Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,025)

Search Parameters:
Keywords = ORF42

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4330 KB  
Review
Amarilloviruses of Aquatic Animals
by Frederick Kibenge, Molly Kibenge, Daniela Vargas and Marcos Godoy
Pathogens 2026, 15(2), 160; https://doi.org/10.3390/pathogens15020160 - 2 Feb 2026
Abstract
The family Flaviviridae has been expanded to include the highly divergent flavi-like viruses into three new families, Flaviviridae, Pestiviridae, and Hepaciviridae, in the order Amarillovirales. Classical flavivirids are small, enveloped viruses with positive-sense ssRNA genomes lacking a 3′ poly(A) [...] Read more.
The family Flaviviridae has been expanded to include the highly divergent flavi-like viruses into three new families, Flaviviridae, Pestiviridae, and Hepaciviridae, in the order Amarillovirales. Classical flavivirids are small, enveloped viruses with positive-sense ssRNA genomes lacking a 3′ poly(A) tail and ~9.0–13.0 kb in length, with a single open reading frame (ORF) encoding structural proteins at the N-terminus and nonstructural proteins at the C-terminus. Members infect a wide range of mammals, birds, and insects, and many are host-specific and pathogenic. Although the RNA-directed RNA polymerase (RdRP) gene sequences of the flavi-like viruses group phylogenetically with those of classical flavivirids, flavi-like viruses often encode larger polyproteins and possess substantially longer genomes of up to ~40 kb, and some have a 3′ poly(A) tail. Their host range extends across the whole animal kingdom and angiosperm plants. This review describes the reported flavi-like viruses of aquatic animals, providing a meaningful update on all three new families in Amarillovirales that have been discovered using metagenomics in fish, crustaceans, mollusks, and echinoderms. These amarilloviruses include pathogenic viruses of aquatic animals, such as Cyclopterus lumpus virus (CLuV) detected in moribund lumpfish, and infectious precocity virus (IPV) found in iron prawn syndrome (IPS)-affected farmed giant freshwater prawns. Full article
Show Figures

Graphical abstract

11 pages, 2357 KB  
Article
Co-Infection of Three Novel Deltaflexiviruses in an Isolate of the Edible Fungus Pleurotus ostreatus Reduces Fruiting Body Yield by Inhibiting Cellulase Activity
by Yifei Zhang, Wenhui Xie, Wenlian Zhong, Meijia Zeng, Huaping Li and Pengfei Li
J. Fungi 2026, 12(2), 103; https://doi.org/10.3390/jof12020103 - 31 Jan 2026
Viewed by 42
Abstract
Pleurotus ostreatus, a globally cultivated oyster mushroom, is susceptible to viral infections that threaten yield and quality. This study reports the identification and characterization of three novel viruses from a symptomatic P. ostreatus strain K3: Pleurotus ostreatus deltaflexivirus 2, 3, and 4 [...] Read more.
Pleurotus ostreatus, a globally cultivated oyster mushroom, is susceptible to viral infections that threaten yield and quality. This study reports the identification and characterization of three novel viruses from a symptomatic P. ostreatus strain K3: Pleurotus ostreatus deltaflexivirus 2, 3, and 4 (PoDFV2, PoDFV3, PoDFV4). Complete genome sequencing revealed that they are single-stranded, positive-sense RNA viruses with lengths of 7809 nt, 7771 nt, and 7786 nt, encoding 5, 2, and 4 open reading frames (ORFs), respectively. The largest open reading frame (ORF1) encodes a putative replication-associated polyprotein (RP) containing three conserved domains—viral RNA methyltransferase (Mtr), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp). Based on genomic sequence analysis, multiple sequence alignments, and phylogenetic analysis, PoDFV2–4 were identified as novel viruses of the genus Deltaflexivirus within the family Deltaflexiviridae. PoDFV2–4 had no significant effects on mycelial growth rate, plate mycelial biomass, or laccase activity. However, they significantly inhibited mycelial cellulase activity and resulted in malformed fruiting bodies, as well as a substantial reduction in yield. Full article
Show Figures

Figure 1

18 pages, 5329 KB  
Article
Multi-Omics Analyses Reveal Metabolic Alterations Regulated by Orf Virus in Primary Ovine Fetal Turbinate Cells
by Ran Zhang, Fei Gao, Jiyu Guan, Lijun Lv, Zhuomei Li, Mengshi Xu, Yiran Sun, Pin Lv, Yiguang Wu, Huijun Lu, Zi Li, Yungang Lan, Feng Gao, Wenqi He and Kui Zhao
Viruses 2026, 18(2), 186; https://doi.org/10.3390/v18020186 - 29 Jan 2026
Viewed by 130
Abstract
Orf virus (ORFV) is a member of the Parapoxvirus genus of the Poxviridae family causing contagious diseases in sheep, goats, and wild ungulates, with zoonotic potential in humans. Although many viruses, including poxviruses, are known to utilize the host cellular machinery to reproduce [...] Read more.
Orf virus (ORFV) is a member of the Parapoxvirus genus of the Poxviridae family causing contagious diseases in sheep, goats, and wild ungulates, with zoonotic potential in humans. Although many viruses, including poxviruses, are known to utilize the host cellular machinery to reproduce viral particles, the metabolic changes induced by ORFV remain unclear. In the present study, non-targeted metabolomics and proteomics were employed to investigate the impact of ORFV infection on the host cellular metabolism network. A total of 301 metabolites and 802 proteins were significantly altered during the early stages of ORFV infection, and most of them were involved in cellular lipid metabolism, amino acid metabolism, nucleotide metabolism, and glucose metabolism. We further determined the effect of the host’s metabolic system on ORFV replication using the TCID50 assay. Virus titers were significantly decreased in the absence of glucose or when treated with the de novo fatty acid synthesis inhibitor, indicating that glucose metabolism and de novo fatty acid synthesis pathway were required for ORFV replication. However, glutamine did not affect viral titers. Our findings provide insights into ORFV–host interactions, which are critical for developing new preventive or therapeutic strategies against ORFV by targeting altered metabolic pathways. Full article
(This article belongs to the Section Animal Viruses)
21 pages, 1305 KB  
Article
Cross-Learner Spectral Subset Optimisation: PLS–Ensemble Feature Selection with Weighted Borda Count for Grapevine Cultivar Discrimination
by Kyle Loggenberg, Albert Strever and Zahn Münch
Geomatics 2026, 6(1), 12; https://doi.org/10.3390/geomatics6010012 - 28 Jan 2026
Viewed by 83
Abstract
The mapping of vineyard cultivars presents a substantial challenge in digital agriculture due to the crop’s high intra-class heterogeneity and low inter-class variability. High-dimensional spectral datasets, such as hyperspectral or spectrometry data, can overcome these difficulties. However, research has yet to fully address [...] Read more.
The mapping of vineyard cultivars presents a substantial challenge in digital agriculture due to the crop’s high intra-class heterogeneity and low inter-class variability. High-dimensional spectral datasets, such as hyperspectral or spectrometry data, can overcome these difficulties. However, research has yet to fully address the need for optimal spectral feature subsets tailored for grapevine cultivar discrimination, while few studies have systematically examined waveband subsets that transfer effectively across different learning algorithms. This study sets out to address these gaps by introducing a Partial Least Squares (PLS)-based ensemble feature selection framework with Weighted Borda Count aggregation for cultivar discrimination. Using in-field spectrometry data, collected for six cultivars, and 18 PLS-based feature selection methods spanning filter, wrapper, and hybrid approaches, the PLS–ensemble identified 100 wavebands most relevant for cultivar discrimination, reducing dimensionality by ~95%. The efficacy and transferability of this subset were evaluated using five classification algorithms: Oblique Random Forest (oRF), Multinomial Logistic Regression (Multinom), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and a 1D Convolutional Neural Network (CNN). For oRF, Multinom, SVM, and MLP, the PLS–ensemble subset improved accuracy by 0.3–12% compared with using all wavebands. The subset was not optimal for the 1D-CNN, where accuracy decreased by up to 5.7%. Additionally, this study investigated waveband binning to transform narrow hyperspectral bands into broadband spectral features. Using feature multicollinearity and wavelength position, the 100 selected wavebands were condensed into 10 broadband features, which improved accuracy over both the full dataset and the original subset, delivering gains of 4.5–19.1%. The SVM model with this 10-feature subset outperformed all other models (F1: 1.00; BACC: 0.98; MCC: 0.78; AUC: 0.95). Full article
Show Figures

Figure 1

15 pages, 2952 KB  
Article
A Lytic Mosigvirus Phage (GADS24) from a Poultry-Farm Environment: Genome-Resolved Characterization and In Vitro Biocontrol-Relevant Phenotyping Against Escherichia coli
by Jehan Alrahimi, Ghadah Alsubhi, Alia Aldahlawi, Fatemah S. Basingab, Mohammed A. Imam, Hashim Felemban, Najwa Alharbi, Sana Alshaik, Hala S. Sonbol, Kawther Zaher and Esam I. Azhar
Int. J. Mol. Sci. 2026, 27(3), 1276; https://doi.org/10.3390/ijms27031276 - 27 Jan 2026
Viewed by 165
Abstract
Multidrug-resistant (MDR) Escherichia coli (E. coli) at the poultry–human interface motivates evaluating strictly lytic bacteriophages as targeted biocontrol candidates. A lytic E. coli phage (GADS24) was isolated from poultry waste in Saudi Arabia. Plaque formation and host range were assessed against [...] Read more.
Multidrug-resistant (MDR) Escherichia coli (E. coli) at the poultry–human interface motivates evaluating strictly lytic bacteriophages as targeted biocontrol candidates. A lytic E. coli phage (GADS24) was isolated from poultry waste in Saudi Arabia. Plaque formation and host range were assessed against 10 clinical E. coli isolates. Virion morphology was examined by transmission electron microscopy (TEM). Whole-genome sequencing (Illumina) and annotation (Prokka/RAST) were followed by comparative genomics (BLASTn 2.15.0, ANI JSpeciesWS: 2014–2025 Ribocon GmbH—Version: 5.0.3, dDDH GGDC: GGDC 3.0 and phylogenetic/proteomic analyses for taxonomic placement. GADS24 formed clear plaques and lysed 5 of 10 clinical E. coli isolates tested. TEM revealed an icosahedral capsid (~72.6 nm) and a contractile tail (~131.7 nm), consistent with Tevenvirinae/Mosigvirus morphology. The dsDNA genome is 168,896 bp (GC 43.8%) with 268 predicted ORFs and two tRNA genes (tRNA-Arg and tRNA-Met); no lysogeny-related genes were detected. The closest relative was Escherichia phage JN02 (98.44% ANI; 57.8% dDDH), supporting assignment to Mosigvirus while indicating a genome-resolved distinct lineage. The genome is available in GenBank (OQ703618). GADS24 represents a genome-resolved, strictly lytic Mosigvirus with in vitro biocontrol-relevant phenotyping against E. coli, supporting follow-up development for poultry-associated infection control and deeper phage–host interaction studies. Full article
(This article belongs to the Special Issue Applications of Bacteriophages)
Show Figures

Figure 1

23 pages, 3133 KB  
Article
Construction and Biological Characterization of ORF133-Deletion Mutant of Lumpy Skin Disease Virus
by Qunhua Ke, Miaomiao Li, Yao Peng, Xiangwei Wang, Yuefeng Sun, Xiangping Yin and Yanming Wei
Viruses 2026, 18(2), 158; https://doi.org/10.3390/v18020158 - 24 Jan 2026
Viewed by 209
Abstract
Lumpy skin disease virus (LSDV), a Capripoxvirus genus member, causes severe cattle disease. Though Capripoxviruses share high nucleotide sequence homology indicating common ancestry, they have evolved distinct host adaptations. The LSDV genome encodes numerous proteins, with ORF133 being LSDV-specific and lacking clear homologs [...] Read more.
Lumpy skin disease virus (LSDV), a Capripoxvirus genus member, causes severe cattle disease. Though Capripoxviruses share high nucleotide sequence homology indicating common ancestry, they have evolved distinct host adaptations. The LSDV genome encodes numerous proteins, with ORF133 being LSDV-specific and lacking clear homologs in other Capripoxviruses, implying potential roles in host range and virulence. To explore ORF133’s function, this study generated mouse polyclonal antibodies against ORF133 and constructed the ORF133-deleted recombinant virus (LSDVΔORF133-EGFP) via homologous recombination with an EGFP reporter. Preliminary characterization showed that ORF133 deletion affects viral replication. This study provides critical tools and theoretical references for subsequent investigations into the functional mechanisms underlying ORF133 in LSDV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 2433 KB  
Article
Stable Resistance to Potato Virus Y and Potato Leafroll Virus in Transgenic Potato Plants cv. Kennebec Expressing Viral Genes Under Greenhouse and Field Conditions
by María Pilar Barrios Barón, Natalia Inés Almasia, Vanesa Nahirñak, Diego Zavallo, Deimer Daniel Rodriguez Diaz, Sebastián Asurmendi, Federico Fuligna, Horacio Esteban Hopp, Ana Julia Distéfano and Cecilia Vazquez Rovere
Plants 2026, 15(3), 355; https://doi.org/10.3390/plants15030355 - 23 Jan 2026
Viewed by 175
Abstract
Potato virus Y (PVY) and potato leafroll virus (PLRV) are the most damaging viruses for potato production worldwide. Mixed infections not only result in additive detrimental effects on plant growth and tuber yield but also complicate the development of durable and broad-spectrum viral [...] Read more.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are the most damaging viruses for potato production worldwide. Mixed infections not only result in additive detrimental effects on plant growth and tuber yield but also complicate the development of durable and broad-spectrum viral resistance. Heterologous protection against PVY can be achieved through the expression of the coat protein (CP) of lettuce mosaic virus (LMV) (CPLMV), conferring resistance via a capsid protein-mediated mechanism. On the other hand, we have previously demonstrated that transgenic lines expressing the PLRV ORF2 (RepPLRV) exhibit resistance to different PLRV isolates. In this study, potato transgenic lines of cv. Kennebec expressing CPLMV and RepPLRV were developed to confer dual virus resistance. Transgenic and non-transgenic control plants were molecularly and phenotypically characterized in greenhouse and field conditions. Across multiple growing seasons, two selected transgenic lines consistently displayed robust resistance to both major viruses, without exhibiting yield penalties or noticeable phenotypic alterations. These results constitute a significant advancement, demonstrating that dual resistance to PVY and PLRV can be achieved while preserving the original agronomic performance of the cultivar. This breakthrough not only contributes to long-term crop productivity but also provides a more sustainable strategy for managing viral diseases in potato production. Full article
(This article belongs to the Special Issue Genetic Approaches to Enhancing Disease Resistance in Crops)
Show Figures

Figure 1

16 pages, 4194 KB  
Article
A Recombinant Porcine Epidemic Diarrhea Virus with Multiple S2 Subunit Mutations from China: Isolation, Genetic Characterization, and Pathogenicity Analysis
by Nana Yan, Jingru Xu, Yuqi Li, Sisi Fan, Shuqi Qiu, Linjie Huang, Xiaoziyi Xiao, Yuting Liao, Weiye Lin, Bo Dong, Ailing Dai and Kewei Fan
Microorganisms 2026, 14(1), 242; https://doi.org/10.3390/microorganisms14010242 - 21 Jan 2026
Viewed by 164
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major cause of fatal diarrhea in piglets. The continuous emergence of new variants, driven by recombination and mutation, poses a persistent global threat to the swine industry, resulting in significant economic losses. Therefore, ongoing surveillance of [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is a major cause of fatal diarrhea in piglets. The continuous emergence of new variants, driven by recombination and mutation, poses a persistent global threat to the swine industry, resulting in significant economic losses. Therefore, ongoing surveillance of PEDV evolution is critical. In this study, we isolated a novel PEDV strain, designated PEDV/FJLY202201, from experimental intestinal samples collected from a diarrheal piglet in Fujian, China, and sequenced its complete genome. Complete genome analysis, phylogenetic analysis, and recombination analysis were conducted. Results showed that PEDV/FJLY202201 was a recombinant strain derived from two recombination events between G2a and G2b strains, with three breakpoints located in the ORF1b, Domain 0 (D0) and S2 subunit, respectively. Notably, multiple mutations were identified in the S2 subunit, a finding that has been rarely reported before. Furthermore, following challenge with the PEDV/FJLY202201 strain, 3-day-old piglets exhibited severe diarrhea, sustained a 30.35% weight loss, and reached 100% mortality, collectively demonstrating its high virulence. These data reveal the complex evolution of PEDV/FJLY202201 and provide a foundation for a better understanding of the genetic evolution and molecular pathogenesis of PEDV. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

20 pages, 25350 KB  
Article
Comparison of Structure and Dynamics of ORF8 Binding with Different Protein Partners Through Simulation Studies
by Liqun Zhang
Biophysica 2026, 6(1), 6; https://doi.org/10.3390/biophysica6010006 - 20 Jan 2026
Viewed by 116
Abstract
ORF8 is the second most mutated protein in SARS-CoV-2. It can form oligomers such as trimers and can bind to the IL-17RA/RC receptor. To understand the possible role of ORF8 in SARS-CoV-2, the first step of this study involved predicting the ORF8 trimer [...] Read more.
ORF8 is the second most mutated protein in SARS-CoV-2. It can form oligomers such as trimers and can bind to the IL-17RA/RC receptor. To understand the possible role of ORF8 in SARS-CoV-2, the first step of this study involved predicting the ORF8 trimer structure and the complex structure of the ORF8 monomer bound to the IL-17RA receptor using docking and molecular dynamics simulation methods. It was found that ORF8 molecules bound to the central ORF8 molecule through covalent and noncovalent interactions exhibit similar RMSD and RMSF values as the central ORF8 molecule and form a similar buried surface area, but display different numbers of hydrogen bonds and varying dynamic correlations. Additionally, trimer formation increases the dynamic correlation of the noncovalently bound ORF8 unit. ORF8 can bind with the IL-17RA receptor stably. Regions on ORF8, including C25–I47, L60–S67, T80–C90, and S103–E110, and regions on IL-17RA, including L1–H63 and D122–M165, are involved in the binding interface of the complex. ORF8 becomes less rigid when bound to IL-17RA than in its monomer, dimer, and trimer forms. Based on dihedral angle correlation predictions, binding of ORF8 to IL-17RA reduces internal correlations within ORF8 while strengthening correlations within IL-17RA. The G50–T80 region of ORF8 appears to be critical for interaction with IL-17RA, and the L1–V150 region of IL-17RA should be critical for its dynamics once bound to ORF8. These results help elucidate the structure and dynamics of ORF8 in SARS-CoV-2. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Graphical abstract

27 pages, 1530 KB  
Review
Regulation of Translation of ATF4 mRNA: A Focus on Translation Initiation Factors and RNA-Binding Proteins
by Pauline Adjibade and Rachid Mazroui
Cells 2026, 15(2), 188; https://doi.org/10.3390/cells15020188 - 20 Jan 2026
Viewed by 317
Abstract
Cells are continuously exposed to physiological and environmental stressors that disrupt homeostasis, triggering adaptive mechanisms such as the integrated stress response (ISR). A central feature of ISR is the selective translation of activating transcription factor 4 (ATF4), which orchestrates gene programs essential for [...] Read more.
Cells are continuously exposed to physiological and environmental stressors that disrupt homeostasis, triggering adaptive mechanisms such as the integrated stress response (ISR). A central feature of ISR is the selective translation of activating transcription factor 4 (ATF4), which orchestrates gene programs essential for metabolic adaptation and survival. Stress-induced acute ATF4 expression occurs in diverse mammalian cell types and is typically protective; however, chronic activation contributes to pathologies including cancer and neurodegeneration. Canonical ISR (c-ISR) is initiated by phosphorylation of eIF2α in response to stressors such as endoplasmic reticulum or mitochondrial dysfunction, hypoxia, nutrient deprivation, and infections. This modification suppresses global protein synthesis while promoting ATF4 translation through upstream open reading frames (uORFs) in its 5′UTR. Recently, an alternative pathway, split ISR (s-ISR), enabling ATF4 translation independently of eIF2α phosphorylation, was identified in mice, suggesting ISR adaptability, though its relevance in humans remains unclear. Under normal conditions, cap-dependent translation predominates, mediated by the eIF4F complex and requiring the activity of eIF2B at its initial steps. During translational stress, eIF2α phosphorylation inhibits eIF2B activity, resulting in the formation of stalled initiation complexes, which can aggregate into stress granules (SGs). SGs sequester mRNAs and translation initiation factors, further repressing global translation, while ATF4 mRNA largely escapes sequestration, enabling selective translation. This partitioning highlights a finely tuned regulatory mechanism balancing ATF4 expression during stress. Recent advances reveal that, beyond cis-regulatory uORFs, trans-acting factors such as translation initiation factors and associated RNA-binding proteins critically influence ATF4 translation. Understanding these mechanisms provides insight into ISR plasticity and its implications for development, aging, and disease. Full article
(This article belongs to the Special Issue Protein and RNA Regulation in Cells)
Show Figures

Figure 1

20 pages, 1128 KB  
Review
Molecular Aspects of Viral Pathogenesis in Emerging SARS-CoV-2 Variants: Evolving Mechanisms of Infection and Host Response
by Sofia Teodora Muntean, Andreea-Raluca Cozac-Szoke, Andreea Cătălina Tinca, Irina Bianca Kosovski, Silviu Vultur, Mara Vultur, Ovidiu Simion Cotoi and Anca Ileana Sin
Int. J. Mol. Sci. 2026, 27(2), 891; https://doi.org/10.3390/ijms27020891 - 15 Jan 2026
Viewed by 339
Abstract
Although the SARS-CoV-2 pandemic no longer poses a global emergency, the virus continues to diversify and acquire immunoevasive properties. Understanding the molecular pathways that shape SARS-CoV-2 pathogenesis has become essential. In this paper, we summarize the most recent current evidence on how the [...] Read more.
Although the SARS-CoV-2 pandemic no longer poses a global emergency, the virus continues to diversify and acquire immunoevasive properties. Understanding the molecular pathways that shape SARS-CoV-2 pathogenesis has become essential. In this paper, we summarize the most recent current evidence on how the spike protein structurally evolves, on changes in key non-structural proteins, such as nsp14, and on host factors, such as TMPRSS2 and neuropilin-1. These changes, together, shape viral entry, replication fidelity and interferon antagonism. Given the emerging Omicron variants of SARS-CoV-2, recent articles in the literature, cryo-EM analyses, and artificial intelligence-assisted mutational modeling were analyzed to infer and contextualize mutation-driven mechanisms. It is through these changes that the virus adapts and evolves, such as optimizing angiotensin-converting enzyme binding, modifying antigenic surfaces, and accumulating mutations that affect CD8+ T-cell recognition. Multi-omics data studies further support SARS-CoV-2 pathogenesis through convergent evidence linking viral adaptation to host immune and metabolic reprogramming, as occurs in myocarditis, liver injury, and acute kidney injury. By integrating proteomic, transcriptomic, and structural findings, this work presents how the virus persists and dictates disease severity through interferon antagonism (ORF6, ORF9b, and nsp1), adaptive immune evasion, and metabolic rewiring. All these insights underscore the need for next-generation interventions that provide a multidimensional framework for understanding the evolution of SARS-CoV-2 and guiding future antiviral strategies. Full article
Show Figures

Figure 1

21 pages, 4904 KB  
Article
Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus
by Li-Ping Hu, Qin-Yan Chen, Mei-Lin Huang, Wen-Jia Zhang, Xiao-Qian Huang, Xian-Feng Yi and Hui-Hua Jia
Viruses 2026, 18(1), 112; https://doi.org/10.3390/v18010112 - 15 Jan 2026
Viewed by 336
Abstract
Background: The enhanced sensitivity of next-generation sequencing (NGS) for assessing hepatitis B virus (HBV) quasispecies heterogeneity over clone-based sequencing (CBS) is well documented. However, its comparative reliability for genotype determination remains an open question. Objective: This study aimed to directly compare the performance [...] Read more.
Background: The enhanced sensitivity of next-generation sequencing (NGS) for assessing hepatitis B virus (HBV) quasispecies heterogeneity over clone-based sequencing (CBS) is well documented. However, its comparative reliability for genotype determination remains an open question. Objective: This study aimed to directly compare the performance of NGS and CBS for genotyping HBV using the entire viral genome. Methods: We selected five challenging clinical samples that previously could not be subgenotyped or showed conflicting results when using direct sequencing of the S open reading frame (ORF). The full HBV genome from these subjects was amplified and then analyzed in parallel by both NGS and CBS. Phylogenetic analysis was subsequently used to assign genotypes. Results: Both methods identified a range of genotypes, including B, C, and I, as well as aberrant and recombinant forms. For three of the five subjects, genotyping results were identical between the two platforms. In the remaining two cases, however, CBS revealed greater complexity, identifying additional subgenotypes and recombinant/aberrant strains not detected by NGS. Notably, for three individuals, the genotypes determined by both modern methods contradicted earlier results from 2011 based on direct S ORF sequencing. Furthermore, the specific mutations detected were incongruent between the platforms, with CBS identifying a higher number of variants than NGS. Conclusions: Our findings indicate that genotyping results from NGS and CBS can be discordant. Contrary to expectations, CBS may uncover more genetic diversity, including a greater number of subgenotypes and mutations, than NGS in certain contexts. The study also confirms that genotyping based solely on direct sequencing of the S ORF can be unreliable and lead to misclassification. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 2043 KB  
Article
Hepatitis E ORF2 Blocks Trophoblast Autophagy to Induce Miscarriage via LC3B Binding Rather than PI3K/Akt/mTOR Pathway Suppression
by Yinzhu Chen, Yifei Yang, Qianyu Bai, Xinyuan Tian, Chaoyu Zhou, Xuancheng Lu and Tianlong Liu
Microorganisms 2026, 14(1), 181; https://doi.org/10.3390/microorganisms14010181 - 14 Jan 2026
Viewed by 198
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen that can infect pregnant women and cause adverse pregnancy outcomes, including miscarriage and preterm delivery. The previous study demonstrated that HEV genotype 3 (HEV-3) inhibits complete autophagic flux in both mouse placental tissue and human [...] Read more.
Hepatitis E virus (HEV) is a zoonotic pathogen that can infect pregnant women and cause adverse pregnancy outcomes, including miscarriage and preterm delivery. The previous study demonstrated that HEV genotype 3 (HEV-3) inhibits complete autophagic flux in both mouse placental tissue and human trophoblast cells (JEG-3), evidenced by reduced expression of ATG proteins (including LC3, Beclin1, ATG4B, ATG5, and ATG9A) and accumulation of p62. However, the specific regulatory pathway involved remains unclear. Thus, eukaryotic expression vectors for HEV open reading frames (ORFs) were constructed, and ORF2 and ORF3 proteins were transiently overexpressed in JEG-3 cells via liposome transfection. While both ORF2 and ORF3 significantly reduced LC3B protein levels (p < 0.01), only ORF2 induced p62 accumulation (p < 0.01), indicative of autophagic inhibition, which indicates that ORF2 was the key viral protein mediating autophagy suppression in JEG-3. The results of WB and RT-qPCR showed that ORF2 suppressed the PI3K/Akt/mTOR pathway while enhancing nuclear translocation of TFEB (p < 0.01) and AMPK phosphorylation (p < 0.01), suggesting paradoxical activation of upstream autophagy regulators. Through co-transfection of mCherry-LC3 with ORF2, co-localization studies, and AlphaFold 3-based intermolecular interaction predictions, we propose that ORF2 directly binds LC3B to block autophagosome formation. Finally, co-immunoprecipitation confirmed physical interaction between HEV ORF2 and LC3B, elucidating the molecular mechanism of HEV-induced autophagy suppression in trophoblasts. These findings reveal the molecular mechanism by which HEV inhibits autophagy leading to miscarriage in mice, providing new insights into HEV-induced reproductive damage. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

29 pages, 7062 KB  
Review
Advances in Clostridial Neurotoxins: Passage of the Intestinal Barrier and Targeting of Specific Neuronal Cells
by Michel R. Popoff
Toxins 2026, 18(1), 35; https://doi.org/10.3390/toxins18010035 - 10 Jan 2026
Viewed by 381
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNTs), and tetanus neurotoxin (TeNT) are potent toxins responsible for severe diseases, botulism and tetanus, respectively. BoNTs associate with non-toxic proteins (non-toxic non-hemagglutinin, hemagglutinins, and OrfXs), which protect BoNTs against acidic pH and protease degradation and facilitate BoNT passage [...] Read more.
Clostridial neurotoxins, botulinum neurotoxins (BoNTs), and tetanus neurotoxin (TeNT) are potent toxins responsible for severe diseases, botulism and tetanus, respectively. BoNTs associate with non-toxic proteins (non-toxic non-hemagglutinin, hemagglutinins, and OrfXs), which protect BoNTs against acidic pH and protease degradation and facilitate BoNT passage through the intestinal barrier. TeNT enters motor neurons and undergoes a retrograde axonal transport until the target inhibitory interneurons in the central nervous system. BoNTs and TeNT recognize specific cell surface receptors which consist of complex sets of protein(s)-glycan-gangliosides and determine specific cell entry pathways. Recent data on structural and functional investigations of BoNT and TeNT receptors bring a better understanding of toxin trafficking in the host and entry into target neuronal cells, which is useful for the development of updated strategies of prevention and treatment of the corresponding diseases. Since clostridial neurotoxins, notably BoNTs, are important therapeutic tools, detailed knowledge of their activity opens the way of the development of engineered molecules for specific clinical applications. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

24 pages, 2268 KB  
Review
FIR/PUF60: Multifunctional Molecule Through RNA Splicing for Revealing the Novel Disease Mechanism and Effective Individualized Therapies
by Kazuyuki Matsushita, Kouichi Kitamura, Nobuko Tanaka, Sohei Kobayashi, Yusuke Suenaga and Tyuji Hoshino
Int. J. Mol. Sci. 2026, 27(2), 643; https://doi.org/10.3390/ijms27020643 - 8 Jan 2026
Viewed by 352
Abstract
Disease-specific diversity in RNA transcripts stems from RNA splicing, ribosomal abnormalities, and other factors. However, the mechanisms underlying the regulation of rRNA expression in the nucleolus and mRNA expression in the cytoplasm during cancer and neuronal differentiation remain largely unknown. In this article, [...] Read more.
Disease-specific diversity in RNA transcripts stems from RNA splicing, ribosomal abnormalities, and other factors. However, the mechanisms underlying the regulation of rRNA expression in the nucleolus and mRNA expression in the cytoplasm during cancer and neuronal differentiation remain largely unknown. In this article, we review current knowledge and discuss the regulatory mechanisms of rRNA and mRNA expression in human diseases using the splicing model of PUF60 (poly(U) binding splicing factor 60)—also known as FUSE-binding protein-interacting repressor (FIR) (FUBP1-interacting repressor), RoBPI, SIAHBP1, and VRJS (Gene ID: 22827). Noncoding RNAs, much like coding RNAs, have been found to be translated into proteins with significant physiological functions. Splicing is also involved in dominant ORF RNAs implicated in the expression of both noncoding and coding RNAs. Here, we analyze recent findings regarding gene splicing, ribosome formation, and the determination of selected ORFs (dominant ORFs) in a system modeled on FIR splicing in two databases (RefSeq and ENSEMBL). rRNA transcription affects ribosomes, whereas mRNA expression and splicing affect the intracellular proteome. Our objective is to develop efficient methods for identifying biomarkers for disease diagnosis and therapeutic targets. In the field of cancer treatment, therapeutic drugs targeting intracellular signaling have proven effective. Full article
Show Figures

Figure 1

Back to TopTop