Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Ningwu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5851 KB  
Article
Mineralogical and Geochemical Characteristics of the Vent Dusts from the Underground Coal Mines in Ningwu Coalfield, Shanxi Province
by Xueming Zhou, Yunfei Shangguan, Xinguo Zhuang, Jing Li, Jihua Tan, Peihua Bian, Anping Jia and Bin Wu
Minerals 2026, 16(1), 32; https://doi.org/10.3390/min16010032 (registering DOI) - 27 Dec 2025
Abstract
This study focused on the dust in the ventilation of the underground coal mine of Ningwu Coalfield, Shanxi Province; the particle-size distribution and the mineralogical and geochemical characteristics of the vent dust were studied. The particle-size distribution of the vent dusts in the [...] Read more.
This study focused on the dust in the ventilation of the underground coal mine of Ningwu Coalfield, Shanxi Province; the particle-size distribution and the mineralogical and geochemical characteristics of the vent dust were studied. The particle-size distribution of the vent dusts in the exhaust outlets of the four coal mines studied is similar and characterized by a single peak, which occurred at 3.5–4.0 μm. The minerals in the vent dusts are dominantly composed of kaolinite, followed by illite, quartz, calcite, dolomite, bassanite, and anhydrite. Except for the high content of bassanite, the vent dust discharged from the YS coal mine presents a similar mineral composition to the parent coal. Compared with the parent coal (and the Upper Continental Crust), the vent dust is enriched to varying degrees in the major element oxides Fe2O3, CaO, K2O, Na2O, and MgO, as well as trace elements Sb, Zn, Bi, Cd, Cu, As, W, and Pb, especially the contents of Sb, Zn, W, and As increased by 1177, 84, 15, and 12 times, respectively. The vent dusts emitted from these coal mines mainly come from the mining of coal seams; a small amount comes from the shotcrete and weathering products of the tunnel gallery, dust flame retardant, and the wear of coal cutters and coal transmission belts. Therefore, it is necessary to strengthen the management of coal mine vent dust emission to ensure that the mine vent emissions are pollution-free. Full article
16 pages, 4625 KB  
Article
Trace Element Characteristics of Magnetite and Hematite from the Heshangqiao Iron Oxide–Apatite Deposit in Eastern China: Implications for the Ore-Forming Processes
by Yutian He, Chao Duan, Kejun Hou, Zhigang Kong, Shunda Yuan, Conglin Wang, Bingyang Yang, Xifei Yang, Xinliang Che, Jiaxin Zhang and Xiaowei Gao
Minerals 2026, 16(1), 7; https://doi.org/10.3390/min16010007 - 21 Dec 2025
Viewed by 209
Abstract
Iron oxide–apatite (IOA) deposits are important for the global supply of iron resources. Currently, there is considerable debate regarding the evolution of their mineralization mechanisms. The Heshangqiao iron deposit is a significant IOA deposit situated within the Ningwu ore district of the Middle–Lower [...] Read more.
Iron oxide–apatite (IOA) deposits are important for the global supply of iron resources. Currently, there is considerable debate regarding the evolution of their mineralization mechanisms. The Heshangqiao iron deposit is a significant IOA deposit situated within the Ningwu ore district of the Middle–Lower Yangtze River Metallogenic Belt in China. This deposit exhibits distinct characteristics of multi-stage mineralization, forming disseminated ores, brecciated ores, and vein-type ores, from early to late stages. This study undertook a systematic elemental analysis of the magnetite and hematite from three mineralization stages of the Heshangqiao deposit. In the three mineralization stages of the Heshangqiao deposit, the elemental genesis indicators of ore genesis suggest that the hematite and magnetite both have magmatic hydrothermal genesis, characterized by high Ti and low Mg/Al and relatively high Ti and low Ni/Cr, respectively. The Cr and Sn contents of magnetite and hematite exhibit similar variation from the first to third mineralization stage, with an increase followed by a subsequent decrease. Meanwhile, the contents of V, Co, Ni, and Mn in magnetite and hematite exhibited an opposite trend, declining from the first to the second stage but eventually increasing from the second to the third stage. These changes in the genesis indicator also suggest that the multiple mineralization stages of the Heshangqiao deposit are independent of one another. The replacement of magnetite by hematite in each mineralization stage is not caused by the superposition of subsequent fluids, but rather by the residual fluid. It is noted that in the replacement the elements Cr, Co, and Ga were minimally migrated. These elements remained relatively stable and can be considered new potential discriminant indicators for the genesis of iron oxides. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

17 pages, 10034 KB  
Article
Elastic Wave Phase Inversion in the Local-Scale Frequency–Wavenumber Domain with Marine Towed Simultaneous Sources
by Shaobo Qu, Yong Hu, Xingguo Huang, Jingwei Fang and Zhihai Jiang
J. Mar. Sci. Eng. 2025, 13(5), 964; https://doi.org/10.3390/jmse13050964 - 15 May 2025
Cited by 1 | Viewed by 821
Abstract
Elastic full waveform inversion (EFWI) is a crucial technique for retrieving high-resolution multi-parameter information. However, the lack of low-frequency components in seismic data may induce severe cycle-skipping phenomena in elastic full waveform inversion (EFWI). Recognizing the approximately linear relationship between the phase components [...] Read more.
Elastic full waveform inversion (EFWI) is a crucial technique for retrieving high-resolution multi-parameter information. However, the lack of low-frequency components in seismic data may induce severe cycle-skipping phenomena in elastic full waveform inversion (EFWI). Recognizing the approximately linear relationship between the phase components of seismic data and the properties of subsurface media, we propose an Elastic Wave Phase Inversion in local-scale frequency–wavenumber domain (LFKEPI) method. This method aims to provide robust initial velocity models for EFWI, effectively mitigating cycle-skipping challenges. In our approach, we first employ a two-dimensional sliding window function to obtain local-scale seismic data. Following this, we utilize two-dimensional Fourier transforms to generate the local-scale frequency–wavenumber domain seismic data, constructing a corresponding elastic wave phase misfit. Unlike the Elastic Wave Phase Inversion in the frequency domain (FEPI), the local-scale frequency–wavenumber domain approach accounts for the continuity of seismic events in the spatial domain, enhancing the robustness of the inversion process. We subsequently derive the gradient operators for the LFKEPI methodology. Testing on the Marmousi model using a land seismic acquisition system and a simultaneous-source marine towed seismic acquisition system demonstrates that LFKEPI enables the acquisition of reliable initial velocity models for EFWI, effectively mitigating the cycle-skipping problem. Full article
(This article belongs to the Special Issue Modeling and Waveform Inversion of Marine Seismic Data)
Show Figures

Figure 1

14 pages, 4291 KB  
Article
Host Lifeform Shapes Phyllospheric Microbiome Assembly in Mountain Lake: Deterministic Selection and Stochastic Colonization Dynamics
by Qishan Xue, Jinxian Liu, Yirui Cao and Yuqi Wei
Microorganisms 2025, 13(5), 960; https://doi.org/10.3390/microorganisms13050960 - 23 Apr 2025
Viewed by 696
Abstract
The phyllosphere microbiome of aquatic macrophytes constitutes an integral component of freshwater ecosystems, serving crucial functions in global biogeochemical cycling and anthropogenic pollutant remediation. In this study, we examined the assembly mechanisms of epiphytic bacterial communities across four phylogenetically diverse macrophyte species ( [...] Read more.
The phyllosphere microbiome of aquatic macrophytes constitutes an integral component of freshwater ecosystems, serving crucial functions in global biogeochemical cycling and anthropogenic pollutant remediation. In this study, we examined the assembly mechanisms of epiphytic bacterial communities across four phylogenetically diverse macrophyte species (Scirpus validus, Hippuris vulgaris, Nymphoides peltatum, and Myriophyllum spicatum) inhabiting Ningwu Mayinghai Lake (38.87° N, 112.20° E), a vulnerable subalpine freshwater system in Shanxi Province, China. Through 16S rRNA amplicon sequencing, we demonstrate marked phyllospheric microbiome divergence, as follows: Gammaproteobacteria dominated S. validus, H. vulgaris and N. peltatum, while Alphaproteobacteria dominated in M. spicatum. The nitrate, nitrite, and pH value of water bodies and the chlorophyll, leaf nitrogen, and carbon contents of plant leaves are the main driving forces affecting the changes in the β-diversity of epiphytic bacterial communities of four plant species. The partitioning of assembly processes revealed that deterministic dominance governed S. validus and M. spicatum, where niche-based selection contributed 67.5% and 100% to community assembly, respectively. Conversely, stochastic processes explained 100% of the variability in H. vulgaris and N. peltatum microbiomes, predominantly mediated by dispersal limitation and ecological drift. This investigation advances the understanding of microbial community structural dynamics and diversity stabilization strategies in aquatic macrophyte-associated microbiomes, while establishing conceptual frameworks between plant–microbe symbiosis and the ecological homeostasis mechanisms within vulnerable subalpine freshwater ecosystems. The empirical references derived from these findings offer novel perspectives for developing conservation strategies aimed at sustaining biodiversity equilibrium in high-altitude lake habitats, particularly in the climatically sensitive regions of north-central China. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 7119 KB  
Article
Geochemistry Characteristics and Coal-Forming Environments of Carboniferous–Permian Coal: An Example from the Zhaokai Mine, Ningwu Coalfield, Northern China
by Meili Hou, Jinxi Wang, Yurong Liu, Zewen Bao and Balaji Panchal
Sustainability 2025, 17(3), 1285; https://doi.org/10.3390/su17031285 - 5 Feb 2025
Viewed by 1198
Abstract
In order to study the geochemical characteristics of coal in the Ningwu Coalfield of Shanxi Province and the coal-forming environments reflected by it, a detailed geochemical study was carried out on the No. 5 coal of the Zhaokai Mine. The results show that [...] Read more.
In order to study the geochemical characteristics of coal in the Ningwu Coalfield of Shanxi Province and the coal-forming environments reflected by it, a detailed geochemical study was carried out on the No. 5 coal of the Zhaokai Mine. The results show that the content of major-element oxides SiO2 and Al2O3 is high. The trace elements Ni, Nb, Mo, Cd, Sn, Hf, Ta, W, Th, and U are slightly enriched, while the elements Li and Zr are enriched, indicating an overall LREY enrichment type in the samples. Elemental parameters suggest that the sedimentary environment in the study area is continental sedimentary, and the whole environment is reductive. The macerals in the coal samples are mainly vitrinite, with an average vitrinite reflectance (Ro) of 0.744%. The distribution range of n-alkanes in the coal samples is from n-C14~n-C32, with the main peak carbons being n-C24 and n-C25, showing the post-single-peak type distribution pattern. The average odd–even predominance index (OEP) is 0.40, the average of the light and heavy hydrocarbons ratio (C21/C22+) is 0.42, and the average of Pr/n-C17 and Ph/n-C18 are 1.08 and 0.23, respectively. The coal samples also contain various aromatic hydrocarbons, mainly from the naphthalene- and phenanthrene-series compounds. Biomarker parameters indicate that the parent material of the coal samples in the study area is mainly continental higher plants. The maturity is low, and the coal-forming environment is a reduction environment. This study of the No. 5 coal’s geochemical characteristics has laid a foundation for the efficient, green, and comprehensive exploitation of coal resources in this region, and has also provided an important basis for the sustainable development of coal resources. Full article
Show Figures

Figure 1

29 pages, 30448 KB  
Article
The Ore-Forming Process of Washan Porphyrite Iron Deposits in the Ningwu District Associated with Iron Oxide Apatite (IOA) Deposits and Iron Oxide Copper Gold (IOCG) Deposits
by Zhen Liu, Wei Xu, Chunming Liu and Dezhi Huang
Minerals 2024, 14(8), 841; https://doi.org/10.3390/min14080841 - 21 Aug 2024
Viewed by 2052
Abstract
The Washan iron deposits in Ningwu district contain different magma-related genetic natures, including magmatic, magmatic–hydrothermal and hydrothermal types, and their ore-forming processes remain a subject of debate. To elucidate the ore-forming processes of iron ores from Washan, we present textural, major element analytical, [...] Read more.
The Washan iron deposits in Ningwu district contain different magma-related genetic natures, including magmatic, magmatic–hydrothermal and hydrothermal types, and their ore-forming processes remain a subject of debate. To elucidate the ore-forming processes of iron ores from Washan, we present textural, major element analytical, and thermal data of magnetites from various ore bodies in Washan, probing the crystallization conditions and subsequent formation sequence of magnetites. SEM analysis with back-scattered electron (BSE) imaging reveals diverse magnetite textures, including mineral inclusions, exsolution lamellae, and recrystallization features, reflecting the transitional environment from magmatic to hydrothermal. Based on Ti, V, and Cr compositions of magnetite from different ore bodies, two distinct evolution trends of genetic processes are identified, including evolution paths from porphyry-type to IOA- and IOCG-type magnetite. High-resolution WDS mapping highlights the intensifying alterations during this process. Calculated magnetite crystallization temperatures among different types of magnetite range from 597 °C to 378 °C, suggesting a cooling trend from porphyry-type magnetite (~558 °C) to IOA-type magnetite (~515–439 °C) and IOCG-type magnetite (~378 °C). These results underscore the significant role of magma-derived hydrosaline liquids and vapors in the formation of iron ores from Washan, where variations in the salinity of ore-forming fluids lead to different evolutionary paths for subsequent generations of magnetite. The metallogenic model of the Washan iron deposit suggests that highly saline, iron-rich fluids connect the varying geneses of magnetite, transitioning from deeply formed porphyry-type magnetite to IOA- or IOCG-type magnetite generated in the subaerial zone. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 12757 KB  
Article
Finite–Discrete Element Method Simulation Study on Development of Water-Conducting Fractures in Fault-Bearing Roof under Repeated Mining of Extra-Thick Coal Seams
by Longquan Mai and Hao Li
Sustainability 2024, 16(12), 5177; https://doi.org/10.3390/su16125177 - 18 Jun 2024
Cited by 7 | Viewed by 1784
Abstract
The formation of water-conducting fractures in overlying strata caused by underground coal mining not only leads to roof water inrush disasters, but also water-conducting fractures penetrate the aquifer, resulting in the occurrence of a mine-water-inrush disaster and the loss of water resources. It [...] Read more.
The formation of water-conducting fractures in overlying strata caused by underground coal mining not only leads to roof water inrush disasters, but also water-conducting fractures penetrate the aquifer, resulting in the occurrence of a mine-water-inrush disaster and the loss of water resources. It destroys the sustainability of surface water and underground aquifers. This phenomenon is particularly significant in extra-thick coal seams and fault-bearing areas. Numerical simulation is an effective method to predict the failure range of mining overburden rock with low cost and high efficiency. The key to its accuracy lies in a reasonable constitutive model and simulation program. In this study, considering that the three parts of penetrating cracks, non-penetrating cracks, and intact rock blocks are often formed after rock failure, the contact state criterion and shear friction relationship of discrete rock blocks and the mixed fracture displacement–damage–load relationship are established, respectively. Combined with the Mohr–Coulomb criterion, the constitutive model of mining rock mass deformation–discrete block motion and interaction is formed. On this basis, according to the engineering geological conditions of Yushupo Coal Mine, a numerical model for the development of water-conducting cracks in the roof with faults under repeated mining of extra-thick coal seams is established. The results show the following: The constitutive relation of the continuous deformation–discrete block interaction of overlying strata and the corresponding finite element–discrete element FDEM numerical program and VUSDFLD multi-coal seam continuous mining subroutine can numerically realize the formation process of faults and water flowing fractures in overlying strata under continuous mining of extra-thick multi-coal seams. The toughness of sand mudstone is low, and the fracture will be further developed under the repeated disturbance of multi-thick coal seam mining. Finally, it is stabilized at 216–226 m, and the ratio of fracture height to mining thickness is 14.1. When the working face advances to the fault, the stress concentration occurs in the fault and its overlying rock, which leads to the local fracture of the roof rock mass and the formation of cracks. The fault group makes this phenomenon more obvious. The results have been preliminarily applied and tested in Ningwu mining area, which provides theoretical support for further development of roof water disaster control under the condition of an extra-thick coal seam and avoids the loss of water resources in surface water and underground aquifers. Full article
Show Figures

Figure 1

26 pages, 6620 KB  
Article
Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin
by Pengbao Zhang, Shuheng Tang, Donglin Lin, Yanjun Chen, Xiaoxuan Wang, Zhenxing Liu, Feng Han, Peng Lv, Zhoupeng Yang, Xiaoqu Guan, Jiahua Hu and Yan Gao
Processes 2023, 11(8), 2374; https://doi.org/10.3390/pr11082374 - 7 Aug 2023
Cited by 5 | Viewed by 2359
Abstract
The sandstone reservoirs of the He8 member within the Lower Permian Shihezi Formation are important targets for oil and gas exploration in the southern Ningwu Basin. This study utilized thin-section identification, scanning electron microscopy, and X-ray diffraction analysis to examine the petrological features [...] Read more.
The sandstone reservoirs of the He8 member within the Lower Permian Shihezi Formation are important targets for oil and gas exploration in the southern Ningwu Basin. This study utilized thin-section identification, scanning electron microscopy, and X-ray diffraction analysis to examine the petrological features and reservoir characteristics, and evaluate the impact of the mineral composition and diagenesis type on the porosity of the sandstone reservoir. Additionally, a multiple linear regression prediction model was developed to predict the distribution of promising sandstone reservoirs in the study area. The results of the analysis revealed that the sandstone of the He8 member is mainly composed of feldspathic lithic sandstone, followed by lithic sandstone. The main reservoir type is characterized by secondarily dissolved pores and micropores within kaolinite aggregates. The low porosity (ranging from 0.2% to 10.7%) and permeability indicate that the He8 member is a tight sandstone reservoir. This reservoir has undergone compaction, cementation, and dissolution diagenesis, and is presently in the stage of mesodiagenesis B. The rigid framework of quartz, the dissolution of feldspar grains, and the intergranular pores of kaolinite are significant contributors to reservoir quality and the main drivers of porosity. In this study, a multivariate linear regression model was developed based on the mineral content of quartz, feldspar, carbonate minerals, kaolinite, smectite, and rock fragments, which accurately predicts the porosity of the studied reservoirs. Based on this model, it was predicted that the north of the Jingle South sub-depression contains a favorable reservoir space in the tight sandstone reservoir of the He8 member. The findings of this study hold significant reference value in the quantitative characterization of tight sandstone reservoirs with similar depositional and diagenetic characteristics, and improving the prediction effect of favorable reservoirs. Full article
Show Figures

Figure 1

37 pages, 15726 KB  
Review
Evolution, Magmatic Source and Metallogenesis of A-Type Granites in the Fanchang Volcanic Basin, Middle and Lower Yangtze Metallogenic Belt: A Review
by Songsong Zhang, Xiaoyong Yang and Lei Liu
Minerals 2023, 13(4), 571; https://doi.org/10.3390/min13040571 - 18 Apr 2023
Cited by 1 | Viewed by 2702
Abstract
The Fanchang volcanic basin (FVB) is located in the Middle and Lower Yangtze Metallogenic Belt (MLYMB) between the ore districts of Ningwu and Tongling. The existing ore deposits in the FVB are relatively small in scale and related to late Mesozoic A-type granites. [...] Read more.
The Fanchang volcanic basin (FVB) is located in the Middle and Lower Yangtze Metallogenic Belt (MLYMB) between the ore districts of Ningwu and Tongling. The existing ore deposits in the FVB are relatively small in scale and related to late Mesozoic A-type granites. In this paper, the crystallization age, major and trace element composition, and Sr-Nd and Hf isotope compositions of the A-type granites are summarized from the literature; in addition, the magnetite composition, H and O isotopes of fluid inclusions, and sulfur isotope composition of metal sulfides in some typical ore deposits in the FVB are also summarized to give insights into the petrogenesis and mineralization of the A-type granites intruding into the FVB. The results show that: (1) Orthopyroxene, plagioclase, K-feldspar, and biotite are the main fractionating minerals controlling the evolution of the magmas of A-type granites in the FVB and other areas in the MLYMB. (2) The whole-rock Sr-Nd and zircon Hf isotopic characteristics show that the source of A-type granite magma is complex and includes the enriched mantle, lower crust, and upper crust, probably with stronger participation of Archaean–Paleoproterozoic crustal materials in the FVB granites than in other regions of the MLYMB. (3) The ores in the FVB are dominated by skarn and hydrothermal deposits. H and O isotopes of fluid inclusions indicate that ore-forming fluids have been derived from mixtures of magmatic hydrothermal fluid, meteoric waters, and deep brine related to gypsum layers. S isotopes of metal sulfides indicate that the sulfur may be a mixture of magmatically derived sulfur and sulfur originating from the Triassic gypsum-bearing layers. The deposit and ore characteristics of the main deposits in the FVB are also illustrated, and the evaluation of metal resources indicates that the skarn and hydrothermal iron–zinc ores in the FVB also have potential as sources of Cd, Ga, and Se. In addition, in terms of the oxygen fugacity, rock type, and geochemical characteristics of magmatic rocks, the metallogenic characteristics and potential of the A-type granites in the FVB are evaluated. It is considered that in addition to the dominant constituents of iron and zinc and the minor constituents listed above, the FVB could have the potential for providing copper, gold, molybdenum, uranium, and other metals as well. Full article
(This article belongs to the Special Issue Granitic Intrusion and Related Mineralization in Asia)
Show Figures

Figure 1

18 pages, 12221 KB  
Article
Study on Explicit–Implicit Simulation and In-Situ Measurement of Floor Failure Law in Extra-Thick Coal Seams
by Guoqiang Guo, Zhimin Wang, Shaobo Qu, Hao Li, Yang Zhou, Hanjiang Lyu and Yuan He
Minerals 2022, 12(12), 1511; https://doi.org/10.3390/min12121511 - 26 Nov 2022
Cited by 2 | Viewed by 1562
Abstract
A reliable numerical simulation method and large-scale in-situ test method for super-thick coal seams are very important to determine the failure range of mining floors, which is often the basis to protect Ordovician limestone water, an important drinking water source for people in [...] Read more.
A reliable numerical simulation method and large-scale in-situ test method for super-thick coal seams are very important to determine the failure range of mining floors, which is often the basis to protect Ordovician limestone water, an important drinking water source for people in North China. This paper takes Yushupo Coal Mine as an example; the explicit–implicit coupling simulation method and the corresponding double scalar elastic–plastic constitutive model were established to predict the failure depth of the floor numerically, and verified by the full section borehole stress–strain in-situ testing method. The results show that the explicit–implicit coupling numerical program and the double scalar elastoplastic constitutive model are suitable for predicting the floor failure depth under the condition of extra-thick coal seams. In this condition, the overburden moves violently, resulting in a loading–unloading–reloading process with large stress variation amplitude in the mining floor, which leads to serious rock failure compared with that of medium-thick coal seam conditions. In Yushupo 5105 working face, the floor failure starts to develop from 9.3–24.2 m ahead of the coal wall of working face, and the failure depth no longer increases after 35 m behind the coal wall, with the maximum failure depth of 28 m; the envelope line of the floor failure depth presents an inverted saddle distribution. The above research results lay a foundation for further protecting the Ordovician limestone water, and realizing green coal mining. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

16 pages, 2283 KB  
Article
Modes of Occurrence and Enrichment of Trace Elements in Coal from the Anjialing Mine, Pingshuo Mining District, Ningwu Coalfield, Shanxi Province, China
by Tobechukwu Justin Ikeh, Beilei Sun, Chao Liu, Yunxia Liu, Yanlei Kong and Xinyu Pan
Minerals 2022, 12(9), 1082; https://doi.org/10.3390/min12091082 - 26 Aug 2022
Cited by 14 | Viewed by 3332
Abstract
In this paper, the mineralogical composition, concentrations, distribution, and modes of occurrence of the trace elements in coal from the Anjialing coal seam 9 in the Pingshuo mining district, Ningwu coalfield, were studied using optical microscopy, X-ray powder diffraction (XRD), inductively coupled plasma [...] Read more.
In this paper, the mineralogical composition, concentrations, distribution, and modes of occurrence of the trace elements in coal from the Anjialing coal seam 9 in the Pingshuo mining district, Ningwu coalfield, were studied using optical microscopy, X-ray powder diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and sequential chemical extraction procedures (SCEPs). The identified minerals included mainly kaolinite, boehmite, pyrite, calcite, quartz, and muscovite. Compared to other hard coal from around the world, the coal from seam 9 was enriched with lithium (Li); slightly enriched with gallium (Ga), hafnium (Hf), zirconium (Zr), and mercury (Hg); typically enriched with lead (Pb), and depleted in arsenic (As). The results of the SCEPs analysis showed that Li, Ga, Zr, and Hf were mainly associated with clay minerals. Arsenic mainly occurred in its silicate and sulfide forms in pyrite and Pb was mainly associated with aluminosilicate, sulfide, and carbonate minerals. Full article
(This article belongs to the Special Issue Coal: Chemical, Geochemical and Petrographical Aspects)
Show Figures

Figure 1

27 pages, 7942 KB  
Article
Remote-Sensing Evaluation and Temporal and Spatial Change Detection of Ecological Environment Quality in Coal-Mining Areas
by Xinran Nie, Zhenqi Hu, Mengying Ruan, Qi Zhu and Huang Sun
Remote Sens. 2022, 14(2), 345; https://doi.org/10.3390/rs14020345 - 12 Jan 2022
Cited by 54 | Viewed by 5566
Abstract
The large-scale development and utilization of coal resources have brought great challenges to the ecological environment of coal-mining areas. Therefore, this paper has used scientific and effective methods to monitor and evaluate whether changes in ecological environment quality in coal-mining areas are helpful [...] Read more.
The large-scale development and utilization of coal resources have brought great challenges to the ecological environment of coal-mining areas. Therefore, this paper has used scientific and effective methods to monitor and evaluate whether changes in ecological environment quality in coal-mining areas are helpful to alleviate the contradiction between human and nature and realize the sustainable development of such coal-mining areas. Firstly, in order to quantify the degree of coal dust pollution in coal-mining areas, an index-based coal dust index (ICDI) is proposed. Secondly, based on the pressure-state-response (PSR) framework, a new coal-mine ecological index (CMEI) was established by using the principal component analysis (PCA) method. Finally, the coal-mine ecological index (CMEI) was used to evaluate and detect the temporal and spatial changes of the ecological environment quality of the Ningwu Coalfield from 1987 to 2021. The research shows that ICDI has a strong ability to extract coal dust with an overall accuracy of over 96% and a Kappa coefficient of over 0.9. As a normalized difference index, ICDI can better quantify the pollution degree of coal dust. The effectiveness of CMEI was evaluated by four methods: sample image-based, classification-based, correlation-based, and distance-based. From 1987 to 2021, the ecological environment quality of Ningwu Coalfield was improved, and the mean of CMEI increased by 0.1189. The percentages of improvement and degradation of ecological environment quality were 71.85% and 27.01%, respectively. The areas with obvious degradation were mainly concentrated in coal-mining areas and built-up areas. The ecological environment quality of Pingshuo Coal Mine, Shuonan Coal Mine, Xuangang Coal Mine, and Lanxian Coal Mine also showed improvement. The results of Moran’s Index show that CMEI has a strong positive spatial correlation, and its spatial distribution is clustered rather than random. Coal-mining areas and built-up areas showed low–low clustering (LL), while other areas showed high–high clustering (HH). The utilization and popularization of CMEI provides an important reference for decision makers to formulate ecological protection policies and implement regional coordinated development strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

17 pages, 6230 KB  
Article
A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China
by Yinjiao Su, Xuan Liu, Yang Teng and Kai Zhang
Energies 2021, 14(11), 3119; https://doi.org/10.3390/en14113119 - 27 May 2021
Cited by 6 | Viewed by 2983
Abstract
Mercury (Hg) is a toxic trace element emitted from coal conversion and utilization. Samples with different coal ranks and gangue from Ningwu Coalfield are selected and investigated in this study. For understanding dependence of mercury distribution characteristics on coalification degree, Pearson regression analysis [...] Read more.
Mercury (Hg) is a toxic trace element emitted from coal conversion and utilization. Samples with different coal ranks and gangue from Ningwu Coalfield are selected and investigated in this study. For understanding dependence of mercury distribution characteristics on coalification degree, Pearson regression analysis coupled with Spearman rank correlation is employed to explore the relationship between mercury and sulfur, mercury and ash in coal, and sequential chemical extraction method is adopted to recognize the Hg speciation in the samples of coal and gangue. The measured results show that Hg is positively related to total sulfur content in coal and the affinity of Hg to different sulfur forms varies with the coalification degree. Organic sulfur has the biggest impact on Hg in peat, which becomes weak with increasing the coalification degree from lignite to bituminous coal. Sulfate sulfur is only related to Hg in peat or lignite as little content in coal. However, the Pearson linear correlation coefficients of Hg and pyritic sulfur are relatively high with 0.479 for lignite, 0.709 for sub-bituminous coal and 0.887 for bituminous coal. Hg is also related to ash content in coal, whose Pearson linear correlation coefficients are 0.504, 0.774 and 0.827 respectively, in lignite, sub-bituminous coal and bituminous coal. Furthermore, Hg distribution is directly depended on own speciation in coal. The total proportion of F2 + F3 + F4 is increased from 41.5% in peat to 87.4% in bituminous coal, but the average proportion of F5 is decreased from 56.8% in peat to 12.4% in bituminous coal. The above findings imply that both Hg and sulfur enrich in coal largely due to the migration from organic state to inorganic state with the increase of coalification degree in Ningwu Coalfield. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

20 pages, 2785 KB  
Article
Enrichment Mechanisms of Gallium and Indium in No. 9 Coals in Anjialing Mine, Ningwu Coalfield, North China, with a Preliminary Discussion on Their Potential Health Risks
by Minmin Zhang, Huidi Hao, Lei Tian, Jinxi Wang, Yanheng Li and Yuzhuang Sun
Minerals 2021, 11(1), 64; https://doi.org/10.3390/min11010064 - 11 Jan 2021
Cited by 14 | Viewed by 4069
Abstract
To provide a comprehensive insight into the enrichment mechanism of gallium and indium in No. 9 coals, eighteen samples were collected from Anjialing mine, Ningwu Coalfield, Shanxi Province for coal petrological, mineralogical and geochemical analyses. The results suggested that Ga and In enrichment [...] Read more.
To provide a comprehensive insight into the enrichment mechanism of gallium and indium in No. 9 coals, eighteen samples were collected from Anjialing mine, Ningwu Coalfield, Shanxi Province for coal petrological, mineralogical and geochemical analyses. The results suggested that Ga and In enrichment mainly hosted in the top horizons, with average concentration coefficients of 8.99 and 2.73 respectively, compared with the rest of horizons (2.46 for Ga and 1.69 for In). Source apportionment indicated that Ga and In were mainly derived from bauxite of Benxi Formation in Yinshan Oldland, while In could originate from felsic magmatic rocks in Yinshan Oldland as well. In addition, weak oxidation condition, medium to intensive weathering, transgression and input of terrestrial higher plants had positive effects on Ga and In enrichment. With the rapid expansion of emerging electronics manufacturing, Ga and In, of which potential risks on human health were neglected previously, were recently considered as hazardous elements. Therefore, this paper also discussed the potential pathways that these elements threatened human health. We suggested that potential risks on environment and human health caused by Ga and In enrichment in coals and coal-related products should be taken into account besides their economic value. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Coal-Bearing Rocks)
Show Figures

Figure 1

13 pages, 5298 KB  
Article
Stable Isotopic Characteristics and Influencing Factors in Precipitation in the Monsoon Marginal Region of Northern China
by Peipei Zhao, Liangcheng Tan, Pu Zhang, Shengjie Wang, Buli Cui, Dong Li, Gang Xue and Xing Cheng
Atmosphere 2018, 9(3), 97; https://doi.org/10.3390/atmos9030097 - 8 Mar 2018
Cited by 32 | Viewed by 5896
Abstract
Based on stable hydrogen and oxygen isotope data (δ18O, δD) and meteorological observation data for complete hydrological annual precipitation from 2016 to 2017 in the monsoon marginal region of northern China (Fengxiang and Ningwu), the isotopic characteristics of precipitation and the [...] Read more.
Based on stable hydrogen and oxygen isotope data (δ18O, δD) and meteorological observation data for complete hydrological annual precipitation from 2016 to 2017 in the monsoon marginal region of northern China (Fengxiang and Ningwu), the isotopic characteristics of precipitation and the sources of water vapor in these two regions combined were studied. The results showed that δ18O and δD values in the wet season (June through September) were higher than in the dry season (October to May of the following year) in Fengxiang and Ningwu. The intercept and slope of the meteoric water line in the two regions were somewhat low, revealing that the water vapor in the rainfall comes mainly from the tropical ocean. On a synoptic scale, significantly positive correlations among dry season precipitation, δ18O, and temperature manifested temperature effects, but in the wet season, the temperature effect was not significant. On a monthly scale, a relationship did not exist between the change in trend of the average value of monthly weighted δ18O in precipitation and the average temperature change value in the two regions. However, in the wet season, significantly negative relationships can be found between the average monthly weighted δ18O in precipitation and rainfall amount, which indicated a remarkable rainout effect. Further investigation revealed that continuous precipitation made the values of δ18O and δD more negative under the same source of water vapor (the rainout effect). Because the annual rainfall in the monsoon marginal region of Northern China is mainly made up of monsoon rainfall, the oxygen isotope index of geological and biological records, such as stalagmites and tree rings, which inherit meteoric water isotope information, can be used to reconstruct past rainfall changes in northern China. Full article
(This article belongs to the Special Issue Precipitation: Measurement and Modeling)
Show Figures

Figure 1

Back to TopTop