Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Optisystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2203 KiB  
Article
OpticalTrust: A Sensor-to-Blockchain Framework Using Free-Space Optical Communication
by Parveen Bajaj, Aman Kataria, Vikram Puri, Sachin Gupta and Hong Min
Sensors 2024, 24(23), 7797; https://doi.org/10.3390/s24237797 - 5 Dec 2024
Cited by 1 | Viewed by 1014
Abstract
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve [...] Read more.
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve bit rates of up to 40 Gbps with proper design, they are limited primarily by electronics rather than semiconductor laser capabilities. This study presents an integrated framework that combines FSOs, blockchain technology, and sensor networks to address challenges in data transmission, security, and environmental adaptation. This study analyzes FSOs system performance through the Quality (Q) Factor and Bit Error Rate (BER), comparing systems with and without Erbium-Doped Fiber Amplifiers (EDFAs) across various bit rates (8, 12, 16, and 20 Gbps) and transmission distances (5–25 km). To enhance data security and reliability, a blockchain architecture is incorporated with smart contracts and an InterPlanetary File System (IPFS) for storing and validating results generated from FSOs simulation. Additionally, this study explores the design of sensor network models for FSOs technology by investigating how distributed sensor arrays can be theoretically integrated with FSOs systems, with testing focused on FSOs performance and blockchain implementation. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 6949 KiB  
Article
Fault Tolerant Spectral/Spatial Optical Code Division Multiple Access Passive Optical Network
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Yaya Mao, Zhipeng Qi, Jamil Hussain, Feng Wang, Faheem Khan and Waqas Ahmed Imtiaz
Sensors 2024, 24(22), 7355; https://doi.org/10.3390/s24227355 - 18 Nov 2024
Viewed by 918
Abstract
High-capacity communication networks are built to provide high throughput and low latency to accommodate the growing demand for bandwidth. However, the provision of these features is subject to a robust underlying network, which can provide high capacity with maximum reliability in terms of [...] Read more.
High-capacity communication networks are built to provide high throughput and low latency to accommodate the growing demand for bandwidth. However, the provision of these features is subject to a robust underlying network, which can provide high capacity with maximum reliability in terms of the system’s connection availability. This work optimizes an existing 2D spectral–spatial optical code division multiple access (OCDMA) passive optical network (PON) to maximize connection availability while maintaining desirable communication capacity and capital expenditure. Optimization is performed by employing ring topology at the feeder level, which is used to provide a redundant path in case of connection failures. Furthermore, high transmission capacity is ensured by utilizing a pseudo-3D double-weight zero cross-correlation (DW-ZCC) code. The analysis is performed with Optisystem simulations to observe the performance of the system in terms of bit error rate (BER), received power, and eye openings. It is observed that the introduction of ring topology at the feeder level of the PON does not impact the overall transmission capacity of the system. The system can still support maximum transmission capacity at receiver sensitivities of up to −19 dB. Reliability analysis also shows that the optimized ring-based architecture can provide desirable connection availability compared to the existing system. Full article
Show Figures

Figure 1

17 pages, 5137 KiB  
Article
Research on the Teaching of Laser Chaotic Communication Based on Optisystem and Matlab Software
by Xuefang Zhou, Minjun Li, Meihua Bi, Guowei Yang and Miao Hu
Electronics 2024, 13(16), 3274; https://doi.org/10.3390/electronics13163274 - 18 Aug 2024
Viewed by 1703
Abstract
The utilization of chaotic optical communication, a physical layer security technology, has the potential to enhance the security of optical fiber networks. In this paper, we take knowledge acquired while teaching “A chaotic security system based on phase-intensity (P-I) electro-optic feedback” as an [...] Read more.
The utilization of chaotic optical communication, a physical layer security technology, has the potential to enhance the security of optical fiber networks. In this paper, we take knowledge acquired while teaching “A chaotic security system based on phase-intensity (P-I) electro-optic feedback” as an example and, in detail, introduce a teaching implementation process based on the combination of Optisystem and Matlab. Firstly, based on the Lang–Kobayashi (L-K) laser equation, the generation mechanism of electro-optic feedback chaos was explained. Secondly, the P-I electro-optic feedback chaos was analyzed theoretically with the help of Matlab. Finally, a laser chaotic optical communication system based on electro-optic feedback was built with the help of Optisystem (15.0.0) software, and the performance of the communication was simulated and analyzed through the design of system parameters. The teaching design model and facilitate the concretization of the abstract theory of “the principle of chaos generated by electro-optic feedback, the composition of chaotic optical communication system and the performance index of chaotic communication system”. Through after-class exercises and questionnaire surveys, it was verified that the teaching method is widely recognized by students and that it effectively improves the teaching effect of the course of laser chaotic communication and the students’ academic research ability. Full article
(This article belongs to the Special Issue Artificial Intelligence in Cyberspace Security)
Show Figures

Figure 1

9 pages, 3661 KiB  
Article
Broadband Instantaneous Frequency Measurement Using Frequency-to-Time Mapping and Channelization
by Shaobo Li, Anni Liu, Xiang Ma, Wenqi Yu, Yandan Liu, Yihan Li and Guansu Xing
Photonics 2024, 11(8), 697; https://doi.org/10.3390/photonics11080697 - 27 Jul 2024
Cited by 1 | Viewed by 1045
Abstract
A photonic instantaneous microwave frequency measurement scheme based on frequency-to-time mapping and channelization is proposed. An unknown signal is divided into four channels and mixed with a broadband linear frequency-modulated signal. The frequency information is converted to the time domain, and the frequency [...] Read more.
A photonic instantaneous microwave frequency measurement scheme based on frequency-to-time mapping and channelization is proposed. An unknown signal is divided into four channels and mixed with a broadband linear frequency-modulated signal. The frequency information is converted to the time domain, and the frequency measurement range has been expanded due to channelization. A simulation system has been constructed to demonstrate the effectiveness of the proposed method. A proof-of-concept experimental result shows that the frequency measurement errors can be kept in 20 MHz with a 10 MHz resolution, and the frequency measurement range is 1 GHz to 39 GHz. Full article
Show Figures

Figure 1

11 pages, 3153 KiB  
Article
Upscaling Customer Access Network Using Spectrum Conversion–Slicing–Duplication Technique
by Mohammad Syuhaimi Ab-Rahman, Juwairiyyah Abdul Rahman, Nurul Farhana Mohd Arifin, Iszan Hana Kaharudin and I-Shyan Hwang
Photonics 2023, 10(11), 1271; https://doi.org/10.3390/photonics10111271 - 17 Nov 2023
Cited by 2 | Viewed by 1330
Abstract
The purpose of this study is to increase the number of access users without having to install a new optical cable. With the proposed solution, the cost of installation work can be reduced and the number of users can be increased. Several parameters [...] Read more.
The purpose of this study is to increase the number of access users without having to install a new optical cable. With the proposed solution, the cost of installation work can be reduced and the number of users can be increased. Several parameters were observed to ensure that the modified network not only improved the scalability but also met the standard parameters. Among the parameters observed are the Q factor, bit error rate (BER), eye diagram and number of users. The study was continued using the spectrum conversion, slicing and duplication technique, where the signals would be duplicated in arrayed waveguide grating (AWG) and sliced using a demultiplexer WDM (WDM Demux). Simulations were performed using the latest-version Optisystem 18.0 software by setting the transmitter frequency value of 1491 nm, transmitter power of 0 dBm and loss of 0 dB. The result shows the total user access achieved is 196,608 users. Meanwhile, the common FTTH network is allowed 256 users only. The criterion is set based on the calculation of the Q factor, which is greater than 6, while the BER is less than 1 × 10−9. The Q factor for 196,608 users is 6.43617 and the BER is 4.52 × 10−11. The number of users is increased without compromising the quality of data offered to the customer. Our solution is the first reported to date. Full article
(This article belongs to the Special Issue Optical Network Design and Optimization)
Show Figures

Figure 1

16 pages, 4295 KiB  
Article
High-Capacity Free Space Optics-Based Passive Optical Network for 5G Front-Haul Deployment
by Rahat Ullah, Sibghat Ullah, Waqas A. Imtiaz, Jahangir Khan, Peer Meher Ali Shah, Muhammad Kamran, Jianxin Ren and Shuaidong Chen
Photonics 2023, 10(10), 1073; https://doi.org/10.3390/photonics10101073 - 24 Sep 2023
Cited by 18 | Viewed by 2179
Abstract
With the expansion of Information and Communication Technology, it is important to develop a communication network that can provide high-capacity ubiquitous connectivity. This work proposes an energy-efficient passive optical network (PON) using orthogonal frequency division multiple access (OFDMA) and wavelength division multiplexing (WDM) [...] Read more.
With the expansion of Information and Communication Technology, it is important to develop a communication network that can provide high-capacity ubiquitous connectivity. This work proposes an energy-efficient passive optical network (PON) using orthogonal frequency division multiple access (OFDMA) and wavelength division multiplexing (WDM) to facilitate the dense deployment of radio units (RUs) in a beyond 5G (B5G) communication network. High-speed connectivity is ensured by employing a hybrid PON architecture that includes a combination of free space optics (FSO) links and optical fiber (OF) media to carry OFDM and WDM multiplexed traffic. Furthermore, an optical frequency comb generator (OFCG) is utilized at the transmitter module to generate and leverage the spectrum for transmitting information from baseband units (BBUs) to the RUs situated near the end users. The proposed system is analyzed through (i) simulation analysis using Optisystem for transmission capacity computations and (ii) mathematical analysis to determine the total savings in energy. The simulation analysis shows that the given architecture can carry data across 3 km of FSO medium using 512 subcarriers per BBU transmitting at 10 Gbps of data with QPSK-modulated bit sequence. Additionally, energy efficiency shows that the use of an OFCG cuts the total energy usage by 22% at the transmitter module without negatively impacting the system’s high cardinality and transmission capacity. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

15 pages, 6016 KiB  
Article
Phase Alignment of an Array Optical Telescope System Using Balanced Detection
by Yang Li, Qiang Wang, Yongmei Huang and Rongqi Ma
Micromachines 2023, 14(2), 409; https://doi.org/10.3390/mi14020409 - 9 Feb 2023
Cited by 1 | Viewed by 2170
Abstract
Differential phase shift keying (DPSK) modulation and multi-aperture receiving are effective means for suppressing flickering, deviation, and fragmentation of the light spot by atmospheric turbulence. What is challenging in coherent beam combination of such an array receiver system is to detect and compensate [...] Read more.
Differential phase shift keying (DPSK) modulation and multi-aperture receiving are effective means for suppressing flickering, deviation, and fragmentation of the light spot by atmospheric turbulence. What is challenging in coherent beam combination of such an array receiver system is to detect and compensate for phase deviation of sub-apertures. In this paper, a method of phase alignment of an array optical telescope system using balanced detection was proposed and demonstrated. The improved Mach Zehnder Interferometer (MZI) can demodulate the digital signal and recover the phase difference at the same time. It also brings a 3 dB gain to the receiver and improves the detection sensitivity of the system. Adequate simulations with OptiSystem and MATLAB were carried out to show that the power value remains near the ideal state of 2.75 mW, and the bit error rate is less than 10−9 after phase compensation, which indicates the effectiveness and accuracy of the proposed method. Furthermore, taking the communication interruption difference of ninety degrees as an example, the system bit error rate was reduced from 1 to 10−35, and communication was established again. Full article
Show Figures

Figure 1

29 pages, 2173 KiB  
Article
Simulation of an Indoor Visible Light Communication System Using Optisystem
by Alwin Poulose
Signals 2022, 3(4), 765-793; https://doi.org/10.3390/signals3040046 - 1 Nov 2022
Cited by 13 | Viewed by 7687
Abstract
Visible light communication (VLC ) is an emerging research area in wireless communication. The system works the same way as optical fiber-based communication systems. However, the VLC system uses free space as its transmission medium. The invention of the light-emitting diode (LED) significantly [...] Read more.
Visible light communication (VLC ) is an emerging research area in wireless communication. The system works the same way as optical fiber-based communication systems. However, the VLC system uses free space as its transmission medium. The invention of the light-emitting diode (LED) significantly updated the technologies used in modern communication systems. In VLC, the LED acts as a transmitter and sends data in the form of light when the receiver is in the line of sight (LOS) condition. The VLC system sends data by blinking the light at high speed, which is challenging to identify by human eyes. The detector receives the flashlight at high speed and decodes the transmitted data. One significant advantage of the VLC system over other communication systems is that it is easy to implement using an LED and a photodiode or phototransistor. The system is economical, compact, inexpensive, small, low power, prevents radio interference, and eliminates the need for broadcast rights and buried cables. In this paper, we investigate the performance of an indoor VLC system using Optisystem simulation software. We simulated an indoor VLC system using LOS and non-line-of-sight (NLOS) propagation models. Our simulation analyzes the LOS propagation model by considering the direct path with a single LED as a transmitter. The NLOS propagation model-based VLC system analyses two scenarios by considering single and dual LEDs as its transmitter. The effect of incident and irradiance angles in an LOS propagation model and an eye diagram of LOS/NLOS models are investigated to identify the signal distortion. We also analyzed the impact of the field of view (FOV) of an NLOS propagation model using a single LED as a transmitter and estimated the bitrate (Rb). Our theoretical results show that the system simulated in this paper achieved bitrates in the range of 2.1208×107 to 4.2147×107 bits/s when the FOV changes from 30 to 90. A VLC hardware design is further considered for real-time implementations. Our VLC hardware system achieved an average of 70% data recovery rate in the LOS propagation model and a 40% data recovery rate in the NLOS propagation model. This paper’s analysis shows that our simulated VLC results are technically beneficial in real-world VLC systems. Full article
Show Figures

Figure 1

14 pages, 4468 KiB  
Article
Performance Enhancement of DWDM Optical Fiber Communication Systems Based on Amplification Techniques
by Norbert Zdravecký, Ľuboš Ovseník, Jakub Oravec and Maroš Lapčák
Photonics 2022, 9(8), 530; https://doi.org/10.3390/photonics9080530 - 29 Jul 2022
Cited by 10 | Viewed by 4419
Abstract
This paper deals with improving transmission properties of a DWDM system based on amplification techniques. Parameter values change due to a change in the type of optical amplifier or an adjustment of the parameters of the optical amplifiers. Optimization summarizes the knowledge of [...] Read more.
This paper deals with improving transmission properties of a DWDM system based on amplification techniques. Parameter values change due to a change in the type of optical amplifier or an adjustment of the parameters of the optical amplifiers. Optimization summarizes the knowledge of the systems and software that are used. These assumptions are verified by a set of simulations and the obtained numerical values are compared with the values given in the relevant articles. The proposed design, which uses a larger number of EDFA amplifiers over long distances, has been found to perform better than single amplifier systems. In addition, the proposed solution is better in transmission characteristics than other approaches with a similar purpose. Full article
Show Figures

Figure 1

31 pages, 13647 KiB  
Article
Contribution of New Three-Dimensional Code Based on the VWZCC Code Extension in Eliminating Multiple Access Interference in Optical CDMA Networks
by Mohamed Rahmani, Abdelhamid Cherifi, Abdullah S. Karar, Ghoutia Naima Sabri and Boubakar S. Bouazza
Photonics 2022, 9(5), 310; https://doi.org/10.3390/photonics9050310 - 3 May 2022
Cited by 9 | Viewed by 2349
Abstract
In order to solve the problem of one-dimensional code length, two-dimensional code spatial length, phase induced intensity noise PIIN effect, improved system capacity, and increased the number of simultaneous users, a new three-dimensional spectral/time/spatial variable weight zero cross correlation code for non-coherent spectral [...] Read more.
In order to solve the problem of one-dimensional code length, two-dimensional code spatial length, phase induced intensity noise PIIN effect, improved system capacity, and increased the number of simultaneous users, a new three-dimensional spectral/time/spatial variable weight zero cross correlation code for non-coherent spectral amplitude coding-optical code division multiple access (3D-VWZCC-SAC-OCDMA) is proposed in this paper. Its construction is based on a one-dimensional (1D) spectral sequence and two-dimensional (2D) temporal/spatial sequences, which are characterized by the property of zero cross correlation ZCC. The simulation results demonstrate that our code proves high immunity against PIIN noise and shot noise, it increases multiplexing ability when the passage is from (1D) and (2D) to (3D) up to 5.112 and 2.248 times, and it saves −7.04 dBm and −5.9 dBm of the receiver power due to simple detection at the receiver; furthermore, the 3D-VWZCC system capacity has outperformed the 3D-PD, 3D-PD/MD and 3D-DCS/MD codes, which reach 3686, 2908, and 3234 times, respectively. Moreover, our code offers better performance, in terms of data rates, with up to 2 Gbps compared to previous codes, which makes the system meet the requirements of optical communication networks. Further, 3D-VWZCC is also simulated in Optisystem software, where our code offers a transmission quality Q reaching 11.56 with a bit error rate BER of 1.99×1031 despite a high number of users. Full article
Show Figures

Figure 1

15 pages, 853 KiB  
Article
Low-Complexity Chromatic Dispersion Equalization FIR Digital Filter for Coherent Receiver
by Zicheng Wu, Sida Li, Zhiping Huang, Fangqi Shen and Yongjie Zhao
Photonics 2022, 9(4), 263; https://doi.org/10.3390/photonics9040263 - 15 Apr 2022
Cited by 3 | Viewed by 2586
Abstract
This paper proposes a novel and efficient low-complexity chromatic dispersion equalizer (CDE) based on finite impulse response (FIR) filter architecture for polarization-multiplexed coherent optical communication systems. The FIR filter coefficients are optimized by weights to reduce the energy leakage caused by the truncation [...] Read more.
This paper proposes a novel and efficient low-complexity chromatic dispersion equalizer (CDE) based on finite impulse response (FIR) filter architecture for polarization-multiplexed coherent optical communication systems. The FIR filter coefficients are optimized by weights to reduce the energy leakage caused by the truncation effect, and then quantization is used uniformly to reduce the number of real number additions and real number multiplications by utilizing the diversity of the quantized coefficients. Using Optisystem 15 to build a coherent optical communication system for simulation and experimental demonstration, the results show that after the filter coefficients are optimized by weights. Compared with the time-domain chromatic dispersion equalizer (TD-CDE), the proposed design has a lower bit error rate (BER) and better equalization effect. When the transmission distance is 4000 km and the system quantization stages M = 16, the multiplication operation and addition operations reduce computing resources by 99% and 43%, and the BER only increases by 5%. Compared with frequency-domain chromatic dispersion equalizer (FD-CDE), widely used in long-distance communication, the multiplication operation reduces computing resources by 30%. The proposed method provides a new idea for high-performance CDE in long-distance coherent optical communication systems. Full article
Show Figures

Figure 1

17 pages, 5375 KiB  
Review
A 100 Gbps OFDM-Based 28 GHz Millimeter-Wave Radio over Fiber Fronthaul System for 5G
by James Dzisi Gadze, Reynah Akwafo, Kwame Agyeman-Prempeh Agyekum and Kwasi Adu-Boahen Opare
Optics 2021, 2(2), 70-86; https://doi.org/10.3390/opt2020008 - 30 Apr 2021
Cited by 9 | Viewed by 5738
Abstract
Due to the unprecedented growth in mobile data traffic, emerging mobile access networks such as fifth-generation (5G) would require huge bandwidth and a mobile fronthaul architecture as an essential solution in providing a high capacity for support in the future. To increase capacity, [...] Read more.
Due to the unprecedented growth in mobile data traffic, emerging mobile access networks such as fifth-generation (5G) would require huge bandwidth and a mobile fronthaul architecture as an essential solution in providing a high capacity for support in the future. To increase capacity, utilizing millimeter waves (mm-waves) in an analog radio over fiber (RoF) fronthaul link is the major advancement and solution in achieving higher bandwidth and high data rate to cater for 5G mobile communication. In this paper, we demonstrate the feasibility of transmission and reception of a 100 Gbits/s data rate link at 28 GHz. The performance of three modulation formats (16-PSK, 16-QAM and 64-QAM) have been compared for an optical fiber length from 5 km up to 35 km for two detection systems; coherent and direct detection. Also, in this paper, the transmission impairments inherent to transmission systems are realized through the implementation of a digital signal processing (DSP) compensation scheme in the receiver system to enhance system performance. Quality factor (QF) and bit error rate (BER) are used as metrics to evaluate the system performance. The proposed system model is designed and simulated using Optisystem 16. Full article
(This article belongs to the Special Issue Recent Developments in Optical Communications)
Show Figures

Figure 1

21 pages, 5115 KiB  
Article
Crosstalk Analysis and Performance Evaluation for Torus-Based Optical Networks-on-Chip Using WDM
by Tingting Song, Yiyuan Xie, Yichen Ye, Shujian Wang and Yingxue Du
Micromachines 2020, 11(11), 985; https://doi.org/10.3390/mi11110985 - 31 Oct 2020
Cited by 1 | Viewed by 3414
Abstract
Insertion loss and crosstalk noise will influence network performance severely, especially in optical networks-on-chip (ONoCs) when wavelength division multiplexing (WDM) technology is employed. In this paper, an insertion loss and crosstalk analysis model for WDM-based torus ONoCs is proposed to evaluate the network [...] Read more.
Insertion loss and crosstalk noise will influence network performance severely, especially in optical networks-on-chip (ONoCs) when wavelength division multiplexing (WDM) technology is employed. In this paper, an insertion loss and crosstalk analysis model for WDM-based torus ONoCs is proposed to evaluate the network performance. To demonstrate the feasibility of the proposed methods, numerical simulations of the WDM-based torus ONoCs with optimized crossbar and crux optical routers are presented, and the worst-case link and network scalability are also revealed. The numerical simulation results demonstrate that the scale of the WDM-based torus ONoCs with the crux optical router can reach 6 × 5 or 5 × 6 before the noise power exceeds the signal power, and the network scale is 5 × 4 in the worst case when the optimized crossbar router is employed. Additionally, the simulated results of OptiSystem reveal that WDM-based torus ONoCs have better signal transmission quality when using the crux optical router, which is consistent with previous numerical simulations. Furthermore, compared with the single-wavelength network, WDM-based ONoCs have a great performance improvement in end-to-end (ETE) delay and throughput according to the simulated results of OPNET. The proposed network analysis method provides a reliable theoretical basis and technical support for the design and performance optimization of ONoCs. Full article
Show Figures

Graphical abstract

12 pages, 8431 KiB  
Article
Design and Performance Analysis of the WDM Schemes for Radio over Fiber System With Different Fiber Propagation Losses
by Adnan Hussein Ali and Alaa Desher Farhood
Fibers 2019, 7(3), 19; https://doi.org/10.3390/fib7030019 - 26 Feb 2019
Cited by 58 | Viewed by 13231
Abstract
The integration of optical and wireless networks increases mobility and capacity and decreases costs in access networks. Fibre optic communication can be considered optical communication that combines the methodologies of two communications, and it may be utilised in systems of wired and wireless [...] Read more.
The integration of optical and wireless networks increases mobility and capacity and decreases costs in access networks. Fibre optic communication can be considered optical communication that combines the methodologies of two communications, and it may be utilised in systems of wired and wireless communication. The solution for many problems is radio over fibre (RoF) because it can control many base stations (BS) that are connected to a central station (CS) with an optical fibre. The received RoF signal head for in a low quality; thus, many factors will result in some problems such as a high bit error rate (BER) and low Q-factor values, and the receiver might not be operating in a high data rate network. Wavelength division multiplexing (WDM) network can offer a solution to these problems where the transmission of different signals can be done with a single-mode fibre. BER should be reduced to assured values, and the Q-factor must be increased. The investigation of WDM-RoF with different lengths of fibre at various channel spacing will be simulated using Optisystem software, and the RoF’s receiver performance is measured and analyzed depending on the acquired BER, the value of the Q-factor, and the height of the opening of the eye diagram. The degradation factors effect such as attenuation and dispersion are significantly limited with the addition of an EDFA amplifier to a Single Mode Fibre (SMF). Full article
(This article belongs to the Special Issue Optical Fibers Sensors 2019)
Show Figures

Figure 1

14 pages, 2187 KiB  
Article
Enhanced Spectral Amplitude Coding OCDMA System Utilizing a Single Photodiode Detection
by Somia A. Abd El-Mottaleb, Heba A. Fayed, Ahmed Abd El-Aziz, Mohamed A. Metawee and Moustafa H. Aly
Appl. Sci. 2018, 8(10), 1861; https://doi.org/10.3390/app8101861 - 10 Oct 2018
Cited by 35 | Viewed by 4616
Abstract
In this paper, the performance of a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system is investigated utilizing a single photodiode (SPD) detection technique. The proposed system uses enhanced double weight (EDW) codes as signature codes with three simultaneous users to overcome [...] Read more.
In this paper, the performance of a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system is investigated utilizing a single photodiode (SPD) detection technique. The proposed system uses enhanced double weight (EDW) codes as signature codes with three simultaneous users to overcome both phase-induced intensity noise (PIIN) and multiple access interference (MAI). In addition, a dispersion compensating fiber (DCF) is used in order to decrease the group velocity dispersion (GVD) caused in the single mode fiber. An erbium-doped fiber amplifier (EDFA) is used to overcome the attenuation. The use of both DCF and EDFA leads to an appreciable enhancement in the system performance. The system performance is evaluated through its bit error rate (BER), Q-factor, and received power. A comparison between the EDW codes and modified double weight (MDW) codes on the SAC-OCDMA system is demonstrated. Simulation is carried out through Optisystem ver. 7. The simulation results show that: (a) using an avalanche photodiode (APD) over PIN photodiode allows data transmission over longer distances; (b) the use of DCF improves the system BER;(c) using MDW codes gives better BER than using EDW codes. Full article
(This article belongs to the Special Issue Light Communication: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop