Groundwater Vulnerability Assessment—Case Study: Tirana–Ishmi Aquifer, Albania
Abstract
:1. Introduction
2. Study Area
2.1. General Features
2.2. Geological Settings
2.3. Hydrogeological Settings
3. Methodology
3.1. Selection of Appropriate Groundwater Vulnerability Assessment Method
- Hydrogeologic Complex and Setting assessment—HCS;
- Parametric System assessment: Matrix Systems (MSs); Rating Systems (RSs); and Point Count System Models (PCSMs);
- Analogical Relation (AR) and numerical model assessment.
3.2. SINTACS Method
- Soggiaceza—water table depth;
- Infiltrazione efficace—net recharge;
- Non saturo—unsaturated zone;
- Tipologia della copertura—soil media;
- Acquifero—aquifer media;
- Conducibilita idraulica—hydraulic conductivity;
- Superficie topografica—topographic slope.
3.3. Tools for Aquifer’s Vulnerability Mapping
3.4. Validation
3.4.1. Sensitivity Analysis
3.4.2. Validation Using the Nitrates Content in Groundwater
4. Results and Discussion
4.1. Parameters Maps
- The recharge zones, which are located in the riverbeds in the eastern edge of the study area;
- The unconfined areas of the aquifer;
- The confined areas of the aquifer;
- The heterogeneity of the aquifer’s particles size;
- The groundwater flow direction.
4.2. Statistical Analysis of the SINTACS Parameters
4.3. Vulnerability Map According to the Theoretical Weights of the SINTACS Parameters
4.4. Validation of Preliminary Vulnerability Map Using Sensitivity Analysis
4.5. Vulnerability Map Using Effective Parameters’ Weights
4.6. Validation Using Nitrates Content in Groundwater
4.7. Groundwater Vulnerability Changes Over Time
4.8. Study’s Limitations
5. Conclusions
- The recharge areas show an “extremely high” vulnerability class (or degree) due to absence of both the unsaturated zone and soil media. This allows direct contact between the surface waters and the groundwater.
- Tirana City and its neighboring area, which occupy about 10.2% of the study area, show a “very high” degree of vulnerability due to the following:
- ○
- The shallow thickness and the composition (medium grain-size deposits) of the unsaturated zone may allow the penetration of the surface waters to the groundwater. Due to the absence of a wastewater treatment plant, the municipal wastewater of this area flow into the Lana and Tirana Rivers’ waters, which in turn could gradually pollute the groundwater.
- ○
- The increasing groundwater extraction rate impacts the groundwater quality and the aquifer type, which has been transformed from confined to unconfined.
- The area with the lowest GWV vulnerability is located in the northwest of the aquifer and covers roughly 28.7% of the study area. The insignificant threat posed to groundwater quality in this sector comes mainly from the following:
- ○
- The cover layer is thick enough and composed of fine grain-size deposits that do not allow the surface waters’ pollution to pass through this layer and affect the groundwater quality.
- ○
- Low groundwater extraction rate.
- To prevent the aquifer’s pollution, it is necessary to complete the construction of the wastewater treatment plant for Tirana City that has been under construction for many years. It should be noted that the planned capacity of this plant (350,000 inhabitants) is not sufficient for the whole study area.
- The groundwater extraction rate in the Tirana City territory and its neighboring area should be reduced, to prevent the groundwater quality deterioration that will be followed by the groundwater’s natural self–purification.
- To better monitor the groundwater’s quality and vulnerability, there is a need for a larger number of monitoring wells and a better spatial distribution of them, particularly within the recharge zones, which represent the most vulnerable areas to aquifer pollution and therefore to the groundwater users’ health.
- The vulnerability zones indicated in the vulnerability map may change in terms of the updating of the used data and information. Given that the GIS-created model is a “living model”, the use of additional data and information for each SINTACS parameter can improve the study outputs and reduce the hydrologists’ subjectivism.
- This paper could serve as a scientific–based document for a more detailed study on the Tirana–Ishmi aquifer. The groundwater vulnerability map could serve as a basis for preparing a scientific–based aquifer management plan. Such a plan should be considered in the local territory planning, a practice disregarded in the recent Ishmi River catchment management plan.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margat, J. Vulnérabilité des Nappes d’Eau Souterraine à la Pollution. In Bases de sa Cartographie—BRGM, 68 SGL 198 HYD; BRGM, Ed.; BRGM: Orléans, France, 1968; 12p, Available online: https://infoterre.brgm.fr/rapports/68-SGN-198-HYD.pdf (accessed on 10 January 2024).
- Zaporozec, A. Concept of Groundwater Vulnerability. In Guidebook on Mapping Groundwater Vulnerability, 1st ed.; Vrba, J., Zaporozec, A., Eds.; IAH, International Contributions to Hydrogeology, Verlag Heise: Hanover, Germany, 1994; Volume 16, pp. 3–9. ISBN 3-922705-97-9. [Google Scholar]
- Foster, S.; Hirata, R.; Andreo, B. The Aquifer Pollution Vulnerability Concept: Aid or Impediment in Promoting Groundwater Protection. Hydrogeol. J. 2013, 21, 1389–1392. [Google Scholar] [CrossRef]
- Dochartaigh, B.E.; Ball, D.F.; MacDonald, A.M.; Lilly, A.; Fitzsimons, V.; Del Rio, M.; Auton, C.A. Mapping Groundwater Vulnerability in Scotland: A New Approach for the WFD. Scott. J. Geol. 2005, 41, 21–30. [Google Scholar] [CrossRef]
- European Union. Annex II.2. Groundwater. In The EU Water Framework Directive; DG ENV: Brussels, Belgium, 2014; pp. 43–44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0060-20141120 (accessed on 2 February 2024).
- Banerjee, A.; Creedon, L.; Jones, N.; Gill, L.; Gharbia, S. Dynamic Groundwater Contamination Vulnerability Assessment Techniques: A Systematic Review. Hydrology 2023, 10, 182. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Ribeiro, L.; Dill, A.M.M.C. Evaluation of an Intrinsic and a Specific Vulnerability Assessment Method in Comparison with Groundwater Salinization and Nitrate Contamination Levels in Two Agricultural Regions in the South of Portugal. Hydrogeol. J. 2006, 14, 79–99. [Google Scholar] [CrossRef]
- Vrana, M. Measures for the Protection of Groundwater against Contamination and Depletion: Methodology for Construction of Groundwater Protection Maps. In Hydrogeological Principles of Groundwater Protection, Handbook of Scientific Methods, 1st ed.; UNESCO/UNEP, Ed.; UNESCO/UNEP, USSR: Moscow, Russia, 1988; Volume 1, pp. 147–153. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000099378 (accessed on 11 February 2024).
- Albinet, M. Les Cartes de Vulnérabilité des Nappes d’Eau Souterraine à la Pollution; BRGM: Orléans, France, 1970; 31p, Available online: https://infoterre.brgm.fr/rapports/70-SGN-325-HYD.pdf (accessed on 15 December 2023). (In French)
- UNESCO/UNEP. Hydrogeological Principles of Groundwater Protection. Handbook of Scientific Methods, 1st ed.; UNESCO/UNEP, Ed.; UNESCO/UNEP, USSR: Moscow, Russia, 1981; Volume 1, 163p, Available online: https://unesdoc.unesco.org/ark:/48223/pf0000099378 (accessed on 24 January 2024).
- Vrba, J.; Civita, M. Assessment of Groundwater Vulnerability. In Guidebook on Mapping Groundwater Vulnerability, 1st ed.; Vrba, J., Zaporozec, A., Eds.; IAH, International Contributions to Hydrogeology, Verlag Heinz Heise: Hanover, Germany, 1994; Volume 16, pp. 31–49. ISBN 3-922705-97-9. [Google Scholar]
- Ball, D.; McConvey, P.; Campbell, E. A Groundwater Vulnerability Screening Methodology for Northern Ireland. Groundwater Management Programme, Commissioned Report CR/05/103N; British Geological Survey: Keyworth, Nottingham, UK, 2005; 41p, Available online: https://nora.nerc.ac.uk/id/eprint/11296/1/CR05103N.pdf (accessed on 23 February 2024).
- Broda, S.; Gunther, A.; Reichling, J. Comparison of Internationally Commonly Applied Index Methodologies for Assessing the Vulnerability of the Upper Aquifer to Pollution; BGR: Hanover, Germany, 2019; p. 9. Available online: https://repository.europe-geology.eu/egdidocs/hover/hover%2Bd7_1_report_final.pdf (accessed on 9 February 2024).
- Civita, M. Le Carte della Vulnerabilita degli Acquiferi All’inquinamento: Teoria e Pratica; Pitagora: Bologna, Italy, 1994; 325p, ISBN 9788837106881. (In Italian) [Google Scholar]
- Civita, M.; De Maio, M.; SINTACS. Un Sistema Parametrico per la Valutazione e la Cartografia della Vulnerabilità degli Acquiferi all’Inquinamento. Metodologia e Automazione, Quaderni di Tecniche di Protezione Ambientale; Pitagora: Bologna, Italy, 1997; 191p, ISBN 9788837108991. (In Italian) [Google Scholar]
- Civita, M.; De Maio, M. Assessing and Mapping Groundwater Vulnerability to Contamination: The Italian “Combined” Approach. Geofísica Int. 2004, 43, 513–532. [Google Scholar] [CrossRef]
- Civita, M.; De Maio, M. Valutazione e Cartografia Automatica della Vulnerabilità degli Acquiferi all’Inquinamento con il Sistema Parametrico—SINTACS R5—A New Parametric System for the Assessment and Automatic Mapping of Groundwater Vulnerability to Contamination; Pitagora: Bologna, Italy, 2000; 226p, ISBN 9788837112318. (In Italian) [Google Scholar]
- Osmani, S.; Korini, T. Geostatistics and Data Processing, 1st ed.; Shtepia Botuese Librit Universitar: Tirana, Albania, 2001; ISBN 99927-0-117-X. (In Albanian) [Google Scholar]
- McCuen, R.H. The Role of Sensitivity Analysis in Hydrologic Modeling. J. Hydrol. 1973, 18, 37–53. [Google Scholar] [CrossRef]
- Holman, I.; Palmer, R.; Bellamy, P.; Hollis, J. Validation of an Intrinsic Groundwater Pollution Vulnerability Method Using a National Nitrate Database. Hydrogeol. J. 2005, 13, 665–674. [Google Scholar] [CrossRef]
- Albanian Geological Survey. Hydrogeological Map of Albania, Scale 1:200,000; Albanian Geological Survey: Tirana, Albania, 2015. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Geological Map of Albania, Scale 1:200,000; Albanian Geological Survey: Tirana, Albania, 2002. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Water Resources of Tirana County Territory. In Georesources and Geological Risks of Tirana County; Albanian Geological Survey: Tirana, Albania, 2014; pp. 51–65. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Water Resources of Durres County Territory. In Georesources and Geological Risks of Durres County; Albanian Geological Survey: Tirana, Albania, 2014; pp. 45–57. (In Albanian) [Google Scholar]
- Water Resources Management Agency. Annex 7—Groundwater. In Ishmi River Basin Management Plan; Water Resources Management Agency: Tirana, Albania, 2023. Available online: http://www.ambu.gov.al (accessed on 20 February 2024). (In Albanian)
- Bode, A. Environmental Effects of the Human Activities on the Tirana Basin. Ph.D. Thesis, Faculty of Geology and Mining, Polytechnic University of Tirana, Tirana, Albania, 2012. (In Albanian). [Google Scholar]
- Tirana Municipality Water and Sanitation Company. Available online: https://www.shuk.al/tirane (accessed on 30 May 2024).
- WHO. Application of the Guidelines in Specific Circumstances. In Guidelines for Drinking Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva, Switzerland, 2021; pp. 93–116. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 24 February 2024).
- Chambers, P.A.; Allard, M.; Walker, S.L.; Marsalek, J.; Lawrence, J.; Servos, M.; Busnarda, J.; Munger, K.S.; Adare, K.; Jefferson, C.; et al. The Impacts of Municipal Wastewater Effluents on Canadian Waters: A Review. Water Qual. Res. J. Can. 1997, 32, 659–714. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid–west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Dindi, E. Sustainable Groundwater Resources Exploitation and Management in Vlore Region, Vjose–Shushice Area (Albania). Ph.D. Thesis, Polytechnic University of Tirana, Faculty of Geology and Mining, Tirana, Albania, 2009. (In Albanian). [Google Scholar]
- Dindi, E. Mapping the Ground Water Vulnerability of the Vjose—Shushice Quaternary Aquifer Using the SINTACS Method. In Proceedings of the 5th Conference on Water Observation and Information System—BALWOIS 2012, Ohrid, Macedonia, 28 May–2 June 2012; Available online: https://balwois.com/wp-content/uploads/old_proc/975.pdf (accessed on 20 February 2024).
- Beqiraj, A.; Cenameri, M. Groundwater Vulnerability Assessment to Contamination (Erzeni Basin, Albania). In Proceedings of the Scientific Annals, School of Geology, Aristotle University of Thessaloniki, Proceedings of the XIX CBGA Congress, Thessaloniki, Greece, 23–26 September 2010; Volume 100, pp. 15–21. [Google Scholar]
- Progni, F.; Beqiraj, A.; Cenameri, M. Vulnerability Assessment—A Prerequisite for Groundwater Protection to Contamination (Use of GIS Technology). In Proceedings of the 17th Meeting of the Association of European Geological Societies, Belgrade, Serbia, 14–18 September 2011; pp. 43–46. [Google Scholar]
- Albanian Government. Decree 624/2023 on the Approval of the Ishmi River Basin Management Plan for the 2024–2029 Period. Off. J. 2023, 165, 19677–20098. (In Albanian) [Google Scholar]
- State Authority for Geospatial Information. Available online: https://geoportal.asig.gov.al/map/ (accessed on 23 January 2024).
- Eftimi, R. Karst and Karst Water Resources of Albania and their Management. Carbonates Evaporites 2020, 35, 69. [Google Scholar] [CrossRef]
- Eftimi, R.; Liso, I.S.; Parise, M. Hydrogeological Characteristics of the Makaresh Carbonate Karst Massif (Central Albania). Hydrology 2024, 11, 29. [Google Scholar] [CrossRef]
- Institute of Hydrometeorology. Climatic Atlas of Albania; HIDMET, Ed.; Academy of Sciences of Albania: Tirana, Albania, 1988. (In Albanian) [Google Scholar]
- MeteoTirana. Available online: https://www.meteotirana.al/template/pages/station/climate (accessed on 20 February 2024).
- Institute of Hydrometeorology. Climatic and Hydrologic Characteristics of the Albanian Western Lowland; HIDMET, Ed.; Academy of Sciences of Albania: Tirana, Albania, 1985; pp. 175–194. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Geoenvironment of Tirana County. In Georesources and Geological Risks of Tirana County; Albanian Geological Survey: Tirana, Albania, 2014; p. 86. (In Albanian) [Google Scholar]
- Eftimi, R.; Shehu, K.; Sara, F. Hydrogeological Aspects of the Municipal Water Supply of Albania: Situation and Problems. Hydrology 2023, 10, 193. [Google Scholar] [CrossRef]
- Aliaj, S.; Mesonjesi, A. Scholar’s Viewpoints about Periadriatic Basin (Onshore Albania). Eur. J. Appl. Sci. 2023, 11, 383–407. [Google Scholar]
- Albanian Geological Survey. Neo–Tectonic Zonation—Adriatic Lowland. In Text of the Geological Map of Albania, Scale 1:200,000, 1st ed.; Albanian Geological Survey: Tirana, Albania, 2002; pp. 322–323. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Stratigraphy—Adriatic Lowland. In Text of the Geological Map of Albania, Scale 1:200,000, 1st ed.; Albanian Geological Survey: Tirana, Albania, 2002; pp. 186–187. (In Albanian) [Google Scholar]
- Water Resources Management Agency. Overview of Ishmi River Basin—Geological Characteristics. In Ishmi River Basin Management Plan; Water Resources Management Agency: Tirana, Albania, 2023; pp. 72–73. Available online: http://www.ambu.gov.al (accessed on 9 December 2023). (In Albanian)
- Eftimi, R. Overview of the Hydrogeology of Mati River Alluvial Plain. Përmbledhje Stud. 1966, 4, 53–65. (In Albanian) [Google Scholar]
- Keta, Z. Hydrogeology, Hydrodynamic and Groundwater Resources of the Tirana Quaternary Basin. Ph.D. Thesis, Faculty of Geology and Mining, Tirana University, Tirana, Albania, 1980. (In Albanian). [Google Scholar]
- Eftimi, R. Hydraulic Properties of the Intergranulary Aquifers of Western Lowland of Albania and Location of Wellfields. Ph.D. Thesis, Faculty of Geology and Mining, Tirana University, Tirana, Albania, 1983. (In Albanian). [Google Scholar]
- Eftimi, R.; Tafilaj, I.; Bisha, G. Hydrogeological regionalization of Albania. Bul. Shk. Gjeol. 1989, 4, 303–316. (In Albanian) [Google Scholar]
- Eftimi, R.; Kolaneci, M.; Tafilaj, I. Groundwater Resources Management of Erzeni and Ishmi Rivers Basins. J. Nat. Tech. Sci. 1999, 7, 131–147. (In Albanian) [Google Scholar]
- Vako, E. Groundwater Chemistry of the Tirana–Ishmi Aquifer (Albania). Ph.D. Thesis, Polytechnic University of Tirana, Faculty of Geology and Mining, Tirana, Albania, 2014. (In Albanian). [Google Scholar]
- Tartari, M.; Dakoli, H.; Melonashi, G.; Puca, N.; Spaho, R. Evaluation and Potential Increase of the Exploitable Groundwater Resources of the Tirana–Lezha Basin; Albanian Geological Survey: Tirana, Albania, 2001. (In Albanian) [Google Scholar]
- Vako, E.; Pambuku, A. Groundwater’s Geochemical Parameters of the Tirana–Ishmi Aquifer. Bull. Geol. Soc. 2019, 1, 69–77. (In Albanian) [Google Scholar]
- Eftimi, R.; Stichler, R.; Gourcy, L.W.; Amataj, S.; Zoto, J. Investigation About the Recharge Sources of Tirana Alluvial Basin in Albania by Means of Environmental Isotopes. In Proceedings of the Integrated Water Resources Management and Challenges of the Sustainable Development, Marrakech, Morocco, 23–25 May 2005. [Google Scholar]
- Eftimi, R. A Comparative Study of the Hydraulic Parameters and of Yields of Wells of Some Sedimentary Hard Rocks of Albania. In Groundwater in Fractured Rocks, IHP–VI, Series on Groundwater No 6, 1st ed.; Krasny, J., Hrkal, Z., Bruthans, J., Eds.; IAH/UNESCO: Prague, Czech Republic, 2003; Volume 6, pp. 55–60. ISBN 92 92-20-002-X. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000134431 (accessed on 20 May 2024).
- Eftimi, R. Tirana—Mamurras Aquifer. In Hydraulic Properties of the Intergranulary Aquifers of the Albanian Western Lowland; ITA Consult: Tirana, Albania, 2018; pp. 85–94. (In Albanian) [Google Scholar]
- Aquaveo. Available online: https://www.aquaveo.com/software/gms (accessed on 1 March 2024).
- Dakoli, H. Groundwater Classification. In Hydrogeology, 1st ed.; Maluka: Tirana, Albania, 2007; pp. 63–110. (In Albanian) [Google Scholar]
- National Environment Agency (NEA). Environmental Monitoring Programme for the Year 2023; NEA: Tirana, Albania, 2022; pp. 47–48. Available online: https://akm.gov.al/ova_doc/programi-kombetar-i-monitorimit-te-mjedisit-per-vitin-2023/ (accessed on 21 January 2024). (In Albanian)
- National Environment Agency. State of Environment Report for 2016; NEA: Tirana, Albania, 2017; pp. 216–217. Available online: https://akm.gov.al/raporte-dhe-publikime/ (accessed on 20 March 2024). (In Albanian)
- National Environment Agency. State of Environment Report for 2021; NEA: Tirana, Albania, 2022; p. 35. Available online: https://akm.gov.al/raporte-dhe-publikime/ (accessed on 20 March 2024). (In Albanian)
- Vako, E. Statistical Analyses of the Physical–Chemical Parameters of the Tirana–Ishmi Area’s Groundwater. Bull. Geol. Soc. 2012, 2, 39–46. (In Albanian) [Google Scholar]
- Vako, E. Groundwater Hydrochemistry of the Alluvial Gravels of Tirana–Ishmi Quaternary Basin. J. Int. Environ. Appl. Sci. 2012, 1, 19–26. [Google Scholar]
- Dindi, E.; Shehu, A. Spatial and Temporal Variations of the Hydrochemical Parameters in the Gravelly Aquifer of the Lower Course of Vjosa River, Albania. Hydrology 2023, 10, 234. [Google Scholar] [CrossRef]
- Machiwal, D.; Kumar, M.; Singh, P.V.; Mohan, C. Assessment and Mapping of Groundwater Vulnerability to Pollution: Current status and challenges. Earth-Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Moraru, C.; Hannigan, R. Overview of Groundwater Vulnerability Assessment Methods. In Analysis of Hydrogeochemical Vulnerability; Springer Hydrogeology; Springer: Cham, Switzerland, 2018; pp. 1–15. [Google Scholar]
- Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC–Like Methods: A Review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Canora, F.; Muzzillo, R.; Sdao, F. Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy). Water 2022, 14, 1851. [Google Scholar] [CrossRef]
- Civita, M. The Combined Approach When Assessing and Mapping Groundwater Vulnerability to Contamination. J. Water Resour. Prot. 2010, 2, 14–28. [Google Scholar] [CrossRef]
- IAH. Guidebook on Mapping Groundwater Vulnerability, 1st ed.; Vrba, J., Zaporozec, A., Eds.; IAH, International Contributions to Hydrogeology, Verlag Heinz Heise: Hanover, Germany, 1994; Volume 16, 131p, ISBN 3-922705-97-9. [Google Scholar]
- Zaporozec, A.; Vrba, J. Classification and Review of Groundwater Vulnerability Maps. In Guidebook on Mapping Groundwater Vulnerability, 1st ed.; Vrba, J., Zaporozec, A., Eds.; IAH, International Contributions to Hydrogeology, Verlag Heinz Heise: Hanover, Germany, 1994; Volume 16, pp. 21–31. ISBN 3-922705-97-9. [Google Scholar]
- Zampetti, M. Informazioni e Dati Relativi alla Quantità ed alla Qualità delle Acque Sotterranee nella Comunità Europea. In Proceedings of the International Conference “Inquinamento delle Acque Sotterranee da Composti Organo–Clorurati di Origine Industriale”, Milano, Italy, 26–29 January 1983; Monduzzi: Bologna, Italy, 1983; pp. 197–204. (In Italian). [Google Scholar]
- Fried, J.J. Groundwater Contamination: Use of Models in Decision–Making. In Proceedings of the Seminar on Modelling for Water Management, European Institute for Water, Como, Italy, 21–22 May 1987; Springer: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Marcolongo, B.; Pretto, L. Vulnerabilità degli Acquiferi nella Pianura a Nord di Vincenza (Italy); G.N.D.C.I.—C.N.R., Ed.; Grafiche Erredieci: Padova, Italy, 1987; Volume 28, 13p. (In Italian) [Google Scholar]
- Aller, L.; Thornhill, J. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; Robert, S., Kerr Environmental Research Laboratory, Office of Research and Development, Eds.; EPA: Washington, DC, USA, 1987. [Google Scholar]
- Trojan, M.D.; Perry, J.A. Assessing Hydrogeologic Risk over Large Geographic Areas; Minnesota Agricultural Experiment Station, Ed.; University of Minnesota: Minneapolis, MN, USA, 1988; Bulletin 585; 65p, Available online: https://hdl.handle.net/11299/139535 (accessed on 12 January 2024).
- Civita, M.; De Regibus, C. Sperimentazione di Alcune Metodologie per la Valutazione della Vulnerabilita degli Aquiferi. Quad. Geol. Appl. 1995, 3, 63–72. (In Italian) [Google Scholar]
- Civita, M. Legenda Unificata per le Carte Della Vulnerabilita’ dei Corpi Idrici Sotterranei—Studi sulla Vulnerabilita’ degli Acquiferi, 1; Pitagora: Bologna, Italy, 1990. (In Italian) [Google Scholar]
- Kumar, P.; Bansod, B.K.; Debnath, S.; Thakur, P.K.; Ghanshyam, C. Index–Based Groundwater Vulnerability Mapping Models Using Hydrogeological Settings: A Critical Evaluation. Environ. Impact Assess. Rev. 2015, 51, 38–49. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B.; Pirastehm, S.; Shafri, H.Z.M. Estimating Groundwater Vulnerability to Pollution Using a Modified DRASTIC Model in Kerman Agricultural Area, Iran. Environ. Earth Sci. 2014, 71, 3119–3131. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Pires, L.M.G.R.; Santos, R.M.B.; Sanches Fernandes, L.F. Factor Weighting in DRASTIC Modeling. Sci. Total Environ. 2015, 505, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Pisciotta, A.; Cusimano, G.; Favara, R. Groundwater Nitrate Risk Assessment Using Intrinsic Vulnerability Methods: A Comparative Study of Environmental Impact by Intensive Farming in the Mediterranean Region of Sicily, Italy. J. Geochem. Explor. 2015, 156, 89–100. [Google Scholar] [CrossRef]
- Awawdeh, M.; Al–Kharabsheh, N.; Obeidat, M.; Awawdeh, M. Groundwater Vulnerability Assessment Using Modified SINTACS Model in Wadi Shueib, Jordan. Ann. GIS 2020, 26, 377–394. [Google Scholar] [CrossRef]
- Gogu, R.; Dassargues, A. Current Trends and Future Challenges in Groundwater Vulnerability Assessment Using Overlay and Index Methods. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute Error and Sensitivity Analysis of Map Operations in Geographical Information Systems: Suitability Analysis. Int. J. Geograph. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A.G. Single Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In HydroGIS 96: Application of GIS in Hydrology and Water Resources Management; IAHS: Vienna, Austria, 1996; pp. 559–566. [Google Scholar]
- Stumpp, C.; Zurek, A.; Gargini, A.; Gemitzi, A.; Filippini, M.F.; Witczak, S. A Decision Tree Tool Supporting the Assessment of Groundwater Vulnerability. Environ. Earth Sci. 2016, 75, 1057. [Google Scholar] [CrossRef]
- Civita, M. Data Needs and Presentation. In Guidebook on Mapping Groundwater Vulnerability, 1st ed.; Vrba, J., Zaporozec, A., Eds.; IAH, Internat. Contributions to Hydrogeology, Heise: Hanover, Germany, 1994; Volume 16, pp. 57–75. ISBN 3-922705-97-9. [Google Scholar]
- De Maio, M.; Civita, M.; Farina, M.; Zavatti, A. Le Metodologie. In Linee–Guida per la Redazione e l’Uso delle Carte della Vulnerabilità degli Acquiferi all’Inquinamento; ANPA: Roma, Italia, 2001; pp. 15–49. Available online: https://www.isprambiente.gov.it/contentfiles/00003500/3532-manuali-2001-04.pdf/ (accessed on 27 March 2024). (In Italian)
- Civita, M.; De Maio, M. Il Modello SINTACS. In Un Sistema Parametrico per la Valutazione e la Cartografia della Vulnerabilità degli Acquiferi all’Inquinamento. Metodologia e Automazione, Quaderni di Tecniche di Protezione Ambientale; Pitagora: Bologna, Italy, 1997; pp. 7–43. ISBN 9788837108991. (In Italian) [Google Scholar]
- ESRI, Inc. Available online: https://www.esri.com/en-us/arcgis/about-arcgis (accessed on 21 March 2024).
- Devak, M.; Dhanya, C.T. Sensitivity Analysis of Hydrological Models: Review and Way Forward. J. Water Clim. Change 2017, 8, 557–575. [Google Scholar] [CrossRef]
- Said, S.; Bouri, S.; Ben Dhia, H. Sensitivity Analysis in Groundwater Vulnerability Assessment Based on GIS in the Mahdia–Ksour Essaf Aquifer, Tunisia: A Validation Study. Hydrol. Sci. J. 2011, 56, 288–304. [Google Scholar] [CrossRef]
- Majandang, J.; Sarapirome, S. Groundwater Vulnerability Assessment and Sensitivity Analysis in Nong Rua, Khon Kaen, Thailand, Using a GIS–based SINTACS Model. Environ. Earth Sci. 2013, 68, 2025–2039. [Google Scholar] [CrossRef]
- Männik, M.; Karro, E. Application of Modified DRASTIC Method for the Assessment and Validation of Confined Aquifer Vulnerability in Areas with Diverse Quaternary Deposits. Water 2023, 15, 3585. [Google Scholar] [CrossRef]
- Marsico, A.; Giuliano, G.; Pennetta, L.; Vurro, M. Intrinsic Vulnerability Assessment of the South–Eastern Murge (Apulia, Southern Italy). Nat. Hazards Earth Syst. Sci. 2004, 4, 769–774. [Google Scholar] [CrossRef]
- Berkhoff, K. Hydrology and Earth System Sciences Spatially Explicit Groundwater Vulnerability Assessment to Support the Implementation of the Water Framework Directive—A Practical Approach with Stakeholders. Hydrol. Earth Syst. 2008, 12, 111–122. [Google Scholar] [CrossRef]
- Dakoli, H. Hydro geochemistry. In Hydrogeology, 1st ed.; Maluka: Tirana, Albania, 2007; pp. 111–175. (In Albanian) [Google Scholar]
- Bancheri, M.; Basile, A.; Botta, M.; Langella, G.; Cavaliere, F.; Bonfante, A.; Ferraro, G.; Acutis, M.; Perego, A. The Nitrate Fate Tool: A Decision Support System for the Assessment of the Groundwater Vulnerability to Nitrate in Support of Sustainable Development Goals. Sustainability 2023, 15, 14164. [Google Scholar] [CrossRef]
- Gelaj, A.; Marku, S.; Puca, N. Evaluation and Monitoring of Groundwater in Albania. Bul. Shk. Gjeol. 2014, 2, 117–120. (In Albanian) [Google Scholar]
- Kurwadkar, S. Groundwater Pollution and Vulnerability Assessment. Water Environ. Res. 2017, 89, 1561–1577. [Google Scholar] [CrossRef]
- National Environment Agency. State of Environment Reports for 2015–2022 Years; NEA: Tirana, Albania, 2023. Available online: https://akm.gov.al/raporte-dhe-publikime/ (accessed on 20 March 2024). (In Albanian)
- Turc, L. Le bilan d’Eau des Sols: Relation Entre les Précipitations, l’Evaporation et l’Ecoulement. Journées L’hydraulique 1955, 3, 36–44. Available online: https://www.persee.fr/doc/jhydr_0000-0001_1955_act_3_1_3278 (accessed on 25 March 2024). (In French).
- Albanian Geological Survey. Hydrogeological Settings of the Albanian Territory. In Text of the Geotechnical Map of Albania, Scale 1:200,000; Albanian Geological Survey: Tirana, Albania, 2014; pp. 152–185. (In Albanian) [Google Scholar]
- Albanian Geological Survey (AGS). Geotechnical Map of Albania, Scale 1:200,000; AGS: Tirana, Albania, 2014. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Geotechnical Conditions and Geological Risks of Tirana County Territory. In Georesources and Geological Risks of Tirana County; Albanian Geological Survey: Tirana, Albania, 2014; pp. 65–85. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Geotechnical Map of Tirana County Territory. Scale 1:100,000. In Georesources and Geological Risks of Tirana County; Albanian Geological Survey: Tirana, Albania, 2014. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Geotechnical Conditions and Geological Risks of Durres County Territory. In Georesources and Geological Risks of Durres County; Albanian Geological Survey: Tirana, Albania, 2014; pp. 58–75. (In Albanian) [Google Scholar]
- Albanian Geological Survey. Geotechnical Map of Durres County Territory. Scale 1:100,000. In Georesources and Geological Risks of Durres County; Albanian Geological Survey: Tirana, Albania, 2014. (In Albanian) [Google Scholar]
- European Soil Bureau. Geo–Referenced Soil Database for Europe. Manual of Procedures, Version 1.1. Report No. 5, EUR 18092; European Soil Bureau: Luxembourg, 2001; 184p. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106, 3rd ed.; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 22 January 2024).
- IUSS Working Group WRB. Soil Particle-Size and Texture Classes. Annex 4. In World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 22 January 2024).
- Gjoka, F.; Cara, K. Soils of Albania, 1st ed.; Agrotext: Tirana, Albania, 2003; 136p, ISBN 99927-839-6-6. (In Albanian) [Google Scholar]
- Kovaçi, V.; Bardhi, A.; Begu, E.; Ymeti, I. Risk from Erosion Assessment on the Albanian Territory using GIS and Corine Land Cover Map; IGEO: Tirana, Albania, 2014; Available online: https://www.geo.edu.al (accessed on 23 February 2014). (In Albanian)
- Gjoka, F. Geography of Soils, 2nd ed.; Mediaprint: Tirana, Albania, 2021; ISBN 978-9928-08-501-6. (In Albanian) [Google Scholar]
- Zdruli, P.; Lushaj, S. The status of Soil Survey in Albania and Some of Its Major Environmental Findings. In Soil Resources of Southern and Eastern Mediterranean Countries; Zdruli, P., Steduto, P., Lacirignola, C., Montanarella, L., Eds.; CIHEAM: Bari, Italy, 2001; Volume 34, pp. 69–89. [Google Scholar]
- Zdruli, P.; Lushaj, S.; Pezzuto, A.; Fanelli, D.; D’Amico, O.; Filomeno, O.; De Santis, S.; Todorovic, M.; Nerilli, E.; Dedaj, K.; et al. Preparing a Georeferenced Soil Database for Albania at 1:250,000 Scale Using the European Soil Bureau Manual of Procedures 1.1. In Proceedings of the Selected Papers—7th International Meeting on Soils with Mediterranean Type of Climate, Valenzano, Italy, 23–28 September 2001; pp. 135–144. Available online: http://om.ciheam.org/om/pdf/a50/04002027.pdf (accessed on 19 April 2024).
- Zdruli, P.; Pezzuto, A.; Fanelli, D.; D’Amico, O.; Filomeno, O.; De Santis, S.; Dedaj, K.; Seferi, B. Soil Map of Albania at 1: 250,000 Scale; Mediterranean Agronomic Institute of Bari (Italy), Soil Science Institute (Albania), Eds.; CIHEAM: Bari, Italy, 2001. [Google Scholar]
- Zdruli, P.; Pezzuto, A.; Fanelli, D.; D’Amico, O.; Filomeno, O.; De Santis, S.; Dedaj, K.; Seferi, B. Soil Maps of Albania at 1: 50,000 Scale; Mediterranean Agronomic Instute of Bari (Italy), Soil Science Institute (Albania), Eds.; CIHEAM: Bari, Italy, 2003. [Google Scholar]
- Bonfanti, M.; Ducci, D.; Masetti, M.; Sellerino, M.; Stevenazzi, S. Using Statistical Analyses for Improving Rating Methods for Groundwater Vulnerability in Contamination Maps. Environ. Earth Sci. 2016, 75, 1003. [Google Scholar] [CrossRef]
- Hasiniaina, F.; Zhou, J.; Guoyi, L. Regional Assessment of Groundwater Vulnerability in Tamtsag Basin, Mongolia, Using Drastic Model. J. Am. Sci. 2010, 6, 65–78. [Google Scholar]
- Osmani, S.; Kotro, M.; Toromani, E.; Bode, A.; Bocari, A. A View on Stochastic Finite Element and Geostatistics for Resource Parameters Estimation. Open J. Mod. Hydrol. 2013, 3, 89–96. [Google Scholar] [CrossRef]
- Albanian Government. Government Decree 379/2016 on the Approval of the Drinking Water Quality Standards. Off. J. 2016, 95, 5374–5406. (In Albanian) [Google Scholar]
- European Union. EU Directive 98/83/EC on the Quality of Water Intended for Human Consumption; EU Council: Brussels, Belgium, 1998; Available online: http://data.europa.eu/eli/dir/1998/83/oj (accessed on 8 April 2024).
- European Union. EU Directive 2020/2184 on the Quality of Water Intended for Human Consumption; EU Council: Brussels, Belgium, 2020; Available online: http://data.europa.eu/eli/dir/2020/2184/oj (accessed on 8 April 2024).
- Zhang, Q.Q.; Sun, J.C.; Liu, J.T.; Huang, G.X.; Lu, C.; Zhang, Y. Driving Mechanism and Sources of Groundwater Nitrate Contamination in the Rapidly Urbanized Region of South China. J. Contam. Hydrol. 2015, 182, 221–230. [Google Scholar] [CrossRef]
- Yang, C.; Wang, L.; Chen, S.; Yuanyin, L.; Shuang, H.; Qinghong, Z.; Yanbing, C. Nitrate Transport Velocity Data in the Global Unsaturated Zones. Sci. Data 2022, 9, 613. [Google Scholar] [CrossRef]
- Sun, D.; Yang, H.; Guan, D.; Yang, M.; Wu, J.; Yuan, F.; Jin, C.; Wang, A.; Zhang, Y. The effects of land use change on soil infiltration capacity in China: A meta-analysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Amobichukwu, C.A.; Obarein, O.A.; Mossa, J.; Lanhai, L.; Shamusideen, S.; Ayeni, F.; Olalekan, B.; Abiola, O.; Friday, U.O. Groundwater system and climate change: Present status and future considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B.; Arulmani, S.; Parameswari, E.; Santhosh, A.; Srinivasulu, A.; Lal, A.; Naidu, R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere 2024, 15, 122. [Google Scholar] [CrossRef]
- Albanian Ministry of Environment. Third National Communication on Climate Change; MoE: Tirana, Albania, 2016; Available online: https://www.undp.org/albania/publications/third-national-communication-united-nations-framework-convention-climate-change (accessed on 6 July 2024).
Parameter | S | I | N | T | A | C | S |
---|---|---|---|---|---|---|---|
Weight | 5 | 4 | 5 | 4 | 3 | 3 | 2 |
Weight (%) | 19.23 | 15.38 | 19.23 | 15.38 | 11.54 | 11.54 | 7.69 |
Interval of Vulnerability Index | Normalized Vulnerability (%) | Vulnerability Class |
---|---|---|
26–80 | 0–24 | Very low |
81–105 | 24–35 | Low |
106–140 | 35–49 | Moderate |
141–186 | 49–69 | High |
187–210 | 69–79 | Very High |
211–260 | 79–100 | Extremely high |
Depth of Groundwater (m) | SINTACS Rate | Adapted SINTACS Rate |
---|---|---|
0–5 | 10–9 | 9 |
5–10 | 7 | 7 |
10–20 | 4 | 4 |
20–30 | 2.5 | 2.5 |
>30 | 2–1 | 1 |
Cover Layer Thickness (m) | Potential Infiltration Coefficient | SINTACS Rate |
---|---|---|
0–5 | 0.3 | 9 |
5–10 | 0.2 | 6 |
10–20 | 0.1 | 5 |
>20 | 0.0 | 0 |
Lithotypes of the Unsaturated Zone | SINTACS Range |
---|---|
Coarse alluvial deposits | 8–9 |
Fine to medium alluvial deposits | 6–8 |
Clay, silt | 1–3 |
Soil Type | Texture | SINTACS Rate |
---|---|---|
Gleyic Fluvisol | Clay–Loam | 4.5 |
Eutric Fluvisol | Loam | 4.5 |
Fluvic Cambisol | Sandy–Clay–Loam | 5 |
Gleyic Cambisol | Sandy–Loam | 5 |
Haplic Arenosol | Sandy | 8 |
Chromic Luvisol | Clay and Clay–Loam | 2.5 |
Lithotypes of Saturated Zone (Aquifer Media) | SINTACS Rate |
---|---|
Gravel | 9 |
Sandy gravel | 8 |
Gravelly sand | 7 |
Sand | 6 |
Hydraulic Conductivity (m/s) | SINTACS Rate |
---|---|
5 × 10−3–1 × 10−3 | 9 |
1 × 10−3–6 × 10−4 | 8 |
<6 × 10−4 | 7 |
Statistical Parameter | Removed SINTACS Parameter | ||||||
---|---|---|---|---|---|---|---|
S | I | N | T | A | C | S | |
Water Table Depth | Net Recharge | Unsaturated Zone | Soil Media | Aquifer Media | Hydraulic Conductivity | Topographic Slope | |
Minimum | 5 | 0 | 5 | 10 | 18 | 21 | 18 |
Maximum | 45 | 36 | 45 | 32 | 27 | 27 | 18 |
Mean | 20.97 | 14.28 | 24.37 | 21.55 | 23.04 | 23.36 | 18.00 |
Standard deviation | 14.83 | 13.48 | 13.94 | 6.88 | 3.43 | 2.60 | 0.00 |
Coefficient of variation | 70.72 | 94.42 | 57.22 | 31.93 | 14.87 | 11.12 | 0.00 |
Vulnerability Index (SINTACS Model) | Vulnerability Index (Tirana–Ishmi Aquifer) | Vulnerability Class | Surface Area (km²) (Tirana–Ishmi Aquifer) | Surface Area (%) (Tirana–Ishmi Aquifer) |
---|---|---|---|---|
26–80 | – | Very low | – | – |
81–105 | 85–105 | Low | 66.96 | 36.6 |
106–140 | 106–140 | Moderate | 27.62 | 15.1 |
141–186 | 141–186 | High | 69.96 | 38.2 |
187–210 | – | Very high | – | – |
211–260 | 210–260 | Extremely high | 18.30 | 10.0 |
Statistical Parameter | Removed SINTACS Parameter | ||||||
---|---|---|---|---|---|---|---|
S | I | N | T | A | C | S | |
Water Table Depth | Net Recharge | Unsaturated Zone | Soil Media | Aquifer Media | Hydraulic Conductivity | Topographic Slope | |
Minimum | 0.07 | 0.07 | 0.00 | 0.00 | 0.04 | 0.02 | 0.00 |
Maximum | 1.68 | 2.38 | 2.17 | 2.75 | 1.60 | 2.41 | 1.15 |
Mean | 0.87 | 1.13 | 1.02 | 0.60 | 0.53 | 0.67 | 0.54 |
Standard deviation | 0.50 | 1.07 | 0.54 | 0.42 | 0.41 | 0.6 | 0.27 |
Statistical Parameter | SINTACS Parameter | ||||||
---|---|---|---|---|---|---|---|
S | I | N | T | A | C | S | |
Water Table Depth | Net Recharge | Unsaturated Zone | Soil Media | Aquifer Media | Hydraulic Conductivity | Topographic Slope | |
Minimum | 4.20 | 0.00 | 3.09 | 5.68 | 11.54 | 11.54 | 7.69 |
Maximum | 24.31 | 22.22 | 27.26 | 30.77 | 23.86 | 28.72 | 21.18 |
Standard deviation | 0.06 | 0.07 | 0.066 | 0.04 | 0.03 | 0.042 | 0.036 |
Effective mean weight | 3.4 | 2.0 | 4.3 | 3.7 | 4.5 | 4.5 | 3.6 |
Theoretical weight | 5 | 4 | 5 | 4 | 3 | 3 | 2 |
Effective mean weight (%) | 13.01 | 7.87 | 16.27 | 14.28 | 17.25 | 17.65 | 13.66 |
Theoretical weight (%) | 19.23 | 15.38 | 19.23 | 15.38 | 11.54 | 11.54 | 7.69 |
Vulnerability Index (SINTACS Model) | Vulnerability Index (Tirana–Ishmi Aquifer) | Vulnerability Class | Surface Area (km2) (Tirana–Ishmi Aquifer) | Surface Area (%) (Tirana–Ishmi Aquifer) |
---|---|---|---|---|
26–80 | – | Very low | – | – |
81–105 | 85–105 | Low | 52.1 | 28.67 |
106–140 | 106–140 | Moderate | 20.6 | 11.46 |
141–186 | 141–186 | High | 72.2 | 39.61 |
187–210 | 187–210 | Very high | 18.7 | 10.21 |
211–260 | 211–260 | Extremely high | 18.3 | 10.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dindi, E.; Shehu, A.; Dindi, A. Groundwater Vulnerability Assessment—Case Study: Tirana–Ishmi Aquifer, Albania. Hydrology 2024, 11, 110. https://doi.org/10.3390/hydrology11080110
Dindi E, Shehu A, Dindi A. Groundwater Vulnerability Assessment—Case Study: Tirana–Ishmi Aquifer, Albania. Hydrology. 2024; 11(8):110. https://doi.org/10.3390/hydrology11080110
Chicago/Turabian StyleDindi, Elsa, Ardian Shehu, and Ana Dindi. 2024. "Groundwater Vulnerability Assessment—Case Study: Tirana–Ishmi Aquifer, Albania" Hydrology 11, no. 8: 110. https://doi.org/10.3390/hydrology11080110
APA StyleDindi, E., Shehu, A., & Dindi, A. (2024). Groundwater Vulnerability Assessment—Case Study: Tirana–Ishmi Aquifer, Albania. Hydrology, 11(8), 110. https://doi.org/10.3390/hydrology11080110