Development in Carbonaceous Aerosols

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Aerosols".

Deadline for manuscript submissions: 10 June 2025 | Viewed by 2601

Special Issue Editor

School of Atmosphere Science and Remote Sensing, Wuxi University, Wuxi 214105, China
Interests: atmospheric physics and atmospheric environment; atmospheric remote sensing and atmospheric sounding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Aerosol pollution is the world’s single greatest environmental risk to health. Some 6.5 million people across the world die prematurely every year from exposure to outdoor and indoor aerosol pollution, and nine out of ten people breathe outdoor aerosols polluted beyond acceptable WHO guidelines levels. Rapid population growth, unsustainable urban development, and the increased energy demand by transportation, industrial, commercial, and residential activities have led to large amounts of emissions into the atmosphere, subjecting residents to the health risks associated with harmful pollutants and imposing heavy economic and social costs.

The aim of this Special Issue is to present original research articles and reviews that assess carbonaceous aerosols in the atmosphere, including both experimental and monitoring studies and mathematical/numerical modeling studies. Topics to be covered include aerosol observations, the chemical characterization of particulate matter, and human exposure assessment.

Dr. Mao Mao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbonaceous aerosols
  • air pollution
  • human exposure
  • optical characteristics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 6612 KiB  
Article
Light Absorption Properties of Brown Carbon Aerosol During Winter at a Polluted Rural Site in the North China Plain
by Yanan Tao, Zheng Yang, Xinyu Tan, Peng Cheng, Cheng Wu, Mei Li, Yele Sun, Nan Ma, Yawei Dong, Jiayin Zhang and Tao Du
Atmosphere 2024, 15(11), 1294; https://doi.org/10.3390/atmos15111294 - 28 Oct 2024
Viewed by 947
Abstract
Brown carbon aerosols (BrC), a subfraction of organic aerosols, significantly influence the atmospheric environment, climate and human health. The North China Plain (NCP) is a hotspot for BrC research in China, yet our understanding of the optical properties of BrC in rural regions [...] Read more.
Brown carbon aerosols (BrC), a subfraction of organic aerosols, significantly influence the atmospheric environment, climate and human health. The North China Plain (NCP) is a hotspot for BrC research in China, yet our understanding of the optical properties of BrC in rural regions is still very limited. In this study, we characterize the chemical components and light absorption of BrC at a rural site during winter in the NCP. The average mass concentration of PM1 is 135.1 ± 82.3 μg/m3; organics and nitrate are the main components of PM1. The absorption coefficient of BrC (babs,BrC) is 53.6 ± 45.7 Mm−1, accounting for 39.5 ± 10.2% of the total light absorption at 370 nm. Diurnal variations reveal that the babs,BrC and organics are lower in the afternoon, attributed to the evolution of planetary boundary layers. BrC is mainly emitted locally, and both the aqueous phase and the photooxidation reactions can increase babs,BrC. Notably, the babs,BrC is reduced when RH > 65%. During foggy conditions, reactions in the aqueous phase facilitate the formation of secondary components and contribute to the bleaching of BrC. This process ultimately causes a decrease in both the absorption Ångström exponent (AAE) and the mass absorption efficiency (MAE). In contrast, the babs,BrC, along with AAE and MAE, rise significantly due to substantial primary emissions. This study enhances our understanding of the light absorption of BrC in rural polluted regions of the NCP. Full article
(This article belongs to the Special Issue Development in Carbonaceous Aerosols)
Show Figures

Figure 1

19 pages, 4074 KiB  
Article
Spatiotemporal Variation in Absorption Aerosol Optical Depth over China
by Mao Mao, Huan Jiang and Xiaolin Zhang
Atmosphere 2024, 15(9), 1099; https://doi.org/10.3390/atmos15091099 - 9 Sep 2024
Cited by 1 | Viewed by 1288
Abstract
Absorbing aerosols can absorb solar radiation, affect the atmospheric radiation balance, and further have a profound influence on the global and regional climates. The absorption aerosol optical depth (AAOD) as well as the absorption Angstrom exponent (AAE) across China over 2005–2018 were systematically [...] Read more.
Absorbing aerosols can absorb solar radiation, affect the atmospheric radiation balance, and further have a profound influence on the global and regional climates. The absorption aerosol optical depth (AAOD) as well as the absorption Angstrom exponent (AAE) across China over 2005–2018 were systematically studied through the Ozone Monitoring Instrument (OMI) dataset. The monthly AAOD samples from the OMI generally showed a good correlation (~0.55) compared to the monthly data from AERONET at four typical sites (North: Xianghe, East: Taihu, South: Hongkong Polytechnic Univ; Northwest: Sacol) across China. The ensemble annual average of the OMI AAOD at 388 and 500 nm is 0.046 and 0.022, with minor changes during 2005–2015, and a relatively fast increase after that. The winter and spring seasons depict the maximum mean AAODs, followed by autumn, whereas summer shows minimum levels. On the contrary, the high AAE values appear in summer and low values in winter. The order of the annual average AAOD500 from 2005 to 2018 is the Tarim Basin (TB, 0.041) > the Yellow River Basin (YRB, 0.023) > Beijing and Tianjin (BT, 0.026) > the Sichuan Basin (SB, 0.023) > Nanjing and Shanghai (NS, 0.021) > the Pearl River Delta (PRD, 0.017), whereas the AAE388–500 exhibits the opposite trend except for the TB (3.058). From 2005 to 2018, the AAOD rises by nearly 1.5–2.0 fold in the six typical regions, implying a severe situation of dust and/or BC aerosol pollution in the last several years. The monthly mean AAOD388 over the TB, the SB, the YRB, BT, the PRD, and NS is estimated to be smallest at 0.072, 0.024, 0.026, and 0.027 in July, 0.024 in June, and 0.025 in September, respectively, whilst largest in January for NS, the YRB and BT, April for the TB, February for the SB, and March for the PRD with 0.055, 0.077 and 0.067, 0.123, and 0.073 and 0.075, respectively. The monthly averaged AAOD500 in each region is consistently about half of the AAOD388. The highest AAE appears in June while the lowest values are in December and January, and the daily AAE values in episode days slightly decrease as compared to non-episode days. Our study indicates that northwestern China plays an important role in the overall AAOD as a result of dust aerosols stemming from desert areas. Moreover, the meteorological conditions in winter and early spring are associated with more energy consumption conducive to the accumulation of high black carbon (BC) aerosol pollution, causing high alert levels of AAOD from November to the following March. Full article
(This article belongs to the Special Issue Development in Carbonaceous Aerosols)
Show Figures

Figure 1

Back to TopTop