Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = Nitrate Vulnerable Zones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5230 KB  
Article
A Novel Hybrid Model for Groundwater Vulnerability Assessment and Its Application in a Coastal City
by Yanwei Wang, Haokun Yu, Zongzhong Song, Jingrui Wang and Qingguo Song
Sustainability 2026, 18(2), 674; https://doi.org/10.3390/su18020674 - 9 Jan 2026
Viewed by 291
Abstract
Groundwater vulnerability assessments serve as essential tools for sustainable groundwater management, particularly in regions with intensive anthropogenic activities. However, improving the objectivity and predictive reliability of vulnerability assessment frameworks remains a critical scientific challenge in groundwater science, especially for coastal aquifer systems characterized [...] Read more.
Groundwater vulnerability assessments serve as essential tools for sustainable groundwater management, particularly in regions with intensive anthropogenic activities. However, improving the objectivity and predictive reliability of vulnerability assessment frameworks remains a critical scientific challenge in groundwater science, especially for coastal aquifer systems characterized by strong heterogeneity and complex hydrogeological processes. The traditional DRASTIC model is a widely recognized method but suffers from subjectivity in assigning parameter ratings and weights, often leading to arbitrary and potentially inaccurate vulnerability maps. This limitation also restricts its applicability in areas with complex hydrogeological conditions. To enhance the accuracy and adaptability of the traditional DRASTIC model, a hybrid PSO-BP-DRASTIC framework was developed and applied it to a coastal city in China. Specifically, the model employs a backpropagation neural network (BP-NN) to optimize indicator weights and integrates the particle swarm optimization (PSO) algorithm to refine the initial weights and thresholds of the BP-NN. By introducing a data-driven and globally optimized weighting mechanism, the proposed framework effectively overcomes the inherent subjectivity of conventional empirical weighting schemes. Using ten-fold cross-validation and observed nitrate concentration data, the traditional DRASTIC, BP-DRASTIC, and PSO-BP-DRASTIC models were systematically validated and compared. The results demonstrate that (1) the PSO-BP-DRASTIC model achieved the highest classification accuracy on the test set, the highest stability across ten-fold cross-validation, and the strongest correlation with the nitrate concentrations; (2) the importance analysis identified the aquifer thickness and depth to the groundwater table as the most influential factors affecting groundwater vulnerability in Yantai; and (3) the spatial assessments revealed that high-vulnerability zones (7.85% of the total area) are primarily located in regions with intensive agricultural activities and high aquifer permeability. The hybrid PSO-BP-DRASTIC model effectively mitigates the subjectivity of the traditional DRASTIC method and the local optimum issues inherent in BP-NNs, significantly improving the assessment accuracy, stability, and objectivity. From a scientific perspective, this study demonstrates the feasibility of integrating swarm intelligence and neural learning into groundwater vulnerability assessment, providing a transferable and high-precision methodological paradigm for data-driven hydrogeological risk evaluation. This novel hybrid model provides a reliable scientific basis for the reasonable assessment of groundwater vulnerability. Moreover, these findings highlight the importance of integrating a hybrid optimization strategy into the traditional DRASTIC model to enhance its feasibility in coastal cities and other regions with complex hydrogeological conditions. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

22 pages, 8782 KB  
Article
An Expedited Procedure to Highlight Rapid Recharge Processes by Means of Nitrate Pollution Dynamics in the Northern Italy Plain
by Dimitra Rapti and Giovanni Martinelli
Environments 2025, 12(11), 404; https://doi.org/10.3390/environments12110404 - 28 Oct 2025
Viewed by 1033
Abstract
In recent decades, increasing anthropogenic pressure and climate change have made the protection and sustainable management of groundwater resources essential. In this context, the identification of aquifer recharge zones, especially those characterized by rapid groundwater flow and high vulnerability to surface pollution sources, [...] Read more.
In recent decades, increasing anthropogenic pressure and climate change have made the protection and sustainable management of groundwater resources essential. In this context, the identification of aquifer recharge zones, especially those characterized by rapid groundwater flow and high vulnerability to surface pollution sources, becomes a priority for the protection of underground resources. In the Po Plain (northern Italy), based on the lithological, geometric, hydraulic, and hydrodynamic characteristics of the aquifers, the recharge areas are mainly located in the alluvial fans of the Alpine and Apennine foothills. Due to the high hydraulic conductivity of the aquifer, the shallow depth of the water table and the agricultural activities, groundwater resources are vulnerable to nitrate (NO3) contamination. Given this background, the present study introduces a novel methodological approach based on the geochemical signature of groundwater, indicated by the presence of bicarbonate (HCO3) and NO3 ions, aimed at identifying aquifer recharge areas. Specifically, by analyzing time series of NO3 and HCO3 concentrations for the period 2012–2023, and applying criteria of an HCO3/NO3 ratio < 10 and NO3 > 30 mg/L, it was possible to identify areas where aquifer recharge processes are clearly evident. These recharge processes are rapid, as confirmed by the hydraulic gradient, the high hydraulic conductivity of the aquifers, and further supported by the isotopic composition of groundwater, especially tritium concentrations. Furthermore, due to the hydrogeological characteristics of the surveyed region, which resemble those of alluvial basins in close proximity to mountain ranges, the methodology and findings of this study can be used as an unconventional and expedited method for similar research conducted globally, offering hope for the future of groundwater research. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Figure 1

22 pages, 4209 KB  
Article
Applied Hydrogeological Assessment and GIS-Based Modeling of Transboundary Aquifers in the Shu River Basin
by Sultan Tazhiyev, Yermek Murtazin, Valentina Rakhimova, Issa Rakhmetov, Dinara Adenova, Kalamkas Koshpanova, Yevgeniy Sotnikov, Makhabbat Abdizhalel, Aigerim Akylbayeva and Darkhan Yerezhep
Water 2025, 17(16), 2476; https://doi.org/10.3390/w17162476 - 20 Aug 2025
Cited by 4 | Viewed by 1757
Abstract
Groundwater is a strategically important source of drinking water supply in the arid and rural regions of Kazakhstan. The objective of this study is to assess the quality of groundwater at 11 water intakes located in the Kordai, Shu, and Merke Districts of [...] Read more.
Groundwater is a strategically important source of drinking water supply in the arid and rural regions of Kazakhstan. The objective of this study is to assess the quality of groundwater at 11 water intakes located in the Kordai, Shu, and Merke Districts of the Shu transboundary basin in the Zhambyl Region. A comprehensive assessment of physicochemical parameters was performed, including concentrations of nitrates, sulfates, chlorides, iron, manganese, and other constituents, with subsequent comparison against regulatory limits defined by Order No. 26 of the Ministry of Health of the Republic of Kazakhstan (dated 20 February 2023), GOST standards, and ST RK ISO standards. The findings revealed that a number of water intakes exceeded the maximum allowable concentrations for specific indicators, especially in areas subject to significant anthropogenic pressure. The most vulnerable sources were identified near settlements characterized by intensive agricultural practices and inadequate wastewater treatment systems. Spatial comparison of the results enabled the identification of potentially contaminated areas as well as aquifer zones suitable for drinking water supply. The study emphasizes the importance of regular groundwater monitoring and spatial analysis techniques (GIS) to enhance the reliability and comprehensiveness of water quality assessments. The data obtained in this study can serve as a basis for informed decision-making in the area of water resource protection and contribute to the achievement of United Nations Sustainable Development Goal 6 (SDG 6)—to ensure availability and sustainable management of water and sanitation for all. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Figure 1

26 pages, 5097 KB  
Article
Groundwater Vulnerability and Environmental Impact Assessment of Urban Underground Rail Transportation in Karst Region: Case Study of Modified COPK Method
by Qiuyu Zhu, Ying Wang, Yi Li, Hanxiang Xiong, Chuanming Ma, Weiquan Zhao, Yang Cao and Xiaoqing Song
Water 2025, 17(13), 1843; https://doi.org/10.3390/w17131843 - 20 Jun 2025
Viewed by 1429
Abstract
Urbanization always leads to increasing challenges to the groundwater resources in karst regions due to intensive land use, infrastructure development, and the rapid transmission potential of pollutants. This study proposed an improved groundwater vulnerability assessment (GVA) framework by modifying the widely used COP [...] Read more.
Urbanization always leads to increasing challenges to the groundwater resources in karst regions due to intensive land use, infrastructure development, and the rapid transmission potential of pollutants. This study proposed an improved groundwater vulnerability assessment (GVA) framework by modifying the widely used COP (Concentration of flow, Overlying layers, and Precipitation) model, through the integration of three additional indicators: urban underground rail transportation (UURT), land use and cover (LULC), and karst development (K). Guiyang, a typical urbanized karst city in southwest China, was selected as the case study. The improved COP model, namely the COPK model, showed stronger spatial differentiation and a higher Pearson correlation coefficient (r) with nitrate concentrations (r = 0.4388) compared to the original COP model (R = 0.3689), which validates the effectiveness of the newly introduced indicators. However, both R values remained below 0.5, even after model modification, suggesting that intensive human activities play a role in influencing nitrate distribution. The pollution load index (PI) was developed based on seven types of pollution sources, and it was integrated with the COPK vulnerability index using a risk matrix approach, producing a groundwater risk map classified into five levels. Global Moran’s I analysis (0.9171 for COP model and 0.8739 for COPK model) confirmed strong and significant spatial clustering patterns for the two models. The inclusion of UURT and LULC improved the model’s sensitivity to urban-related pressures and enhanced its capacity to detect local risk zones. It is a scalable tool for groundwater risk assessment in urbanized karst areas and offers practical insights for land use planning and sustainable groundwater management. Full article
Show Figures

Figure 1

34 pages, 7396 KB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Cited by 6 | Viewed by 2681
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

21 pages, 6997 KB  
Article
An Assessment of the N Load from Animal Farms in Saline Wetland Catchments in the Ebro Basin, NE Spain
by María Tierra, José R. Olarieta and Carmen Castañeda
Land 2025, 14(6), 1170; https://doi.org/10.3390/land14061170 - 29 May 2025
Cited by 1 | Viewed by 976
Abstract
Inland saline wetlands in the Ebro Basin (Spain) are protected by international regulations but are also threatened by the expansion of animal farms. We studied the input–output budgets of N from animal farms in four catchments of wetlands in the central Ebro Basin [...] Read more.
Inland saline wetlands in the Ebro Basin (Spain) are protected by international regulations but are also threatened by the expansion of animal farms. We studied the input–output budgets of N from animal farms in four catchments of wetlands in the central Ebro Basin designated as Nitrate Vulnerable Zones. We used the N produced in animal farms as inputs and the N extracted by the crops on which manures and slurries are applied as outputs in each catchment. The balances considered the regulations concerning the slope of land where animal excreta may be applied and the doses of application. At a detailed scale, we applied the Water Erosion Prediction Program (WEPP) to the Farnaca catchment to assess the runoff and nutrients arriving to its wetland. While the Bujaraloz-Sástago basin showed a high excess of N load, in the Gallocanta basin, N extraction by crops was significantly higher than the N produced by the animal farms. Despite this lack of surplus of N from animal excreta, the groundwaters in the Gallocanta catchment are polluted by nitrates. The emphasis on N from animal farms in plans to prevent water pollution is missing the role of mineral fertilizers as the sources of pollution in basins with small N loads from animal farms. Agricultural plots in the Farnaca catchment produce significant amounts of sediments and nutrients that eventually pollute the wetland. Modelling approaches at detailed scales are required to assess the flows of materials to individual wetlands. Full article
(This article belongs to the Special Issue New Advance in Intensive Agriculture and Soil Quality)
Show Figures

Figure 1

23 pages, 4943 KB  
Article
Assessment and Validation of Shallow Groundwater Vulnerability to Contamination Based on Fuzzy Logic and DRASTIC Method for Sustainable Groundwater Management in Southeast Hungary
by Abdelouahed Fannakh, Barta Károly, Mhamed Fannakh and Andrea Farsang
Water 2025, 17(5), 739; https://doi.org/10.3390/w17050739 - 3 Mar 2025
Cited by 8 | Viewed by 1981
Abstract
A hierarchical fuzzy inference system (FIS) integrated with the DRASTIC model is applied in this study to enhance the assessment of shallow groundwater vulnerability in southeast Hungary, a region characterized by extensive agriculture and industrial growth. Traditional groundwater vulnerability models often struggle with [...] Read more.
A hierarchical fuzzy inference system (FIS) integrated with the DRASTIC model is applied in this study to enhance the assessment of shallow groundwater vulnerability in southeast Hungary, a region characterized by extensive agriculture and industrial growth. Traditional groundwater vulnerability models often struggle with parameter imprecision and uncertainty, affecting their reliability. To address these limitations, fuzzy logic was incorporated to refine the classification of vulnerability zones. The hierarchical FIS incorporates the seven DRASTIC parameters: depth to the water table, net recharge, aquifer media, soil media, topography, vadose zone impact, and hydraulic conductivity, assigning flexible ratings through fuzzy membership functions. The model classifies the fuzzy groundwater vulnerability index (FGWVI) into low, moderate, and high categories, revealing that 63.9% of the study area is highly susceptible to contamination, particularly in regions with shallow water tables and sandy soils. Validation was conducted using nitrate (NO3) concentrations and electrical conductivity (EC) measurements from 46 agricultural wells to assess the correlation between predicted vulnerability zones and actual groundwater quality indicators. The correlation analysis revealed a moderately strong positive relationship between FGWVI and both NO3 (R2 = 0.4785) and EC (R2 = 0.528), supporting the model’s ability to identify high-risk contamination zones. This study highlights the effectiveness of the fuzzy-enhanced DRASTIC model in evaluating aquifer vulnerability and provides crucial insights to assist policymakers in identifying pollution sources and developing strategies to mitigate groundwater contamination, thereby alleviating the stress on this critical resource. Full article
Show Figures

Figure 1

17 pages, 480 KB  
Article
New Insights into Fertilisation with Animal Manure for Annual Double-Cropping Systems in Nitrate-Vulnerable Zones of Northeastern Spain
by Dolores Quilez, Monica Guillén, Marta Vallés, Arturo Daudén and Beatriz Moreno-García
Agronomy 2025, 15(1), 142; https://doi.org/10.3390/agronomy15010142 - 9 Jan 2025
Cited by 4 | Viewed by 1553
Abstract
Maize double-cropping production systems in Mediterranean areas have a great nitrogen extraction capacity and high nitrogen (N) requirements. This study aims to assess whether in these farming systems, animal manure can be applied, using adequate management practices, at levels exceeding the maximum annual [...] Read more.
Maize double-cropping production systems in Mediterranean areas have a great nitrogen extraction capacity and high nitrogen (N) requirements. This study aims to assess whether in these farming systems, animal manure can be applied, using adequate management practices, at levels exceeding the maximum annual amount of livestock manure established in the European Nitrate Directive for vulnerable zones (170 kg N ha−1) without increasing the risk of water nitrate contamination. We compare the risk of nitrate leaching under two fertilisation strategies, one with synthetic fertilisers and the second with a maximised application of pig slurry, exceeding the limits of the EU Nitrate Directive, in two soil types. Crop yields, N extraction and nitrate concentrations below the crop root zone were not affected by the fertilisation strategies at each site. The results show that pig slurry can be applied above the limit of 170 kg N ha−1 under the conditions of the study, up to 360 kg N ha−1, without increasing the risk for nitrate leaching. Full article
Show Figures

Figure 1

25 pages, 3175 KB  
Article
Mapping Groundwater Vulnerability in Arid Regions: A Comparative Risk Assessment Using Modified DRASTIC Models, Land Use, and Climate Change Factors
by Simone A. Williams, Sharon B. Megdal, Adriana A. Zuniga-Teran, David M. Quanrud and Gary Christopherson
Land 2025, 14(1), 58; https://doi.org/10.3390/land14010058 - 31 Dec 2024
Cited by 11 | Viewed by 3229
Abstract
Groundwater vulnerability in arid regions is increasingly influenced by land use changes and climate variability. This study evaluates groundwater vulnerability and contamination risk in the arid/semi-arid Verde River Basin and Prescott Active Management Area using four models: DRASTIC, DRASTIC-LUCC, DRASTIC-LUCC-AHP2, and DRASTIC-LUCC-AHP4. Modifications [...] Read more.
Groundwater vulnerability in arid regions is increasingly influenced by land use changes and climate variability. This study evaluates groundwater vulnerability and contamination risk in the arid/semi-arid Verde River Basin and Prescott Active Management Area using four models: DRASTIC, DRASTIC-LUCC, DRASTIC-LUCC-AHP2, and DRASTIC-LUCC-AHP4. Modifications to the traditional DRASTIC model, including the integration of land use and climate factors and the application of AHP (Analytic Hierarchy Process) to refine variable weighting, significantly enhanced predictive accuracy. Results demonstrate that models incorporating land use and climate data outperform the traditional approach. The DRASTIC-LUCC model identified elevated nitrate concentrations in high-vulnerability areas, while DRASTIC-LUCC-AHP2 exhibited the greatest sensitivity in classifying vulnerability. Karst aquifers were particularly susceptible due to their high permeability and rapid contaminant transport. Recommendations include routinely integrating land use and climate data into vulnerability assessments, enforcing land use controls in high-risk zones, promoting adaptive management practices, and raising public awareness to mitigate contamination risks. This framework offers actionable strategies for improving groundwater protection and sustainable management in arid and semi-arid regions facing water security challenges. Full article
Show Figures

Figure 1

23 pages, 7554 KB  
Article
Assessment of Groundwater Quality and Vulnerability in the Nakivale Sub-Catchment of the Transboundary Lake Victoria Basin, Uganda
by Emmanuel Nabala Hyeroba and Robert M. Kalin
Water 2024, 16(23), 3386; https://doi.org/10.3390/w16233386 - 25 Nov 2024
Cited by 2 | Viewed by 2806
Abstract
This study evaluates the quality and vulnerability of groundwater within the Nakivale Sub-catchment of the transboundary Lake Victoria Basin in Southwestern Uganda. Groundwater quality assessment focuses on its suitability for both drinking and agricultural uses. Hydrochemical analysis of 19 groundwater samples revealed that [...] Read more.
This study evaluates the quality and vulnerability of groundwater within the Nakivale Sub-catchment of the transboundary Lake Victoria Basin in Southwestern Uganda. Groundwater quality assessment focuses on its suitability for both drinking and agricultural uses. Hydrochemical analysis of 19 groundwater samples revealed that 90% comply with World Health Organization drinking water standards, although localized contamination was noted, particularly in terms of total iron, nitrate, potassium, magnesium, and sulfates. The drinking groundwater quality index shows that over 90% of the samples fall within the good-to-excellent quality categories. Elevated nitrate levels and chloride–bromide ratios indicate human impacts, likely due to agricultural runoff and wastewater disposal. For irrigation, Sodium Adsorption Ratio analysis revealed medium-to-high salinity hazards in the region, while Sodium Percentage and other parameters indicated low-to-moderate risks of soil degradation. DRASTIC vulnerability assessments identified low contamination risks due to impermeable geological layers, steep terrain, slow groundwater recharge, deep aquifer depth, and clayey soil cover. These findings emphasize the need for conjunctive water resource management, including improved groundwater quality monitoring, public education on sustainable practices, and protective measures for recharge zones and areas highly susceptible to contamination. By addressing these issues, this study aims to preserve groundwater resources for domestic and agricultural use, ensuring long-term sustainability in the region. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

27 pages, 16009 KB  
Article
Numerical Groundwater Model to Assess the Fate of Nitrates in the Coastal Aquifer of Arborea (Sardinia, Italy)
by Gerhard Schäfer, Manon Lincker, Antonio Sessini and Alberto Carletti
Water 2024, 16(19), 2729; https://doi.org/10.3390/w16192729 - 25 Sep 2024
Cited by 3 | Viewed by 1799
Abstract
The Arborea plain in Sardinia (Italy) is classified as a nitrate vulnerable zone (NVZ). In the present study, the individual work steps that are necessary to progress from the existing 3D hydrogeological model to a 3D numerical groundwater model using the interactive finite-element [...] Read more.
The Arborea plain in Sardinia (Italy) is classified as a nitrate vulnerable zone (NVZ). In the present study, the individual work steps that are necessary to progress from the existing 3D hydrogeological model to a 3D numerical groundwater model using the interactive finite-element simulation system FEFLOW 7.4 are shown. The results of the transient flow model highlight the influence of the drainage network on the overall groundwater management: the total water volume drained by the ditches accounted for approximately 58% of the annual outflow volume. The numerical transport simulations conducted from 2012 to 2020 using hypothetical field-based nitrate input scenarios globally underestimated the high concentrations that were observed in the NVZ. However, as observed in the field, the computed nitrate concentrations in December 2020 still varied strongly in space, from several mg L−1 to several hundreds of mg L−1. The origin of these remaining local hotspots is not yet known. The modeling of rainfall fluctuations under the influence of climate change revealed a general long-term decline in the groundwater level of several tens of centimeters in the long term and, in conjunction with a zero-nitrate scenario, led to a significant decrease in nitrate pollution. Although hotspots were attenuated, the concentrations at several monitoring wells still exceeded the limit value of 50 mg L−1. Full article
(This article belongs to the Special Issue Water-Related Geoenvironmental Issues, 2nd Edition)
Show Figures

Figure 1

32 pages, 11061 KB  
Article
Groundwater Vulnerability Assessment—Case Study: Tirana–Ishmi Aquifer, Albania
by Elsa Dindi, Ardian Shehu and Ana Dindi
Hydrology 2024, 11(8), 110; https://doi.org/10.3390/hydrology11080110 - 23 Jul 2024
Cited by 3 | Viewed by 3416
Abstract
This paper discusses the groundwater vulnerability to pollution assessment for the Tirana–Ishmi alluvium aquifer, Albania. Economic activities, municipal wastewater discharged into rivers and groundwater overexploitation threaten to pollute the groundwater. Based on the aquifer characteristics and the available data, SINTACS was selected as [...] Read more.
This paper discusses the groundwater vulnerability to pollution assessment for the Tirana–Ishmi alluvium aquifer, Albania. Economic activities, municipal wastewater discharged into rivers and groundwater overexploitation threaten to pollute the groundwater. Based on the aquifer characteristics and the available data, SINTACS was selected as the most realistic assessment model. The SINTACS parameters’ rates assigned to the aquifer’s characteristics (water table depth, infiltration, unsaturated zone, soil media, aquifer media, hydraulic conductivity, topography) were adapted to the local features, followed by GIS vulnerability mapping. Statistical analysis indicates that the unsaturated zone, hydraulic conductivity and aquifer media have the highest influence on groundwater vulnerability, whereas topography has the lowest influence. Validation through sensitivity analysis and nitrates content confirms the rational selection of the SINTACS model and the reliability of the study’s outputs. The most vulnerable areas to pollution are the recharge zones, followed by the highly urbanized Tirana City area, characterized by high levels of groundwater extraction rate and wastewater discharged into the rivers. The paper, being the first completed groundwater vulnerability assessment of the study area, could serve as a basis for a scientific–based groundwater management that should be considered in local territory planning. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

20 pages, 4092 KB  
Article
Seasonal and Interannual Variability of the Trophic State in the Marano and Grado Lagoon (Adriatic Sea, Italy) during the 2011–2021 Period
by Alessandro Acquavita, Nicola Bettoso, Oriana Blasutto, Federico Pittaluga and Claudia Orlandi
Environments 2024, 11(7), 152; https://doi.org/10.3390/environments11070152 - 16 Jul 2024
Cited by 5 | Viewed by 2053
Abstract
The Marano and Grado Lagoon (Adriatic Sea, Italy) is an important transitional environment that furnishes numerous ecosystem services and is under protection as Site of Community Importance. It suffers from an excess of nutrients, especially nitrate (NO3), and has been [...] Read more.
The Marano and Grado Lagoon (Adriatic Sea, Italy) is an important transitional environment that furnishes numerous ecosystem services and is under protection as Site of Community Importance. It suffers from an excess of nutrients, especially nitrate (NO3), and has been designated as a nitrate vulnerable zone. In this work, sixteen water bodies were seasonally monitored for physicochemical parameters and nutrients, to elucidate the trophic state of the lagoon and to check the occurrence of significant temporal trends in a time series from 2011 to 2021. Steep gradients of spatial and seasonal distribution were observed for all parameters with elevated concentration of N-NO3 (up to 360 µM) in the western sector. The whole lagoon was in phosphorous limitation (P-PO43− mean ± s.d. = 0.15 ± 0.22 µM) with a mean Redfield ratio of 1130. The concentration of nutrients was significantly correlated with the degree of both freshwater inputs and precipitation. The calculation of trophic indices shows that the lagoon is in an oligotrophic to hypertrophic condition (i.e., TRIX 1.9–6.8). The analysis of the temporal series showed that despite some significant trends, the time span considered is too short to detect significant changes in the trophic state of this dynamic environment. Full article
Show Figures

Figure 1

31 pages, 12968 KB  
Article
Delineation of Potential Groundwater Zones and Assessment of Their Vulnerability to Pollution from Cemeteries Using GIS and AHP Approaches Based on the DRASTIC Index and Specific DRASTIC
by Vanessa Gonçalves, Antonio Albuquerque, Pedro Gabriel Almeida, Luís Ferreira Gomes and Victor Cavaleiro
Water 2024, 16(4), 585; https://doi.org/10.3390/w16040585 - 16 Feb 2024
Cited by 2 | Viewed by 5191
Abstract
The risk of aquifer contamination is determined by the interaction between the pollutant load and the vulnerability of an aquifer. Owing to the decomposition of bodies and degradation of artefacts, cemeteries may have a negative impact on groundwater quality and suitability for use [...] Read more.
The risk of aquifer contamination is determined by the interaction between the pollutant load and the vulnerability of an aquifer. Owing to the decomposition of bodies and degradation of artefacts, cemeteries may have a negative impact on groundwater quality and suitability for use due to the leaching of organic compounds (e.g., biodegradable organics, pharmaceuticals, and formaldehyde), inorganic compounds (e.g., nitrate and heavy metals), pathogenic bacteria, and viruses. Factors such as burial and soil type, rainfall amount, and groundwater depth may increase aquifer vulnerability to pollutants generated in cemeteries. The potential for groundwater contamination was investigated in two cemeteries of the Soure region in Portugal (Samuel–UC9 and Vinha da Rainha–UC10), using the classic DRASTIC model, followed by some adjustments, depending on the particularities of the locations, resulting in a Final Classification considered as Specific DRASTIC. By combining Remote Sensing (RS), Geographic Information System (GIS), and Analytical Hierarchy Process (AHP), groundwater potential zones (GWPZs) were identified, and aquifer vulnerability was assessed, which included the elaboration of thematic maps using GIS operation tools. The maps allowed for the identification of areas with different susceptibilities to contamination: from “Low” to “Very high” for the DRASTIC index and from “Very Low” to “Very high” for the Specific DRASTIC index. Although the difference between the UC9 and UC10 cemeteries is negligible, UC10 is more vulnerable because of its proximity to the community and critically important mineral water resources (such as Bicanho Medical Spa). The Specific model seems better-suited for describing vulnerability to cemeteries. Although there is limited groundwater quality data for the area, the development of vulnerability maps can identify areas that can be sensitive spots for groundwater contamination and establish procedures for pollution prevention. Full article
(This article belongs to the Special Issue Water Governance Solutions towards Future Environmental Challenges)
Show Figures

Figure 1

21 pages, 7295 KB  
Article
Vulnerability to Aquifer Pollution in the Mexican Wine Producing Valley of Guadalupe, México
by Guadalupe Díaz-Gutiérrez, Luis Walter Daesslé, Francisco José Del-Toro-Guerrero, Mariana Villada-Canela and Georges Seingier
Hydrology 2024, 11(2), 16; https://doi.org/10.3390/hydrology11020016 - 31 Jan 2024
Cited by 2 | Viewed by 4194
Abstract
Groundwater pollution is one of the main challenges in our society, especially in semi-arid Mediterranean regions. This issue becomes especially critical in predominantly agricultural areas that lack comprehensive knowledge about the characteristics and functioning of their aquifer system. Vulnerability to groundwater pollution is [...] Read more.
Groundwater pollution is one of the main challenges in our society, especially in semi-arid Mediterranean regions. This issue becomes especially critical in predominantly agricultural areas that lack comprehensive knowledge about the characteristics and functioning of their aquifer system. Vulnerability to groundwater pollution is defined as the sensitivity of the aquifer to being adversely affected by an imposed pollution load. For the Guadalupe aquifer, various indicators including water level depth, level variation, aquifer properties, soil composition, topography, impact on the vadose zone, and hydraulic conductivity were evaluated to establish spatial vulnerability categories ranging from very low to very high. Two pollution vulnerability scenarios (wet and dry) were studied. The results were compared with the analysis of nitrate concentration and distribution (2001, 2020, and 2021) from samples collected in the field. In the Calafia area, which predominantly relies on viticulture, the primary recharge inputs were identified in areas with a high vulnerability to pollution. Surprisingly, these vulnerable areas exhibited lower nitrate concentrations. This scenario underscores the need for effective management measures to safeguard aquifers in agricultural regions. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

Back to TopTop