A Lytic Mosigvirus Phage (GADS24) from a Poultry-Farm Environment: Genome-Resolved Characterization and In Vitro Biocontrol-Relevant Phenotyping Against Escherichia coli
Abstract
1. Introduction
2. Results
2.1. Isolation, Plaque Morphology, and Propagation of GADS24
2.2. Host Range Against Clinical E. coli Isolates
2.3. Virion Morphology by Transmission Electron Microscopy
2.4. Genome Features and Phylogenomic Placement
2.5. Functional Annotation and Gene Content
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain
4.2. Phage Isolation
4.3. Spot Assay
4.4. Plaque Assay and Phage Titration
4.5. Host Range Determination
4.6. Transmission Electron Microscopy (TEM)
4.7. Phage DNA Extraction
4.8. Whole Genome Sequencing and Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMR | Antimicrobial Resistance |
| BAVS | Bacterial and Archaeal Viruses Subcommittee |
| BLASTp | Basic Local Alignment Search Tool of Protein |
| E. coli | Escherichia coli |
| ExPEC | Extraintestinal pathogenic Escherichia coli |
| LB | Luria–Bertani broth |
| NCBI | National Center for Biotechnology Information |
| MDR | Multidrug-Resistant |
| OD | Optical density |
| ORFs | Open Reading Frames |
| SEM | Scanning Electron Microscope. |
| TEM | Transmission Electron Microscopy |
References
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. Population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019, 32, e00135-18. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). About Antimicrobial Resistance. Available online: https://www.cdc.gov/antimicrobial-resistance/about/?CDC_AAref_Val=https://www.cdc.gov/drugresistance/about.html (accessed on 30 April 2025).
- Batinovic, S.; Wassef, F.; Knowler, S.A.; Rice, D.T.; Stanton, C.R.; Rose, J.; Tucci, J.; Nittami, T.; Vinh, A.; Drummond, G.R.; et al. Bacteriophages in natural and artificial environments. Pathogens 2019, 8, 100. [Google Scholar] [CrossRef]
- Nilsson, A.S. Phage therapy—Constraints and possibilities. Ups. J. Med. Sci. 2014, 119, 192–198. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Ahn, J. Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics 2022, 11, 915. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Gordillo Altamirano, F.L.; Barr, J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [Google Scholar] [CrossRef]
- Stacey, H.J.; De Soir, S.; Jones, J.D. The safety and efficacy of phage therapy: A systematic review of clinical and safety trials. Antibiotics 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- El-Shibiny, A.; Dawoud, A. Bacteriophage applications for food safety. In Biocommunication of Phages; Witzany, G., Ed.; Springer: Cham, Switzerland, 2020; pp. 463–484. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Chen, H.; Zhao, Y.; Shu, M.; Zhong, C.; Wu, G. A bacteriophage JN02 infecting multidrug-resistant Shiga toxin-producing Escherichia coli: Isolation, characterization and application as a biocontrol agent in foods. Int. J. Food Sci. Technol. 2021, 56, 4756–4769. [Google Scholar] [CrossRef]
- Zhou, Y.; Wan, Q.; Bao, H.; Guo, Y.; Zhu, S.; Zhang, H.; Pang, M.; Wang, R. Application of a novel lytic phage vB_EcoM_SQ17 for the biocontrol of enterohemorrhagic Escherichia coli O157:H7 and enterotoxigenic E. coli in food matrices. Front. Microbiol. 2022, 13, 929005. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Xu, Y.; Xu, J.; Yu, X.; Huang, X.; Liu, G.; Liu, X. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103, 315–326. [Google Scholar] [CrossRef]
- Yazdi, M.; Bouzari, M.; Ghaemi, E.A.; Shahin, K. Isolation, characterization and genomic analysis of a novel bacteriophage VB_EcoS-Golestan infecting multidrug-resistant Escherichia coli isolated from urinary tract infection. Sci. Rep. 2020, 10, 7690. [Google Scholar] [CrossRef]
- Abdelrahman, F.; Rezk, N.; Fayez, M.S.; Abdelmoteleb, M.; Atteya, R.; Elhadidy, M.; El-Shibiny, A. Isolation, characterization, and genomic analysis of three novel E. coli bacteriophages that effectively infect E. coli O18. Microorganisms 2022, 10, 589. [Google Scholar] [CrossRef]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef]
- Thomas, J.A.; Orwenyo, J.; Wang, L.X.; Black, L.W. The odd “RB” phage—Identification of arabinosylation as a new epigenetic modification of DNA in T4-like phage RB69. Viruses 2018, 10, 313. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, H.; Zhang, H.; Wang, R. Isolation and characterization of lytic phage vB_EcoM_JS09 against clinically isolated antibiotic-resistant avian pathogenic Escherichia coli and enterotoxigenic Escherichia coli. Intervirology 2015, 58, 218–231. [Google Scholar] [CrossRef]
- García-Cruz, J.C.; Huelgas-Méndez, D.; Jiménez-Zúñiga, J.S.; Rebollar-Juárez, X.; Hernández-Garnica, M.; Fernández-Presas, A.M.; Husain, F.M.; Alenazy, R.; Alqasmi, M.; Albalawi, T.; et al. Myriad applications of bacteriophages beyond phage therapy. PeerJ 2023, 11, e15272. [Google Scholar] [CrossRef] [PubMed]
- Pajares-Chamorro, N.; Hammer, N.D.; Chatzistavrou, X. Materials for restoring lost activity: Old drugs for new bugs. Adv. Drug Deliv. Rev. 2022, 186, 114302. [Google Scholar] [CrossRef]
- Jo, D.; Kim, H.; Lee, Y.; Kim, J.; Ryu, S. Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant Escherichia coli. Front. Microbiol. 2023, 14, 1194435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liao, Y.T.; Salvador, A.; Lavenburg, V.M.; Wu, V.C.H. Characterization of two new Shiga toxin-producing Escherichia coli O103-infecting phages isolated from an organic farm. Microorganisms 2021, 9, 1527. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Turner, D.; Morozova, V.; Dyall-Smith, M.; Oksanen, H.M.; Edwards, R.; Dutilh, B.E.; Lehman, S.M.; Reyes, A.; Baquero, D.P.; et al. Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: Update of taxonomy changes in 2021. Arch. Virol. 2021, 166, 3239–3244. [Google Scholar] [CrossRef]
- Shen, X.; Li, M.; Zeng, Y.; Hu, X.; Tan, Y.; Rao, X.; Jin, X.; Li, S.; Zhu, J.; Zhang, K.; et al. Functional identification of the DNA packaging terminase from Pseudomonas aeruginosa phage PaP3. Arch. Virol. 2012, 157, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.; Young, R. Phage lysis: Multiple genes for multiple barriers. In Bacteriophages: Biology, Technology, Therapy; Harper, D., Ed.; Springer: Cham, Switzerland, 2019; pp. 33–70. [Google Scholar] [CrossRef]
- Sillankorva, S.; Neubauer, P.; Azeredo, J. Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol. 2008, 8, 80. [Google Scholar] [CrossRef]
- Bonilla, N.; Rojas, M.I.; Netto Flores Cruz, G.; Hung, S.H.; Rohwer, F.; Barr, J.J. Phage on tap—A quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 2016, 4, e2261. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef] [PubMed]








| Clinical E. coli Strain * | Lytic Activity |
|---|---|
| E. coli Strain 53 | +(Lysis observed) |
| E. coli Strain 33 | +(Lysis observed) |
| E. coli Strain 16 | +(Lysis observed) |
| E. coli Strain 30 | −(No lysis) |
| E. coli Strain 21 | +(Lysis observed) |
| E. coli Strain 9 | −(No lysis) |
| E. coli Strain 401 | −(No lysis) |
| E. coli Strain 882999 | −(No lysis) |
| E. coli Strain 20 | −(No lysis) |
| E. coli Strain 40 | +(Lysis observed) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alrahimi, J.; Alsubhi, G.; Aldahlawi, A.; Basingab, F.S.; Imam, M.A.; Felemban, H.; Alharbi, N.; Alshaik, S.; Sonbol, H.S.; Zaher, K.; et al. A Lytic Mosigvirus Phage (GADS24) from a Poultry-Farm Environment: Genome-Resolved Characterization and In Vitro Biocontrol-Relevant Phenotyping Against Escherichia coli. Int. J. Mol. Sci. 2026, 27, 1276. https://doi.org/10.3390/ijms27031276
Alrahimi J, Alsubhi G, Aldahlawi A, Basingab FS, Imam MA, Felemban H, Alharbi N, Alshaik S, Sonbol HS, Zaher K, et al. A Lytic Mosigvirus Phage (GADS24) from a Poultry-Farm Environment: Genome-Resolved Characterization and In Vitro Biocontrol-Relevant Phenotyping Against Escherichia coli. International Journal of Molecular Sciences. 2026; 27(3):1276. https://doi.org/10.3390/ijms27031276
Chicago/Turabian StyleAlrahimi, Jehan, Ghadah Alsubhi, Alia Aldahlawi, Fatemah S. Basingab, Mohammed A. Imam, Hashim Felemban, Najwa Alharbi, Sana Alshaik, Hala S. Sonbol, Kawther Zaher, and et al. 2026. "A Lytic Mosigvirus Phage (GADS24) from a Poultry-Farm Environment: Genome-Resolved Characterization and In Vitro Biocontrol-Relevant Phenotyping Against Escherichia coli" International Journal of Molecular Sciences 27, no. 3: 1276. https://doi.org/10.3390/ijms27031276
APA StyleAlrahimi, J., Alsubhi, G., Aldahlawi, A., Basingab, F. S., Imam, M. A., Felemban, H., Alharbi, N., Alshaik, S., Sonbol, H. S., Zaher, K., & Azhar, E. I. (2026). A Lytic Mosigvirus Phage (GADS24) from a Poultry-Farm Environment: Genome-Resolved Characterization and In Vitro Biocontrol-Relevant Phenotyping Against Escherichia coli. International Journal of Molecular Sciences, 27(3), 1276. https://doi.org/10.3390/ijms27031276

