Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. GEMS
2.2. Datasets
2.3. Methods
2.3.1. GEMS Algorithm
2.3.2. Data Processing
3. Results
3.1. Level 1c Product Assessment
3.2. Level 2 Product Analysis
3.2.1. Spatiotemporal Distribution of Ozone
3.2.2. Spatiotemporal Distribution of Nitrogen Dioxide and Sulfur Dioxide Concentrations
3.2.3. AOD
3.2.4. Formaldehyde
3.2.5. Additional Geostationary Environment Monitoring Spectrometer Products
3.3. Validation and Future Implications
3.3.1. Satellite Integrated Joint Air Quality Monitoring
3.3.2. Pandora Asia Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K.; et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef] [PubMed]
- Ayres, J.G.; Borm, P.; Cassee, F.R.; Castranova, V.; Donaldson, K.; Ghio, A.; Harrison, R.M.; Hider, R.; Kelly, F.; Kooter, I.M.; et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—A workshop report and consensus statement. Inhal. Toxicol. 2008, 20, 75–99. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- World Health Organization 2023 Newsroom. Available online: https://www.who.int/news-room/headlines (accessed on 7 February 2023).
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M.; Baker, J. The wind speed dependence of the concentrations of airborne particulate matter and NOx. Atmos. Environ. 2010, 44, 1682–1690. [Google Scholar] [CrossRef]
- Takeuchi, M.; Berkemeier, T.; Eris, G.; Ng, N.L. Non-linear effects of secondary organic aerosol formation and properties in multi-precursor systems. Nat. Commun. 2022, 13, 7883. [Google Scholar] [CrossRef]
- Kim, B.; Bae, C.; Kim, H.C.; Kim, E.; Kim, S. Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event. Atmos. Environ. 2017, 162, 55–70. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Bae, C.; Cho, J.H.; Kim, B.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. 2017, 17, 10315–10332. [Google Scholar] [CrossRef]
- Choi, J.; Park, R.J.; Lee, H.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.; Ban, S.; Lee, M.; et al. Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ. 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Uranishi, K.; Ikemori, F.; Shimadera, H.; Kondo, A.; Sugata, S. Impact of field biomass burning on local pollution and long-range transport of PM2.5 in NorthEast Asia. Environ. Pollut. 2019, 244, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Choi, W.J.; Jung, B.; Lee, D.; Kang, H.; Kim, H.; Hong, H. An investigation into the effect of emissions from industrial complexes on air quality in the Ulsan metropolitan city utilizing trace components in PM2.5. Appl. Sci. 2021, 11, 10003. [Google Scholar] [CrossRef]
- Crawford, J.H.; Ahn, J.Y.; Al-Saadi, J.; Chang, L.; Emmons, L.K.; Kim, J.; Lee, G.; Park, J.H.; Park, R.J.; Woo, J.H.; et al. The Korea-United States Air Quality (KORUS-AQ) field study. Elementa 2021, 9, 00163. [Google Scholar] [CrossRef] [PubMed]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef]
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Flynn, L.; Long, C.; Wu, X.; Evans, R.; Beck, C.T.; Petropavlovskikh, I.; McConville, G.; Yu, W.; Zhang, Z.; Niu, J.; et al. Performance of the ozone mapping and profiler suite (OMPS) products. J. Geophys. Res. Atmos. 2014, 119, 6181–6195. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Moon, K.J.; Yoon, J.; Cho, A.; Kim, S.K.; Lee, S.; Ko, D.H.; Kim, J.; Ahn, M.H.; Kim, D.R.; et al. Introducing the geostationary environment monitoring spectrometer. J. Appl. Remote Sens. 2018, 12, 044005. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, U.; Ahn, M.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.; Lee, K.; Yoo, J.; et al. New era of air quality monitoring from space: Geostationary environment monitoring spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, E1–E22. [Google Scholar] [CrossRef]
- Chubarova, N.E.; Pastukhova, A.S.; Zhdanova, E.Y.; Volpert, E.V.; Smyshlyaev, S.P.; Galin, V.Y. Effects of ozone and clouds on temporal variability of surface UV radiation and UV resources over Northern Eurasia derived from measurements and modeling. Atmosphere 2020, 11, 59. [Google Scholar] [CrossRef]
- Baruah, U.D.; Robeson, S.M.; Saikia, A.; Mili, N.; Sung, K.; Chand, P. Spatio-temporal characterization of tropospheric ozone and its precursor pollutants NO2 and HCHO over South Asia. Sci. Total Environ. 2022, 809, 151135. [Google Scholar] [CrossRef]
- Liu, N.; Lin, W.; Ma, J.; Xu, W.; Xu, X. Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. J. Environ. Sci. 2019, 77, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- Li, J.; Nagashima, T.; Kong, L.; Ge, B.; Yamaji, K.; Fu, J.S.; Wang, X.; Fan, Q.; Itahashi, S.; Lee, H.J.; et al. Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III—Part 1: Overview. Atmos. Chem. Phys. 2019, 19, 12993–13015. [Google Scholar] [CrossRef]
- Marvin, M.R.; Palmer, P.I.; Latter, B.G.; Siddans, R.; Kerridge, B.J.; Latif, M.T.; Khan, M.F. Photochemical environment over Southeast Asia primed for hazardous ozone levels with influx of nitrogen oxides from seasonal biomass burning. Atmos. Chem. Phys. 2021, 21, 1917–1935. [Google Scholar] [CrossRef]
- Uno, I.; He, Y.; Ohara, T.; Yamaji, K.; Kurokawa, J.-I.; Katayama, M.; Wang, Z.; Noguchi, K.; Hayashida, S.; Richter, A.; et al. Systematic analysis of interannual and seasonal variations of model-simulated tropospheric NO2 in Asia and comparison with GOME-satellite data. Atmos. Chem. Phys. 2007, 7, 1671–1681. [Google Scholar] [CrossRef]
- Kim, D.R.; Lee, J.B.; Keun Song, C.K.; Kim, S.Y.; Ma, Y.L.; Lee, K.M.; Cha, J.S.; Lee, S.D. Temporal and spatial distribution of tropospheric NO2 over Northeast Asia using OMI data during the years 2005–2010. Atmos. Pollut. Res. 2015, 6, 768–776. [Google Scholar] [CrossRef]
- Lin, C.A.; Chen, Y.C.; Liu, C.Y.; Chen, W.T.; Seinfeld, J.H.; Chou, C.C.-K. Satellite-derived correlation of SO2, NO2, and aerosol optical depth with meteorological conditions over East Asia from 2005 to 2015. Remote Sens. 2019, 11, 1738. [Google Scholar] [CrossRef]
- Van Der A, R.J.; Eskes, H.J.; Boersma, K.F.; Van Noije, T.P.C.; Van Roozendael, M.; De Smedt, I.; Peters, D.H.M.U.; Meijer, E.W. Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J. Geophys. Res. 2008, 133, D04302. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.M.; Yoshida, Y.; Lu, Z.; Streets, D.G.; Hurwitz, M.M.; Pickering, K.E. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014). J. Geophys. Res. Atmos. 2016, 121, 976–996. [Google Scholar] [CrossRef]
- ul-Haq, Z.; Tariq, S.; Ali, M. Spatiotemporal patterns of correlation between atmospheric nitrogen dioxide and aerosols over South Asia. Meteorol. Atmos. Phys. 2017, 129, 507–527. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Torres, O.; Ahn, C.; Kim, W.; Jeong, U.; Go, S.; Liu, X.; Moon, K.J.; Kim, D.-R. Optimal estimation-based algorithm to retrieve aerosol optical properties for GEMS measurements over Asia. Remote Sens. 2018, 10, 162. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Pham, H.V.; Lasko, K.; Bui, M.T.; Laffly, D.; Jourdan, A.; Bui, H.Q. Spatiotemporal analysis of ground and satellite-based aerosol for air quality assessment in the Southeast Asia region. Environ. Pollut. 2019, 255, 113106. [Google Scholar] [CrossRef]
- Lin, N.-H.; Tsay, S.-C.; Maring, H.B.; Yen, M.-C.; Sheu, G.-R.; Wang, S.-H.; Chi, K.H.; Chuang, M.-T.; Ou-Yang, C.-F.; Fu, J.S.; et al. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 2013, 78, 1–19. [Google Scholar] [CrossRef]
- Wang, S.-H.; Welton, E.J.; Holben, B.N.; Tsay, S.-C.; Lin, N.-H.; Giles, D.; Stewart, S.A.; Janjai, S.; Nguyen, X.A.; Hsiao, T.-C.; et al. Vertical distribution and columnar optical properties of springtime biomass-burning aerosols over Northern Indochina during 2014 7-SEAS Campaign. Aerosol Air Qual. Res. 2015, 15, 2037–2050. [Google Scholar] [CrossRef]
- Ge, C.; Wang, J.; Carn, S.; Yang, K.; Ginoux, P.; Krotkov, N. Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012. J. Geophys. Res. Atmos. 2016, 121, 3446–3464. [Google Scholar] [CrossRef]
- Flower, V.J.B.; Kahn, R.A. Twenty years of NASA-EOS multi-sensor satellite observations at Kīlauea volcano (2000–2019). J. Volcanol. Geotherm. Res. 2021, 415, 107247. [Google Scholar] [CrossRef]
- Coste, P.; Larnaudie, F.; Luquet, P.; Heo, H.; Jung, J.; Kang, G.; Shin, S.; Yong, S.; Park, Y.-J. Development of the New Generation of Geostationary Ocean Color Imager. In Proceedings of the International Conference on Space Optics–ICSO 2016, Biarritz, France, 25 September 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10562, pp. 98–106. [Google Scholar] [CrossRef]
- Kang, M.; Ahn, M.; Liu, X.; Jeong, U.; Kim, J. Spectral calibration algorithm for the geostationary environment monitoring spectrometer (GEMS). Remote Sens. 2020, 12, 2846. [Google Scholar] [CrossRef]
- Choi, H.; Lee, K.; Seo, J.; Bae, J. The influence of atmospheric composition on polarization in the GEMS spectral region. Asia-Pac. J. Atmos. Sci. 2021, 57, 587–603. [Google Scholar] [CrossRef]
- Haffner, D.P.; McPeters, R.D.; Bhartia, P.K.; Labow, G.J. The TOMS v9 algorithm for OMPS nadir mapper total ozone: An enhanced design that ensures data continuity. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2015. [Google Scholar]
- Spurr, R. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In Light Scattering Reviews 3; Springer: Berlin/Heidelberg, Germany, 2008; pp. 229–275. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding-Theory and Practice Series: Series on Atmospheric Oceanic and Planetary Physics; Rodgers, C.D., Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2000; Volume 2, ISBN 978-981-281-371-8. [Google Scholar]
- Kwon, H.A.; Park, R.J.; González Abad, G.; Chance, K.; Kurosu, T.P.; Kim, J.; De Smedt, I.; Van Roozendael, M.; Peters, E.; Burrows, J. Description of a formaldehyde retrieval algorithm for the geostationary environment monitoring spectrometer (GEMS). Atmos. Meas. Tech. 2019, 12, 3551–3571. [Google Scholar] [CrossRef]
- Bak, J.; Baek, K.H.; Kim, J.H.; Liu, X.; Kim, J.; Chance, K. Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation. Atmos. Meas. Tech. 2019, 12, 5201–5215. [Google Scholar] [CrossRef]
- Hönninger, G.; von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Park, J.; Choi, W.; Lee, H.-M.; Park, R.J.; Kim, S.-Y.; Yu, J.-A.; Lee, D.-W.; Lee, H. Effect of error in SO2 slant column density on the accuracy of SO2 transport flow rate estimates based on GEMS synthetic radiances. Remote Sens. 2021, 13, 3047. [Google Scholar] [CrossRef]
- Baek, K.H.; Kim, J.H.; Park, R.J.; Chance, K.; Kurosu, T.P. Validation of OMI HCHO data and its analysis over Asia. Sci. Total Environ. 2014, 490, 93–105. [Google Scholar] [CrossRef]
- Environmental Satellite Center (2022) Image View. Available online: https://nesc.nier.go.kr/product/vie (accessed on 18 September 2023).
- Chang, L.S.; Kim, D.; Hong, H.; Kim, D.R.; Yu, J.; Lee, K.; Lee, H.; Kim, D.; Hong, J.; Jo, H.-Y.; et al. Evaluation of correlated Pandora column observations and in situ surface air quality measurements during GMAP campaign. Atmos. Chem. Phys. 2022, 22, 10703–10720. [Google Scholar] [CrossRef]
- Tzortziou, M.; Herman, J.R.; Cede, A.; Loughner, C.P.; Abuhassan, N.; Naik, S. Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem. J. Atmos. Chem. 2015, 72, 287–309. [Google Scholar] [CrossRef]
- Herman, J.; Cede, A.; Spinei, E.; Mount, G.; Tzortziou, M.; Abuhassan, N. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res. 2009, 114, D13307. [Google Scholar] [CrossRef]
- Pinardi, G.; Van Roozendael, M.; Hendrick, F.; Theys, N.; Abuhassan, N.; Bais, A.; Boersma, F.; Cede, A.; Chong, J.; Donner, S.; et al. Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations. Atmos. Meas. Tech. 2020, 13, 6141–6174. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P.; Rakitin, V. Comparison and validation of TROPOMI and OMI NO2 observations over China. Atmosphere 2020, 11, 636. [Google Scholar] [CrossRef]
- Herman, J.; Spinei, E.; Fried, A.; Kim, J.; Kim, J.; Kim, W.; Cede, A.; Abuhassan, N.; Segal-Roenhaimer, M. NO2 and HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with OMI retrievals and with aircraft measurements during the KORUS-AQ campaign. Atmos. Meas. Tech. 2018, 11, 4583–4603. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef]
- Pittman, J.V.; Pan, L.L.; Wei, J.C.; Irion, F.W.; Liu, X.; Maddy, E.S.; Barnet, C.D.; Chance, K.; Gao, R. Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. J. Geophys. Res. 2009, 114, D24109. [Google Scholar] [CrossRef]
- Hubert, D.; Heue, K.P.; Lambert, J.C.; Verhoelst, T.; Allaart, M.; Compernolle, S.; Cullis, P.D.; Dehn, A.; Félix, C.; Johnson, B.J.; et al. TROPOMI tropospheric ozone column data: Geophysical assessment and comparison to ozonesondes, GOME-2B and OMI. Atmos. Meas. Tech. 2021, 14, 7405–7433. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Z.; Shen, Y.; Li, R.; Fu, Y.; Liu, J.; Han, H.; Liao, H.; Cheng, X.; Jones, D.B.A.; et al. Chinese regulations are working—Why is surface ozone over industrialized areas still high? Applying lessons from Northeast US air quality evolution. Geophys. Res. Lett. 2021, 48, e2021GL092816. [Google Scholar] [CrossRef]
Item | Main Specification |
---|---|
Main product group | Aerosol effective height, AOD, total O3, O3 profile, NO2, SO2, HCHO/CHOCHO, UV index, cloud, surface reflectance |
Spectral range | 300–500 nm |
Spectral resolution | 0.6 nm (FWHM) |
Spectral sampling resolution | 0.2 nm |
Spatial range | 5° S–45° N, 75° E–145° E |
Ground resolution | 7 × 8 km2 at Seoul |
Time resolution | 1 h (30 min observation, 30 min rest) |
07:45–08:15 | 08:45–09:15 | 09:45–10:15 | 10:45–11:15 | 11:45–12:15 | 12:45–13:15 | 13:45–14:15 | 14:45–15:15 | 15:45–16:15 | 16:45–17:15 | Number of Observations | |
---|---|---|---|---|---|---|---|---|---|---|---|
January | HE | HK | FC | FW | FW | FW | 6 | ||||
February | HE | HK | FC | FW | FW | FW | FW | 7 | |||
March | HE | HK | FC | FC | FW | FW | FW | FW | 8 | ||
April | HE | HK | FC | FC | FC | FW | FW | FW | FW | FW | 10 |
May | HE | HK | FC | FC | FW | FW | FW | FW | FW | FW | 10 |
June | HE | HK | FC | FC | FW | FW | FW | FW | FW | FW | 10 |
July | HE | HK | FC | FC | FW | FW | FW | FW | FW | FW | 10 |
August | HE | HK | FC | FC | FW | FW | FW | FW | FW | FW | 10 |
September | HE | HK | FC | FC | FW | FW | FW | FW | FW | FW | 10 |
October | HE | HK | FC | FC | FW | FW | FW | FW | 8 | ||
November | HE | HK | FC | FW | FW | FW | 6 | ||||
December | HE | HK | FC | FW | FW | FW | 6 |
r | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
OMI vs. GEMS | 0.68 | 0.62 | 0.64 | 0.47 |
TROPOMI vs. GEMS | 0.80 | 0.83 | 0.76 | 0.55 |
OMPS vs. GEMS | 0.61 | 0.55 | 0.48 | 0.47 |
Target Countries | |
---|---|
Regular observation area | Thailand, Vietnam, Indonesia, Mongolia, Cambodia, Philippines, and Laos |
Maximum observation area | Bangladesh, Myanmar, Bhutan, Nepal, India, and Sri Lanka |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.J.; Moon, K.-J.; Kim, G.; Lee, D. Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS). Atmosphere 2023, 14, 1458. https://doi.org/10.3390/atmos14091458
Choi WJ, Moon K-J, Kim G, Lee D. Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS). Atmosphere. 2023; 14(9):1458. https://doi.org/10.3390/atmos14091458
Chicago/Turabian StyleChoi, Won Jun, Kyung-Jung Moon, Goo Kim, and Dongwon Lee. 2023. "Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS)" Atmosphere 14, no. 9: 1458. https://doi.org/10.3390/atmos14091458
APA StyleChoi, W. J., Moon, K. -J., Kim, G., & Lee, D. (2023). Reliability Analysis Based on Air Quality Characteristics in East Asia Using Primary Data from the Test Operation of Geostationary Environment Monitoring Spectrometer (GEMS). Atmosphere, 14(9), 1458. https://doi.org/10.3390/atmos14091458