1

9 pages, 11292 KiB  
Article
Epitaxial CdSe/PbSe Heterojunction Growth and MWIR Photovoltaic Detector
by Lance L. McDowell, Milad Rastkar Mirzaei and Zhisheng Shi
Materials 2023, 16(5), 1866; https://doi.org/10.3390/ma16051866 - 24 Feb 2023
Cited by 6 | Viewed by 3024
Abstract
A novel Epitaxial Cadmium Selenide (CdSe) on Lead Selenide (PbSe) type-II heterojunction photovoltaic detector has been demonstrated by Molecular Beam Epitaxy (MBE) growth of n-type CdSe on p-type PbSe single crystalline film. The use of Reflection High-Energy Electron Diffraction (RHEED) during the nucleation [...] Read more.
A novel Epitaxial Cadmium Selenide (CdSe) on Lead Selenide (PbSe) type-II heterojunction photovoltaic detector has been demonstrated by Molecular Beam Epitaxy (MBE) growth of n-type CdSe on p-type PbSe single crystalline film. The use of Reflection High-Energy Electron Diffraction (RHEED) during the nucleation and growth of CdSe indicates high-quality single-phase cubic CdSe. This is a first-time demonstration of single crystalline and single phase CdSe growth on single crystalline PbSe, to the best of our knowledge. The current–voltage characteristic indicates a p–n junction diode with a rectifying factor over 50 at room temperature. The detector structure is characterized by radiometric measurement. A 30 μm × 30 μm pixel achieved a peak responsivity of 0.06 A/W and a specific detectivity (D*) of 6.5 × 108 Jones under a zero bias photovoltaic operation. With decreasing temperature, the optical signal increased by almost an order of magnitude as it approached 230 K (with thermoelectric cooling) while maintaining a similar level of noise, achieving a responsivity of 0.441 A/W and a D* of 4.4 × 109 Jones at 230 K. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials)
Show Figures

Figure 1

12 pages, 2698 KiB  
Article
Temperature-Driven Twin Structure Formation and Electronic Structure of Epitaxially Grown Mg3Sb2 Films on Mismatched Substrates
by Sen Xie, Yujie Ouyang, Wei Liu, Fan Yan, Jiangfan Luo, Xianda Li, Ziyu Wang, Yong Liu and Xinfeng Tang
Nanomaterials 2022, 12(24), 4429; https://doi.org/10.3390/nano12244429 - 12 Dec 2022
Cited by 6 | Viewed by 2152
Abstract
Mg3Sb2-based compounds are one type of important room-temperature thermoelectric materials and the appropriate candidate of type-II nodal line semimetals. In Mg3Sb2-based films, compelling research topics such as dimensionality reduction and topological states rely on the [...] Read more.
Mg3Sb2-based compounds are one type of important room-temperature thermoelectric materials and the appropriate candidate of type-II nodal line semimetals. In Mg3Sb2-based films, compelling research topics such as dimensionality reduction and topological states rely on the controllable preparation of films with high crystallinity, which remains a big challenge. In this work, high quality Mg3Sb2 films are successfully grown on mismatched substrates of sapphire (000l), while the temperature-driven twin structure evolution and characteristics of the electronic structure are revealed in the as-grown Mg3Sb2 films by in situ and ex situ measurements. The transition of layer-to-island growth of Mg3Sb2 films is kinetically controlled by increasing the substrate temperature (Tsub), which is accompanied with the rational manipulation of twin structure and epitaxial strains. Twin-free structure could be acquired in the Mg3Sb2 film grown at a low Tsub of 573 K, while the formation of twin structure is significantly promoted by elevating the Tsub and annealing, in close relation to the processes of strain relaxation and enhanced mass transfer. Measurements of scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) elucidate the intrinsic p-type conduction of Mg3Sb2 films and a bulk band gap of ~0.89 eV, and a prominent Fermi level downshift of ~0.2 eV could be achieved by controlling the film growth parameters. As elucidated in this work, the effective manipulation of the epitaxial strains, twin structure and Fermi level is instructive and beneficial for the further exploration and optimization of thermoelectric and topological properties of Mg3Sb2-based films. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 4719 KiB  
Article
Reduction of White Spot Defects in CMOS Image Sensors Fabricated Using Epitaxial Silicon Wafer with Proximity Gettering Sinks by CH2P Molecular Ion Implantation
by Takeshi Kadono, Ryo Hirose, Ayumi Onaka-Masada, Koji Kobayashi, Akihiro Suzuki, Ryosuke Okuyama, Yoshihiro Koga, Atsuhiko Fukuyama and Kazunari Kurita
Sensors 2022, 22(21), 8258; https://doi.org/10.3390/s22218258 - 28 Oct 2022
Cited by 1 | Viewed by 3626
Abstract
Using a new implantation technique with multielement molecular ions consisting of carbon, hydrogen, and phosphorus, namely, CH2P molecular ions, we developed an epitaxial silicon wafer with proximity gettering sinks under the epitaxial silicon layer to improve the gettering capability for metallic [...] Read more.
Using a new implantation technique with multielement molecular ions consisting of carbon, hydrogen, and phosphorus, namely, CH2P molecular ions, we developed an epitaxial silicon wafer with proximity gettering sinks under the epitaxial silicon layer to improve the gettering capability for metallic impurities. A complementary metal-oxide-semiconductor (CMOS) image sensor fabricated with this novel epitaxial silicon wafer has a markedly reduced number of white spot defects, as determined by dark current spectroscopy (DCS). In addition, the amount of nickel impurities gettered in the CH2P-molecular-ion-implanted region of this CMOS image sensor is higher than that gettered in the C3H5-molecular-ion-implanted region; and this implanted region is formed by high-density black pointed defects and deactivated phosphorus after epitaxial growth. From the obtained results, the CH2P-molecular-ion-implanted region has two types of complexes acting as gettering sinks. One includes carbon-related complexes such as aggregated C–I, and the other includes phosphorus-related complexes such as P4–V. These complexes have a high binding energy to metallic impurities. Therefore, CH2P-molecular-ion-implanted epitaxial silicon wafers have a high gettering capability for metallic impurities and contribute to improving the device performance of CMOS image sensors. (This manuscript is an extension from a paper presented at the 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM 2022)). Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

10 pages, 3443 KiB  
Article
Demonstration of Acceptor-Like Traps at Positive Polarization Interfaces in Ga-Polar P-type (AlGaN/AlN)/GaN Superlattices
by Athith Krishna, Aditya Raj, Nirupam Hatui, Stacia Keller and Umesh K. Mishra
Crystals 2022, 12(6), 784; https://doi.org/10.3390/cryst12060784 - 28 May 2022
Cited by 2 | Viewed by 2910
Abstract
The shortcomings with acceptors in p-type III-nitride semiconductors have resulted in not many efforts being presented on III-nitride based p-channel electronic devices (here, field effect transistors (FETs)). The polarization effects in III-nitride superlattices (SLs) lead to the periodic oscillation of the energy bands, [...] Read more.
The shortcomings with acceptors in p-type III-nitride semiconductors have resulted in not many efforts being presented on III-nitride based p-channel electronic devices (here, field effect transistors (FETs)). The polarization effects in III-nitride superlattices (SLs) lead to the periodic oscillation of the energy bands, exhibiting enhanced ionization of the deep acceptors (Mg in this study), and hence their use in III-nitride semiconductor-based light-emitting diodes (LEDs) and p-channel FETs is beneficial. This study experimentally demonstrates the presence of acceptor-like traps at the positive polarization interfaces acting as the primary source of holes in Ga-polar p-type uniformly doped (AlGaN/AlN)/GaN SLs with limited Mg doping. The observed concentration of holes exceeding that of the dopants incorporated into the samples during growth can be attributed to the ionization of acceptor-like traps, located at 0.8 eV above the valence band of GaN, at positive polarization interfaces. All samples were grown using the metal organic vapor phase epitaxy (MOVPE) technique, and the materials’ characterization was carried out using X-ray diffraction and Hall effect measurements. The hole concentrations experimentally measured are juxtaposed with the calculated value of hole concentrations from FETIS®, and the measured trends in mobility are explained using the amplitude of separation of the two-dimensional hole gas in the systems from the positive polarization interfaces. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop