Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = Ozone Monitoring Instrument (OMI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8842 KB  
Article
Applying Satellite-Based and Global Atmospheric Reanalysis Datasets to Simulate Sulphur Dioxide Plume Dispersion from Mount Nyamuragira 2006 Volcanic Eruption
by Thabo Modiba, Moleboheng Molefe and Lerato Shikwambana
Earth 2025, 6(3), 102; https://doi.org/10.3390/earth6030102 - 1 Sep 2025
Viewed by 960
Abstract
Understanding the dispersion of volcanic sulphur dioxide (SO2) plumes is crucial for assessing their environmental and climatic impacts. This study integrates satellite-based and reanalysis datasets to simulate as well as visualise the dispersion patterns of volcanic SO2 under diverse atmospheric [...] Read more.
Understanding the dispersion of volcanic sulphur dioxide (SO2) plumes is crucial for assessing their environmental and climatic impacts. This study integrates satellite-based and reanalysis datasets to simulate as well as visualise the dispersion patterns of volcanic SO2 under diverse atmospheric conditions. By incorporating data from the MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, version 2), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), and OMI (Ozone Monitoring Instrument) datasets, we are able to provide comprehensive insights into the vertical and horizontal trajectories of SO2 plumes. The methodology involves modelling SO2 dispersion across various atmospheric pressure surfaces, incorporating wind directions, wind speeds, and vertical column mass densities. This approach allows us to trace the evolution of SO2 plumes from their source through varying meteorological conditions, capturing detailed vertical distributions and plume paths. Combining these datasets allows for a comprehensive analysis of both natural and human-induced factors affecting SO2 dispersion. Visual and statistical interpretations in the paper reveal overall SO2 concentrations, first injection dates, and dissipation patterns detected across altitudes of up to ±20 km in the stratosphere. This work highlights the significance of combining satellite-based and global atmospheric reanalysis datasets to validate and enhance the accuracy of plume dispersion models while having a general agreement that OMI daily data and MERRA-2 reanalysis hourly data are capable of accurately accounting for SO2 plume dispersion patterns under varying meteorological conditions. Full article
Show Figures

Figure 1

23 pages, 11251 KB  
Article
Analysis of Tropospheric NO2 Observation Using Pandora and MAX-DOAS Instrument in Xianghe, North China
by Chunjiao Wang, Ting Wang, Zhaonan Cai, Xiaoyi Zhao, Wannan Wang, Yi Liu and Pucai Wang
Remote Sens. 2025, 17(10), 1695; https://doi.org/10.3390/rs17101695 - 12 May 2025
Cited by 1 | Viewed by 1917
Abstract
This work presents a comprehensive investigation of tropospheric NO2 measurements using a portable ground-based Pandora spectrometer, incorporating an independently designed and implemented calibration and retrieval process (P-CAR v1.0). We designed and optimized a region-specific algorithm for retrieving tropospheric NO2 column densities [...] Read more.
This work presents a comprehensive investigation of tropospheric NO2 measurements using a portable ground-based Pandora spectrometer, incorporating an independently designed and implemented calibration and retrieval process (P-CAR v1.0). We designed and optimized a region-specific algorithm for retrieving tropospheric NO2 column densities in China. The measurement process began with establishing a spectral calibration system for processing the Pandora’s raw observations, followed by enhancing the differential optical absorption spectroscopy (DOAS) algorithm to retrieve both the slant column densities (SCDs) and tropospheric vertical column densities (VCDs) of NO2. To validate our retrieval products, comparative analyses were conducted against co-located MAX-DOAS measurements. The results demonstrate excellent agreement between Pandora-retrieved tropospheric NO2 and MAX-DOAS observations, with correlation coefficients exceeding 0.96 for both hourly and daily mean VCDs and fitting slopes greater than 0.90. Furthermore, the validation extended to multi-satellite observations from the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI), exhibiting pronounced consistency, as evidenced by the correlation coefficients all surpassing 0.90 for the hourly mean values. These findings confirm the high accuracy and reliability of NO2 retrievals from the portable Pandora instrument, significantly boosting its potential for atmospheric monitoring and application. Full article
Show Figures

Graphical abstract

21 pages, 9315 KB  
Article
An Extension of Ozone Profile Retrievals from TROPOMI Based on the SAO2024 Algorithm
by Juseon Bak, Xiong Liu, Gonzalo González Abad and Kai Yang
Remote Sens. 2025, 17(5), 779; https://doi.org/10.3390/rs17050779 - 23 Feb 2025
Cited by 5 | Viewed by 1838
Abstract
We investigate the retrieval of ozone (O3) profiles, with a particular focus on tropospheric O3, from backscattered ultraviolet radiances measured by the TROPOspheric Monitoring Instrument (TROPOMI), using the UV2 (300–332 nm) and UV3 (305–400 nm) channels independently. An optimal [...] Read more.
We investigate the retrieval of ozone (O3) profiles, with a particular focus on tropospheric O3, from backscattered ultraviolet radiances measured by the TROPOspheric Monitoring Instrument (TROPOMI), using the UV2 (300–332 nm) and UV3 (305–400 nm) channels independently. An optimal estimation retrieval algorithm, originally developed for the Ozone Monitoring Instrument (OMI), was extended as a preliminary step toward integrating multiple satellite ozone profile datasets. The UV2 and UV3 channels exhibit distinct radiometric and wavelength calibration uncertainties, leading to inconsistencies in retrieval accuracy and convergence stability. A yearly “soft” calibration mitigates overestimation and cross-track-dependent biases (“stripes”) in tropospheric ozone retrievals, enhancing retrieval consistency between UV2 and UV3. Convergence stability is ensured by optimizing the measurement error constraints for each channel. It is shown that our research product outperforms the standard product (UV1 and UV2 combined) in capturing the seasonal and long-term variabilities of tropospheric ozone. An agreement between the retrieved tropospheric ozone and ozonesonde measurements is observed within 0–3 DU ± 5.5 DU (R = 0.75), which is better than that of the standard product by a factor of two. Despite lacking Hartley ozone information in UV2 and UV3, the retrieved stratospheric ozone columns have good agreement with ozonesondes (R = 0.96). Full article
Show Figures

Figure 1

15 pages, 11020 KB  
Article
Absorbing Aerosol Effects on Hyperspectral Surface and Underwater UV Irradiances from OMI Measurements and Radiative Transfer Computations
by Alexander Vasilkov, Nickolay Krotkov, Matthew Bandel, Hiren Jethva, David Haffner, Zachary Fasnacht, Omar Torres, Changwoo Ahn and Joanna Joiner
Remote Sens. 2025, 17(3), 562; https://doi.org/10.3390/rs17030562 - 6 Feb 2025
Cited by 1 | Viewed by 1529
Abstract
Ultraviolet (UV) radiation effects on Earth’s ecosystems on a global scale can be assessed on a basis of satellite estimates of hyperspectral irradiance on the surface and in ocean waters and the spectral biological weighting functions. The satellite UV surface irradiance algorithms combine [...] Read more.
Ultraviolet (UV) radiation effects on Earth’s ecosystems on a global scale can be assessed on a basis of satellite estimates of hyperspectral irradiance on the surface and in ocean waters and the spectral biological weighting functions. The satellite UV surface irradiance algorithms combine satellite retrievals of extraterrestrial solar irradiance, cloud/surface reflectivity, aerosol optical depth, and total column ozone with radiative transfer computations. The assessment of in-water irradiance requires additional information on inherent optical properties (IOPs) of ocean water. Our Ozone Monitoring Instrument (OMI) surface hyperspectral irradiance algorithm is updated by implementing a new absorbing aerosol correction based on OMI daily retrievals of UV aerosol absorption optical depth (AAOD). To provide insight into the temporal and spatial variability of absorbing aerosols, we consider a monthly global AAOD climatology derived from the OMI UV aerosol algorithm. Hyperspectral underwater irradiance is computed using Hydrolight radiative transfer calculations along with a Case I water model of IOPs extended into UV. Both planar and scalar irradiances are computed on the Earth’s surface and propagated underwater. The output surface products include the UV index. The output underwater products include the hyperspectral diffuse attenuation coefficients of the planar and scalar irradiances. Effects of the seasonal variability of AAOD on the UV index and the deoxyribonucleic acid (DNA) damage dose rates are considered. The reduction in the UV index and DNA damage dose rate due to the presence of absorbing aerosols can be as large as 30–40%. Full article
Show Figures

Figure 1

16 pages, 1117 KB  
Article
Machine Learning-Based Retrieval of Total Ozone Column Amount and Cloud Optical Depth from Irradiance Measurements
by Milos Sztipanov, Levente Krizsán, Wei Li, Jakob J. Stamnes, Tove Svendby and Knut Stamnes
Atmosphere 2024, 15(9), 1103; https://doi.org/10.3390/atmos15091103 - 11 Sep 2024
Viewed by 1267
Abstract
A machine learning algorithm combined with measurements obtained by a NILU-UV irradiance meter enables the determination of total ozone column (TOC) amount and cloud optical depth (COD). In the New York City area, a NILU-UV instrument on the rooftop of a Stevens Institute [...] Read more.
A machine learning algorithm combined with measurements obtained by a NILU-UV irradiance meter enables the determination of total ozone column (TOC) amount and cloud optical depth (COD). In the New York City area, a NILU-UV instrument on the rooftop of a Stevens Institute of Technology building (40.74° N, −74.03° E) has been used to collect data for several years. Inspired by a previous study [Opt. Express 22, 19595 (2014)], this research presents an updated neural-network-based method for TOC and COD retrievals. This method provides reliable results under heavy cloud conditions, and a convenient algorithm for the simultaneous retrieval of TOC and COD values. The TOC values are presented for 2014–2023, and both were compared with results obtained using the look-up table (LUT) method and measurements by the Ozone Monitoring Instrument (OMI), deployed on NASA’s AURA satellite. COD results are also provided. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 6359 KB  
Article
Comparative Study on the Vertical Column Concentration Inversion Algorithm of Tropospheric Trace Gas Based on the MAX-DOAS Measurement Spectrum
by Haoyue Wang, Yuehua Lu, Ke Yu, Feihong Xiao, Rongzhi Guo, Naicong Yan and Weiguo Wang
Remote Sens. 2024, 16(18), 3359; https://doi.org/10.3390/rs16183359 - 10 Sep 2024
Viewed by 1517
Abstract
The tropospheric vertical column concentration (VCDtrop) of NO2, SO2, and HCHO was retrieved, respectively, by employing the geometric method (Geomtry), simplified model method (Model), and look-up table method (Table) with the observation spectra of the multi-axis differential absorption spectroscopy [...] Read more.
The tropospheric vertical column concentration (VCDtrop) of NO2, SO2, and HCHO was retrieved, respectively, by employing the geometric method (Geomtry), simplified model method (Model), and look-up table method (Table) with the observation spectra of the multi-axis differential absorption spectroscopy instrument (MAX-DOAS). The correlation and relative differences of the inversion results obtained by these three algorithms, as well as the changes in quantiles, were explored. The comparative analysis reveals that the more concentrated the vertical distribution height of gas components is in the near-surface layer, the better the conformity of the VCDtrop retrieved by different algorithms. However, the increase in relative differences is also related to the diurnal variation of gas components. The influence of aerosols on the inversion of the VCDtrop is greater than the change in the vertical distribution height of the gas component itself. The near-surface concentration and distribution height of gas components are the internal factors that give rise to relative differences in the inversion of the VCDtrop by different algorithms, while aerosols are one of the extremely important external reasons. The VCDtrop inverted by Geomtry without considering the influence of aerosols is generally larger except for NO2. Model sets up aerosols in accordance with the height and meteorological conditions of the atmospheric environment. Table can invert the aerosol profile in real time. Compared with Model, it shows a significant improvement in the refined setting of aerosols. Moreover, while obtaining the vertical distribution of aerosols, it can invert the diurnal variation of the VCDtrop. The VCDtrop inverted by Table is the smallest, and the relative difference with Model is on average about 10% smaller. The relative difference of the VCDtrop for the same height (aerosol optical thickness) quantile is 7–15% (about 25% lower on average). When comparing the inversion results of Table with the Ozone Monitoring Instrument (OMI) satellite product, the MAX-DOAS inversion results of NO2, SO2, and HCHO are all larger than the OMI product. This is related to the different observation methods of the MAX-DOAS and OMI and the configuration between the aerosol layer and the distribution height of gas components. Full article
Show Figures

Figure 1

19 pages, 4074 KB  
Article
Spatiotemporal Variation in Absorption Aerosol Optical Depth over China
by Mao Mao, Huan Jiang and Xiaolin Zhang
Atmosphere 2024, 15(9), 1099; https://doi.org/10.3390/atmos15091099 - 9 Sep 2024
Cited by 1 | Viewed by 2136
Abstract
Absorbing aerosols can absorb solar radiation, affect the atmospheric radiation balance, and further have a profound influence on the global and regional climates. The absorption aerosol optical depth (AAOD) as well as the absorption Angstrom exponent (AAE) across China over 2005–2018 were systematically [...] Read more.
Absorbing aerosols can absorb solar radiation, affect the atmospheric radiation balance, and further have a profound influence on the global and regional climates. The absorption aerosol optical depth (AAOD) as well as the absorption Angstrom exponent (AAE) across China over 2005–2018 were systematically studied through the Ozone Monitoring Instrument (OMI) dataset. The monthly AAOD samples from the OMI generally showed a good correlation (~0.55) compared to the monthly data from AERONET at four typical sites (North: Xianghe, East: Taihu, South: Hongkong Polytechnic Univ; Northwest: Sacol) across China. The ensemble annual average of the OMI AAOD at 388 and 500 nm is 0.046 and 0.022, with minor changes during 2005–2015, and a relatively fast increase after that. The winter and spring seasons depict the maximum mean AAODs, followed by autumn, whereas summer shows minimum levels. On the contrary, the high AAE values appear in summer and low values in winter. The order of the annual average AAOD500 from 2005 to 2018 is the Tarim Basin (TB, 0.041) > the Yellow River Basin (YRB, 0.023) > Beijing and Tianjin (BT, 0.026) > the Sichuan Basin (SB, 0.023) > Nanjing and Shanghai (NS, 0.021) > the Pearl River Delta (PRD, 0.017), whereas the AAE388–500 exhibits the opposite trend except for the TB (3.058). From 2005 to 2018, the AAOD rises by nearly 1.5–2.0 fold in the six typical regions, implying a severe situation of dust and/or BC aerosol pollution in the last several years. The monthly mean AAOD388 over the TB, the SB, the YRB, BT, the PRD, and NS is estimated to be smallest at 0.072, 0.024, 0.026, and 0.027 in July, 0.024 in June, and 0.025 in September, respectively, whilst largest in January for NS, the YRB and BT, April for the TB, February for the SB, and March for the PRD with 0.055, 0.077 and 0.067, 0.123, and 0.073 and 0.075, respectively. The monthly averaged AAOD500 in each region is consistently about half of the AAOD388. The highest AAE appears in June while the lowest values are in December and January, and the daily AAE values in episode days slightly decrease as compared to non-episode days. Our study indicates that northwestern China plays an important role in the overall AAOD as a result of dust aerosols stemming from desert areas. Moreover, the meteorological conditions in winter and early spring are associated with more energy consumption conducive to the accumulation of high black carbon (BC) aerosol pollution, causing high alert levels of AAOD from November to the following March. Full article
(This article belongs to the Special Issue Development in Carbonaceous Aerosols)
Show Figures

Figure 1

20 pages, 4593 KB  
Article
Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence
by Lucas Vaz Peres, Damaris Kirsh Pinheiro, Hassan Bencherif, Nelson Begue, José Valentin Bageston, Gabriela Dorneles Bittencourt, Thierry Portafaix, Andre Passaglia Schuch, Vagner Anabor, Rodrigo da Silva, Theomar Trindade de Araujo Tiburtino Neves, Raphael Pablo Tapajós Silva, Gabriela Cacilda Godinho dos Reis, Marco Antônio Godinho dos Reis, Maria Paulete Pereira Martins, Mohamed Abdoulwahab Toihir, Nkanyiso Mbatha, Luiz Angelo Steffenel and David Mendes
Remote Sens. 2024, 16(11), 2017; https://doi.org/10.3390/rs16112017 - 4 Jun 2024
Viewed by 2077
Abstract
This paper presents the observational, remote sensing, and model simulation used to analyze southern Brazil Antarctic ozone hole influence (SBAOHI) events that occurred between 2005 and 2014. To analyze it, we use total ozone column (TOC) data provided by a Brewer spectrophotometer (BS) [...] Read more.
This paper presents the observational, remote sensing, and model simulation used to analyze southern Brazil Antarctic ozone hole influence (SBAOHI) events that occurred between 2005 and 2014. To analyze it, we use total ozone column (TOC) data provided by a Brewer spectrophotometer (BS) and the OMI (Ozone Monitoring Instrument). In addition to the AURA/MLS (Microwave Limb Sounder) instrument, satellite ozone profiles were utilized with DYBAL (Dynamical Barrier Localization) code in the MIMOSA (Modélisation Isentrope du Transport Mésoéchelle de l’Ozone Stratosphérique par Advection) model Potential Vorticity (PV) fields. TOC has 7.0 ± 2.9 DU reductions average in 62 events. October has more events (30.7%). Polar tongue events are 19.3% in total, being more frequently observed in October (50% of cases), with medium intensity (58.2%), and in the stratosphere medium levels (55.0%). Already, polar filament events (80.7%) are more frequent in September (32.0%), with medium intensity (42.0%), and stratosphere medium levels (40.7%). Full article
Show Figures

Figure 1

18 pages, 10542 KB  
Article
Wavelet Analysis of Atmospheric Ozone and Ultraviolet Radiation on Solar Cycle-24 over Lumbini, Nepal
by Prakash M. Shrestha, Suresh P. Gupta, Usha Joshi, Morgan Schmutzler, Rudra Aryal, Babu Ram Tiwari, Binod Adhikari, Narayan P. Chapagain, Indra B. Karki and Khem N. Poudyal
Atmosphere 2024, 15(4), 509; https://doi.org/10.3390/atmos15040509 - 21 Apr 2024
Cited by 2 | Viewed by 2297
Abstract
This research aims to comprehensively examine the clearness index (KT), total ozone column (TOC), and ultraviolet A (UVA) and ultraviolet B radiation (UVB) over Lumbini, Nepal (27°28’ N, 83°16’ E, and 150 m above sea level) throughout the 11 years of [...] Read more.
This research aims to comprehensively examine the clearness index (KT), total ozone column (TOC), and ultraviolet A (UVA) and ultraviolet B radiation (UVB) over Lumbini, Nepal (27°28’ N, 83°16’ E, and 150 m above sea level) throughout the 11 years of solar cycle 24 (2008 to 2018). The Lumbini, a highly polluted region, is important in advancing the identification and analysis of TOC variations across regions with similar geographical and climatic attributes. Data from the Ozone Monitoring Instrument (OMI) of the EOS-AURA satellite of NASA were used to analyze the daily, monthly, seasonal, and annual trends in the clearness index (KT), ultraviolet A (UVA), ultraviolet B (UVB), and TOC from the Comprehensive Environmental Data Archive (CEDA). The study found that the yearly averages for KT, TOC, UVA, and UVB were 0.55 ± 0.13, 272 ± 14 DU, 12.61 ± 3.50 W/m2, and 0.32 ± 0.11 W/m2, respectively. These values provide insights into the long-term variations in atmospheric parameters at Lumbini. The study also applied the continuous wavelet transform (CWT) to analyze KT, TOC, UVA, and UVB temporal variations. The power density peak of 35,000 DU2 in the TOC was observed from the end of 2010 to the end of 2011, within 8.5 years, underscoring the significance of analyzing TOC dynamics over extended durations to understand atmospheric behavior comprehensively. Full article
Show Figures

Figure 1

22 pages, 6023 KB  
Article
Long-Term Dynamics of Atmospheric Sulfur Dioxide in Urban and Rural Regions of China: Urbanization and Policy Impacts
by Fang Wang, Abdallah Shaheen, Robabeh Yousefi, Quansheng Ge, Renguang Wu, Jos Lelieveld, Dimitris G. Kaskaoutis, Zifeng Lu, Yu Zhan and Yuyu Zhou
Remote Sens. 2024, 16(2), 391; https://doi.org/10.3390/rs16020391 - 18 Jan 2024
Cited by 5 | Viewed by 4903
Abstract
High levels of sulfur dioxide (SO2) due to human activities pose a serious air pollution issue in China, especially in urban agglomerations. However, limited research has investigated the impact of anthropogenic emissions on higher SO2 concentrations in urban regions compared [...] Read more.
High levels of sulfur dioxide (SO2) due to human activities pose a serious air pollution issue in China, especially in urban agglomerations. However, limited research has investigated the impact of anthropogenic emissions on higher SO2 concentrations in urban regions compared to rural areas in China. Here, we analyzed the trends in SO2 concentrations from 1980 to 2021 in China using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) dataset. SO2 column concentrations from the Copernicus Atmosphere Monitoring Service (CAMS) and the Ozone Monitoring Instrument (OMI) during the years 2007–2021 were also examined for validation and comparison purposes. Eight representative areas, including four urban regions (Pearl River Delta [PRD], Beijing-Tianjin-Hebei [BTH], Yangtze River Delta [YRD], and Sichuan Basin [SCB]) and four rural regions (Northeast Region [NER], Mongolian Region [MR], West Region [WR], and Tibetan Plateau Region [TR]) were selected for the analysis. Overall, a significant but fluctuating increase in SO2 concentrations over China was observed during 1980–2021. During 1980–1997 and 2000–2010, there was an increase in SO2 concentration, while during 1997–2000 and 2010–2021, a decreasing trend was observed. The average increase in SO2 concentration was approximately 16 times higher in urban regions than in the rural background. We also found that SO2 dynamics were highly associated with expansion of urban areas, population density, and gross domestic product. Nonetheless, since 2007, SO2 concentrations have exhibited a downward trend, which is mainly attributed to the air pollution policies implemented by the Chinese government. Our findings highlight the need for further studies on the impact of SO2 on regional climate change in China. Full article
Show Figures

Graphical abstract

23 pages, 6025 KB  
Article
Study on Spatial Characteristics, Health Assessment, and Influencing Factors of Tropospheric Ozone Pollution in Qin–Jin Region, 2013–2022
by Shengtong Lei, Tianzhen Ju, Bingnan Li, Jinyang Wang, Tunyang Geng and Ruirui Huang
Sustainability 2023, 15(24), 16945; https://doi.org/10.3390/su152416945 - 18 Dec 2023
Cited by 1 | Viewed by 1712
Abstract
Ozone is a pollutant that is harmful to human health and the troposphere. As a coal base in China, the study of ozone in the Qin–Jin region provides a scientific basis for pollution control and early warning and is of great practical significance. [...] Read more.
Ozone is a pollutant that is harmful to human health and the troposphere. As a coal base in China, the study of ozone in the Qin–Jin region provides a scientific basis for pollution control and early warning and is of great practical significance. This paper analyzes the spatial and temporal distribution characteristics of tropospheric ozone in the Qin–Jin region from 2013 to 2022. It predicts the tropospheric ozone seasons in 2023 using a combination of ozone monitoring instruments (OMIs), ground stations, and machine learning. It also estimates the loss of health and economic benefits caused by ozone to humans, discusses the multiple factors affecting ozone changes, and identifies ozone-sensitive pollution control areas. The results showed that ozone in the Qin–Jin region spatially tends to increase from northwest to southeast, the Slope showed that ozone in the study area has a slightly increasing trend (0~0.079), the ozone concentration values are much larger than those in other months during the period of April–September, and there is no weekend effect. The predicted mean ozone values for 2023 are 36.57 DU in spring, 50.88 DU in summer, 34.29 DU in fall, and 30.10 DU in winter. The average values of all-cause mortality and economic losses are estimated to be 4591 and 4214 persons and 43.30 and 51.30 billion yuan in 2019 and 2021 in Shanxi Province, and 2498 and 1535 persons and 23.50 and 18.70 billion yuan in 2019 and 2021 in Shaanxi Province, respectively. Natural factors are positively correlated with ozone in the following order, temperature (TEM) > precipitable water (TPW) > vegetation cover (NDVI) > relative humidity (RH), uplift index (LI) is negatively correlated with ozone, and barometric pressure (PS) is mainly uncorrelated. During the period of high ozone pollution in the Qin–Jin region (April–September), emissions of VOCs accelerated ozone production, and emissions of NOx suppressed ozone production in most areas. The high-value pollution period in the Qin–Jin area is mainly a VOC control area, and the synergistic control of NOx and VOCs is secondary. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

7 pages, 919 KB  
Proceeding Paper
Seasonal Changes in Air Pollutants and Their Relation to Vegetation over the Megacity Delhi National Capital Region
by Archana Rani and Manoj Kumar
Environ. Sci. Proc. 2023, 27(1), 16; https://doi.org/10.3390/ecas2023-15119 - 14 Oct 2023
Cited by 3 | Viewed by 2838
Abstract
Delhi is one of the most densely populated megacities in the world, and it is experiencing deteriorating air quality due to rapid industrialization and excessive use of transportation. The limited emission control measures in Delhi have led to worsening air quality problems, which [...] Read more.
Delhi is one of the most densely populated megacities in the world, and it is experiencing deteriorating air quality due to rapid industrialization and excessive use of transportation. The limited emission control measures in Delhi have led to worsening air quality problems, which have become a serious threat to human health and the environment. In the present study, we investigate the long-term (2011–2021) interrelationship between air pollutants and the vegetation index using satellite datasets. Air pollutant data viz. nitrogen dioxide (NO2) and sulfur dioxide (SO2) were obtained from NASA’s Aura satellite called the Ozone Monitoring Instrument (OMI)Additionally, the data for carbon monoxide (CO) and particulate matter 2.5 (PM2.5) were obtained from the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) model. The vegetation indices, i.e., the normalized difference vegetation index (NDVI) and the enhanced vegetation oxide (EVI), were collected from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. The analysis of both datasets revealed higher concentrations of air pollutants in the summer months when the NDVI and EVI were minimal. Furthermore, a higher pollution load was observed in the months of October–January when the NDVI and EVI were lower. Furthermore, we also investigated the spatial patterns of PM2.5 and other gaseous pollutants (viz. CO, SO2, and NO2) and observed that their levels were lower in the vegetated region in comparison to the sparsely vegetated area of Delhi. The present study indicates that vegetation could ameliorate various air pollutants; however, it needs to be validated with ground observed data. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

11 pages, 22772 KB  
Article
Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa
by Lerato Shikwambana, Venkataraman Sivakumar and Kanya Xongo
Atmosphere 2023, 14(10), 1556; https://doi.org/10.3390/atmos14101556 - 12 Oct 2023
Cited by 3 | Viewed by 2631
Abstract
During a volcanic eruption, copious amounts of volcanic gas, aerosol droplets, and ash are released into the stratosphere, potentially impacting radiative feedback. One of the most significant volcanic gases emitted is sulphur dioxide, which can travel long distances and impact regions far from [...] Read more.
During a volcanic eruption, copious amounts of volcanic gas, aerosol droplets, and ash are released into the stratosphere, potentially impacting radiative feedback. One of the most significant volcanic gases emitted is sulphur dioxide, which can travel long distances and impact regions far from the source. This study aimed to investigate the transport of sulphur dioxide and sulphate aerosols from the Tonga volcanic eruption event, which occurred from the 13th to the 15th of January 2022. Various datasets, including Sentinel-5 Precursor (TROPOMI), the Ozone Monitoring Instrument (OMI), and the Ozone Mapping and Profiler Suite (OMPS), were utilized to observe the transport of these constituents. The TROPOMI data revealed westward-traveling SO2 plumes over Australia and the Indian Ocean towards Africa, eventually reaching the Republic of South Africa (RSA), as confirmed by ground-based monitoring stations of the South African Air Quality Information System (SAAQIS). Moreover, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) demonstrated sulphate aerosols at heights ranging from 18 to 28 km with a plume thickness of 1 to 4 km. The results of this study demonstrate that multiple remote sensing datasets can effectively investigate the dispersion and long-range transport of volcanic constituents. Full article
(This article belongs to the Special Issue Natural Sources Aerosol Remote Monitoring)
Show Figures

Figure 1

20 pages, 8591 KB  
Article
Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS)
by Won Jun Choi, Kyung-Jung Moon, Goo Kim and Dongwon Lee
Atmosphere 2023, 14(9), 1458; https://doi.org/10.3390/atmos14091458 - 20 Sep 2023
Cited by 3 | Viewed by 3314
Abstract
Air pollutants adversely affect human health, and thus a global improvement in air quality is urgent. A Geostationary Environment Monitoring Spectrometer (GEMS) was mounted on the geostationary Chollian 2B satellite in 2020 to observe the spatial distribution of air pollution, and sequential observations [...] Read more.
Air pollutants adversely affect human health, and thus a global improvement in air quality is urgent. A Geostationary Environment Monitoring Spectrometer (GEMS) was mounted on the geostationary Chollian 2B satellite in 2020 to observe the spatial distribution of air pollution, and sequential observations have been released since July 2022. The reliability of GEMS must be analyzed because it is the first payload on the geostationary Earth orbit satellite to observe trace gases. This study analyzed the initial results of GEMS observations such as the aerosol optical depth and vertical column densities (VCD) of ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO), and compared them with previous studies. The correlation coefficient of O3 ranged from 0.90 (Ozone Monitoring Instrument, OMI) to 0.97 (TROPOspheric Monitoring Instrument, TROPOMI), whereas that of NO2 ranged from 0.47 (winter, OMI and OMPS) to 0.83 (summer, TROPOMI). GEMS yielded a higher VCD of NO2 than that of OMI and TROPOMI. Based on the sources of O3 and NO2, GEMS observed the maximum VCD at a different time (3–4 h) to that of the ground observations. Overall, GEMS can make observations several times a day and is a potential tool for atmospheric environmental analysis. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

21 pages, 6439 KB  
Article
Assessing the Impacts of COVID-19 on SO2, NO2, and CO Trends in Durban Using TROPOMI, AIRS, OMI, and MERRA-2 Data
by Boitumelo Mokgoja, Paidamwoyo Mhangara and Lerato Shikwambana
Atmosphere 2023, 14(8), 1304; https://doi.org/10.3390/atmos14081304 - 17 Aug 2023
Cited by 3 | Viewed by 2925
Abstract
This research report investigated the impacts of the COVID-19 lockdown restrictions on CO, SO2, and NO2 trends in Durban from 2019 to 2021. The COVID-19 lockdown restrictions proved to decrease greenhouse gas (GHG) emissions globally; however, the decrease in GHG [...] Read more.
This research report investigated the impacts of the COVID-19 lockdown restrictions on CO, SO2, and NO2 trends in Durban from 2019 to 2021. The COVID-19 lockdown restrictions proved to decrease greenhouse gas (GHG) emissions globally; however, the decrease in GHG emissions was for a short period only. Space-borne technology has been used by researchers to understand the spatial and temporal trends of GHGs. This study used Sentinel-5P to map the spatial distribution of CO, SO2, and NO2. Use was also made of the Atmospheric Infrared Sounder (AIRS), Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), and the Ozone Monitoring Instrument (OMI) to understand the temporal trends of CO, SO2, and NO2, respectively. To validate the results of this study, we used the Sequential Mann–Kendall (SQMK) test. This study indicated that there were no significant changes in all the investigated gases. Therefore, this study failed to reject the null hypothesis of the SQMK test that there was no significant trend for all investigated gasses. Increasing trends were observed for CO, SO2, and NO2 trends during winter months throughout the study period, whereas a decreasing trend was observed in all investigated gases during the spring months. This shows that meteorological factors play a significant role in the accumulation of air pollutants in the atmosphere. Most importantly, this study has noted that there was an inverse relationship between the trends of all investigated gases and the COVID-19 lockdown restrictions. Full article
Show Figures

Figure 1

Back to TopTop