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Abstract: The Fanchang volcanic basin (FVB) is located in the Middle and Lower Yangtze Metallogenic
Belt (MLYMB) between the ore districts of Ningwu and Tongling. The existing ore deposits in the
FVB are relatively small in scale and related to late Mesozoic A-type granites. In this paper, the
crystallization age, major and trace element composition, and Sr-Nd and Hf isotope compositions of
the A-type granites are summarized from the literature; in addition, the magnetite composition, H
and O isotopes of fluid inclusions, and sulfur isotope composition of metal sulfides in some typical
ore deposits in the FVB are also summarized to give insights into the petrogenesis and mineralization
of the A-type granites intruding into the FVB. The results show that: (1) Orthopyroxene, plagioclase,
K-feldspar, and biotite are the main fractionating minerals controlling the evolution of the magmas
of A-type granites in the FVB and other areas in the MLYMB. (2) The whole-rock Sr-Nd and zircon
Hf isotopic characteristics show that the source of A-type granite magma is complex and includes
the enriched mantle, lower crust, and upper crust, probably with stronger participation of Archaean–
Paleoproterozoic crustal materials in the FVB granites than in other regions of the MLYMB. (3) The ores
in the FVB are dominated by skarn and hydrothermal deposits. H and O isotopes of fluid inclusions
indicate that ore-forming fluids have been derived from mixtures of magmatic hydrothermal fluid,
meteoric waters, and deep brine related to gypsum layers. S isotopes of metal sulfides indicate that
the sulfur may be a mixture of magmatically derived sulfur and sulfur originating from the Triassic
gypsum-bearing layers. The deposit and ore characteristics of the main deposits in the FVB are
also illustrated, and the evaluation of metal resources indicates that the skarn and hydrothermal
iron–zinc ores in the FVB also have potential as sources of Cd, Ga, and Se. In addition, in terms of
the oxygen fugacity, rock type, and geochemical characteristics of magmatic rocks, the metallogenic
characteristics and potential of the A-type granites in the FVB are evaluated. It is considered that in
addition to the dominant constituents of iron and zinc and the minor constituents listed above, the
FVB could have the potential for providing copper, gold, molybdenum, uranium, and other metals
as well.

Keywords: Middle and Lower Yangtze Metallogenic Belt (MLYMB); Fanchang volcanic basin (FVB);
A-type granite suite; magma source area; exploration potential

1. Introduction

A-type granites, an important category of granites [1–17], are closely related to some
key metals or strategic minerals, including iron, zinc, cobalt, tin, cadmium, niobium,
gallium, cobalt, REE, uranium, etc. [18–30].
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In the 1960s, with the advent of the theory of plate tectonics, the genesis of granite
was mostly explained in its framework, and in the 1970s and 1980s, research on granite
classification reached its peak [31–33]. Up to now, there have been about 20 genetic classifi-
cation schemes for granites, among which the MISA classification based on the character
of presumed source rocks is one of the more commonly used [34–37]. The classification
of I-type (igneous source) and S-type (sedimentary source) is based on the study of the
granites in the Berridale–Kosciuszko area of the Lachlan Fold Belt, Australia [31]. The
model provides a good explanation for the appearance of these two types of granites and
indicates that the unique compositional features of these granites were inherited from their
source rocks [38].

Loiselle and Wones [33] first defined A-type granites as alkaline, anhydrous, and
anorogenic granites, named after the initial letter “A” of the three words. The widespread
use of the concept of A-type granite started with the determination of the granite complex
in southeastern Australia, which is mainly characterized by high contents of Nb, Ga, Y,
and REE and low contents of Al, Mg, and Ca [1]. Then, Whalen et al. [3] constructed
discriminant diagrams for A-type granites as opposed to orogenic granites, based on the
Ga/Al ratio, Zr, Nb, Ce, Y contents, and so forth.

At present, the concept of A-type granite contains a wide range of rock types, such as
alkaline granites, quartz syenites, and charnockites [5,8,39]. The distinguishing geochemical
indicators include high contents of Na2O + K2O, Y, Nb, REE, and Ga, as well as high
FeOT/MgO, K2O/Na2O, and Ga/Al ratios, and low contents of V, Cr, Ni, Sr, Ba, and
large negative Eu anomalies, plus flat HREE partitioning characteristics [1,3,15,37,40]. So
far, there has been no unified understanding of the genesis of A-type granites, and the
main genetic models include magmatic differentiation or low-degree partial melting of
mantle-derived tholeiitic magma, residual melt generated by the differentiation of mantle-
derived alkaline magma, and partial melting of F-rich residue after partial melting to
form I-type granite, as well as interaction between mantle-derived alkaline magma and
crustal materials [1,3,5,7–10,14,16,17,19,22,26,40–48]. Regardless of the origin of A-type
granites, however, it is generally believed that their formation temperatures are relatively
high [13,37,42,43,45].

So far, there have been many classification schemes for A-type granites [8–10,49,50].
Eby [8] proposed discriminant diagrams corresponding to the tectonic environment, divid-
ing A-type granites into two types: A1 and A2, based on their Nb/Y ratios. The former
suggests a non-orogenic intraplate setting related to a continental rift environment or man-
tle hot spot, while the latter is attributed to a post-collision or post-orogenic environment.
In addition, Hong et al. [49] divided A-type granites into two categories, i.e., non-orogenic
(AA type) and post-orogenic (PA type), and Liu et al. [50] further discussed this clas-
sification. King et al. [10] also proposed the concept of aluminous A-type granite, and
many Chinese scholars then carried out some further research work, including the division
between metaluminous, aluminous, and peraluminous granites [51–53]. Nowadays, ge-
ologists have extended the concept even to extrusive rocks; still, the extensional system
is the main tectonic environment for their formation, while the magmatic sources may be
diverse [2,3,11,46].

Systematic studies on the relationship between the geochemical properties of granite
(such as oxygen fugacity, etc.) and metallogenic types began in the early 1980s [54–56].
At present, scholars have obtained some understanding of the relationship between the
differentiation degree of magmatic rocks, the redox state of the magma, and the dominant
metallic mineral deposits of granite (such as Sn, W, Mo, Cu, and Au) [57–60]. For example,
porphyry Cu and Mo deposits are mainly associated with I-type granites with high oxygen
fugacity, tungsten mineralization can occur in any granite type, and tin mineralization is
generally associated with heavily fractionated, reduced felsic granites [21,31,37,58,61,62].

Ores closely related to A-type granites include zinc, tin, molybdenum, bismuth, nio-
bium, tungsten, thallium, REE, fluorine, and uranium [1,3,6,24,63–66], with different char-
acteristics in different ore-forming belts. For example, in the Middle and Lower Yangtze
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Metallogenic Belt (MLYMB), iron, zinc, gold, molybdenum, and uranium are generally
dominant [23,67–72], while in South China, tin, tungsten, and REE mineralization are the
main types [24,48,73,74].

There are two A-type granite belts that are parallelly and symmetrically distributed on
both sides of the Yangtze River in the Anhui Province (Figures 1 and 2), within the MLYMB,
in eastern China. The granite belt on the north bank stretches from the Dalongshan granite
massif in the Anqing area to Chengshan and Huangmeijian in Zongyang County, in a
NE direction, for about 75 km. On the south bank, the A-type granite belt extends from
the granite massifs of Huayuangong and Maotan in the Guichi area to Banshiling and
Fushan in the Fanchang volcanic basin (FVB), for about 100 km and in a NE direction as
well [75,76].

The FVB is located between the Tongling and Ningwu ore fields (Figure 1B). The for-
mation and evolution of the FVB is controlled by Mesozoic plate collision, intracontinental
orogeny, and transtension processes. It is a volcanic basin superimposed on a Middle
Triassic–Early and Middle Jurassic sedimentary basin [77], which is intruded by A-type
granites. Compared with other areas in the MLYMB, the A-type granite suite in the FVB
has unique ore characteristics, mainly because of its enrichment in iron and zinc [78–81].

The crystallization ages, petrogenesis, and evolution of the A-type granites in the
FVB have been defined earlier based on the major and trace element geochemistry, zircon
U-Pb dating, and whole-rock Sr-Nd isotope and zircon Hf isotope investigations [82–85].
However, there are two main issues that remain unresolved: (1) The contribution of mantle-
derived materials to the A-type granite source has generally been recognized, but the end-
member characteristics of the crustal components are still unclear. Lou et al. [82] believed
that a mantle-derived alkaline basaltic magma interacted with a siliceous magma from the
lower crust, and the resulting evolved magma in turn interacted with Meso-Neoproterozoic
shallow metamorphic rocks and formed a shallow magma chamber, from which A-type
granites evolved through separation and crystallization processes. Yan et al. [85,86] con-
sidered that A-type granites in this area were formed by a mixture of mantle-derived
and crust-derived magma in different proportions, with crust-derived magma being the
product of middle-upper crust melting. There has been no conclusion as to whether
Archean–Paleoproteroic crustal materials have been involved. (2) The comparison in terms
of magmatic evolution, petrogenesis, and ore-forming characteristics of A-type granites in
the FVB with other A-type rocks in the MLYMB is insufficient; therefore, the similarities
and differences between them are not clear, particularly when it comes to their geochemical
characteristics [84,86].
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Figure 1. (A) Tectonic sketch map showing A-type granite belts in eastern China (modified from 
[76]); (B) sketch map showing the A-type granites of the MLYMB (modified from [72] and [87]); (C) 
main ore deposits related to the A-type granites of the FVB. 

Figure 1. (A) Tectonic sketch map showing A-type granite belts in eastern China (modified from [76]);
(B) sketch map showing the A-type granites of the MLYMB (modified from [72,87]); (C) main ore
deposits related to the A-type granites of the FVB.
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Figure 2. Discrimination diagrams of A-type granites in the MLYMB (figure (a) after [3] and (b) after 
[8]). Data sources: A-type granites in the FVB [46,82,85,88,89]; A-type granites in the Chizhou area 
(the south bank of the Yangtze River) [46,90–96]; A-type granites in the Anqing–Zongyang area (the 
north bank of the Yangtze River) [97–103]. 

Research on mineralization related to A-type granite in the MLYMB, such as ore 
types, ore-controlling characteristics, ore deposit genesis, etc., has not been systematically 
summarized before. This is especially so for the FVB, in which the dominant metals related 
to A-type granites are only iron and zinc, and deposits are relatively small [79–81,104–
106]. Previous summaries on ore-forming types, deposit characteristics, and ore charac-
teristics in this area are not thorough enough [78], and the discussion on the geochemistry 
of the deposits is still insufficient [80], in particular with respect to the characteristics of 
ore-forming fluid and the source of ore-forming materials. In addition, new break-
throughs have been carried out in this area, which makes it urgent to give insights into 
the metallogenic potential of the A-type granite suite and expand the list of prospective 
metals in this area. 

In view of this, on the basis of the data on A-type granites in the MLYMB systemati-
cally collected and analyzed during the last few years, such as crystallization ages [46,83–
85,89,92–94,96,98,100,101,107–109], major and trace elements [46,82,84,85,88,89,92–
94,96,98,100,101,107,108], Sr-Nd [85,86,89,91,93,94,100,101,108,110,111], and Hf-O isotopes 
[85,88,92–94,96,100,112] (Table 1 and Supplement Tables S1–S4), this paper gives insights 
into the evolution characteristics of the A-type granite suite in the FVB and other parts of 
the MLYMB, as well as the end-member characteristics of the magma source area. Based 
on summaries of the characteristics of typical ore deposits related to A-type granites in 
the MLYMB [77,113], combined with the compositions of magnetite, H and O isotopes of 
fluid inclusions in ore and gangue minerals, as well as S isotopes of metal sulfides in typ-
ical deposits in the FVB (Supplement Tables S5–S7) [80,81], the ore-controlling factors, ore-
forming fluids, and the sources of materials in the ores of the FVB are discussed. Based on 
the oxygen fugacity, rock types, and geochemical characteristics of magmatic rocks, this 
paper interprets the metallogenic potential of A-type granites in this area and expands 
their potential ore types. In addition, this paper preliminarily evaluates the comprehen-
sive utilization potential of associated key metals in the main ores in the FVB, and finally, 
a petrogenic and metallogenic model for the A-type granite suite in the FVB is proposed. 

Figure 2. Discrimination diagrams of A-type granites in the MLYMB (figure (a) after [3] and (b) af-
ter [8]). Data sources: A-type granites in the FVB [46,82,85,88,89]; A-type granites in the Chizhou area
(the south bank of the Yangtze River) [46,90–96]; A-type granites in the Anqing–Zongyang area (the
north bank of the Yangtze River) [97–103].

Research on mineralization related to A-type granite in the MLYMB, such as ore
types, ore-controlling characteristics, ore deposit genesis, etc., has not been systematically
summarized before. This is especially so for the FVB, in which the dominant metals related
to A-type granites are only iron and zinc, and deposits are relatively small [79–81,104–106].
Previous summaries on ore-forming types, deposit characteristics, and ore characteristics
in this area are not thorough enough [78], and the discussion on the geochemistry of
the deposits is still insufficient [80], in particular with respect to the characteristics of ore-
forming fluid and the source of ore-forming materials. In addition, new breakthroughs have
been carried out in this area, which makes it urgent to give insights into the metallogenic
potential of the A-type granite suite and expand the list of prospective metals in this area.

In view of this, on the basis of the data on A-type granites in the MLYMB systematically
collected and analyzed during the last few years, such as crystallization ages [46,83–85,89,
92–94,96,98,100,101,107–109], major and trace elements [46,82,84,85,88,89,92–94,96,98,100,
101,107,108], Sr-Nd [85,86,89,91,93,94,100,101,108,110,111], and Hf-O isotopes [85,88,92–
94,96,100,112] (Table 1 and Supplement Tables S1–S4), this paper gives insights into the
evolution characteristics of the A-type granite suite in the FVB and other parts of the
MLYMB, as well as the end-member characteristics of the magma source area. Based
on summaries of the characteristics of typical ore deposits related to A-type granites in
the MLYMB [77,113], combined with the compositions of magnetite, H and O isotopes
of fluid inclusions in ore and gangue minerals, as well as S isotopes of metal sulfides in
typical deposits in the FVB (Supplement Tables S5–S7) [80,81], the ore-controlling factors,
ore-forming fluids, and the sources of materials in the ores of the FVB are discussed. Based
on the oxygen fugacity, rock types, and geochemical characteristics of magmatic rocks, this
paper interprets the metallogenic potential of A-type granites in this area and expands
their potential ore types. In addition, this paper preliminarily evaluates the comprehensive
utilization potential of associated key metals in the main ores in the FVB, and finally, a
petrogenic and metallogenic model for the A-type granite suite in the FVB is proposed.
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Table 1. Summary of A-type granites in MLYMB.

No. Area Rock
Massif

Location
(Approximate Center)

Outcrop
Area (km2)

Lithology Minerals
Sr-Nd Hf-O

References
Ages (Ma) (87Sr/86Sr) εNd (t) εHf (t) δ18O‰

1 Fanchang Banshiling 30◦59′59′ ′ N 118◦11′06′ ′ E 16.29 Biotite quartz
monzonite

Kfs (45%) + Pl (35%)
+ Qtz (10%) + Bt (6%)

125.3 ± 1.4 - - - - [46]

124.9 ± 1. 7 0.7072 −6.8 −2.7~−6.3 6.7~7.4 [85,86]

125.3 ± 2.9 - - - - [83]

125.4 ± 1.6 0.70827 −11.2 - - [89]

2 Fanchang Fushan 31◦09′05′ ′ N 118◦03′08′ ′ E 15.25 Syenogranite Kfs (55%) + Qtz (30%)
+ Pl (5%) + Bt (5%)

124.9 ± 2.0 - - −5.8~−10.0 - [88]

126.8 - - −7.52 - [84]

126.4 ± 1.7 0.7076 −7.7 −1.6~7.9 7.1~9.1 [85,86]

3 Fanchang Binjiang 31◦09′05′ ′ N 118◦03′08′ ′ E 12 Granitic
porphyry

Kfs (60%) + Pl (20%)
+ Qz (15%) +Bt (5%)

124.3 ± 2.5 - - - - [83]

124.6 ± 4.7
(coarse-
grained
granite)

0.7078 −3.4 0~−6.6 8.0~10.3 [85,86]

123.0 ± 1.8
(granite

porphyry)

4 Fanchang Xiangxingdi 31◦02′00′ ′ N 118◦15′30′ ′ E 6 Granitic
porphyry

Qtz(25%) + Pl(70%)
+ Hb(2%) 124.3 ± 1.2 - - - - [89]

5 Fanchang Suishan 31◦05′00′ ′ N 118◦12′00′ ′ E - Granite Qtz(22%) +Pl(20%)
+ Kfs(53%) + Bt(4%) 124.3 ± 1.2 0.70755 −10.5 - - [89]

6 Fanchang Zhuhouling 31◦05′00′ ′ N 118◦16′00′ ′ E 4.85 Granitic
porphyry

Kfs(70~80%) + Qtz(<5%)
+ Pl(10~15%) 127.6 ± 1.8 0.70827 −11.2 - - [89]

7 Fanchang Xiaoyang-
chong 31◦05′30′ ′ N 118◦07′00′ ′ E 0.13

Quartz diorite
and

granodiorite
Kfs(15%) + Qtz(18~20%)

+ Pl(50~60%) + Bt(5~10%) 126~128 - - - - [113]

8 Chizhou
Huayuan-

gong 117◦36′00′ ′ N 30◦37′00′ ′ E 220

Quartz
syenite

Kfs(70~80%) + Qtz(<5%)
+ Pl(10%) 126.2 ± 1.2 0.7081 −6.7 −7.4 - [93]

Syenogranite
Kfs(64~67%) +
Qtz(25~33%) +

Pl(2.5~3.0%) + Bt(1.0%)
125.3 ± 1.2

[47] – - −7.3, −7.89
[42] - [42,46]

Quartz
monzonite

Kfs(30~35%) + Qtz(5~10%)
+ Pl(45~55%) + Bt(3~6%) +

Hb(2~4%)
127 ± 1 0.709776 −7.42 - - [108]

Quartz
syenite

Kfs(65~75%) + Qtz(5~10%)
+ Pl(7~9%) + Bt(1~3%) +

Hb(1~4%)
127 0.713653 −7.67 - - [108]
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Table 1. Cont.

No. Area Rock
Massif

Location
(Approximate Center)

Outcrop
Area (km2)

Lithology Minerals
Sr-Nd Hf-O

References
Ages (Ma) (87Sr/86Sr) εNd (t) εHf (t) δ18O‰

Syenogranite Kfs(55~65%) + Qtz(5~10%)
+ Pl(2~5%) + Bt(1~2%)

127 0.740000 −7.97 - - [108]

Syenogranite 122.6 ± 1.3 - - −4.7 - [92]

Syenogranite 122.6 ± 1.3 - - −6.7~−2.1 - [94]

9 Chizhou Bashan 117◦38′00′ ′ N 30◦35′00′ ′ E 40 Syenogranite Kfs(66%) + Qtz(25%)
+ Pl(2%) + Ab(5%) 121.6 ± 2.8 0.7082~0.7091 −7.2~−7.5 - - [111]

10 Chizhou Guilinzheng 117◦40′00′ ′ N 30◦25′00′ ′ E - Granitic
porphyry

Kfs(40~60%) +
Qtz(35~45%)

+ Pl(5~10%) + Bt(<5%)

127.0 ± 0.5
[94];

127.6 ± 1.5
[114]

- - −2.9~5.9 - [94,114]

11 Chizhou Yangshan 117◦50′00′ ′N 30◦30′00′ ′ E 30

Syenitic
porphyry

Kfs(40~45%) + Qtz(5~10%)
+ Pl(40~50%) 127.0 ± 0.6 0.7107~0.7140 −7.02~−5.78 −5.5~−3.7 - [94]

Syenogranitic
porphyry

Kfs(30~35%) +
Qtz(55~65%) 126.0 ± 1.0 0.7094~0.7065 −6.03~−5.47 −6.4~−4.4 - [94]

Syenogranite - 127.6 ± 0.6 - - −7.5~−2.3 - [94]

12 Chizhou Maotan 117◦47′00′ ′ N 30◦42′00′ ′ E 25
Syenite Kfs(55~65%) + Qtz(30%)

+ Pl(10%) + Bt(2~5%) 127.7 ± 1.8 0.70076 −7.03 - - [91]

Syenogranite Kfs(76~79%) + Qtz(7~22%)
+ Pl(1~4%) + Bt(0.5~3%) 125.4 ± 2.2 - - - - [46]

13 Chizhou Xiangshui-
jian 118◦14′00′ ′N 31◦02′00′ ′ E 20 Syenogranite

Kfs(64~67%) +
Qtz(22~28%)

+ Pl(2~3%) + Bt(5~8%)
125.4 ± 1.4 - - - - [46]

14 Anqing-
Guichi Dalongshan 117◦04′00′ ′ N 30◦36′00′ ′ E 90 Quartz

syenite
Kfs(60~70%) +
Qtz(10~15%)

+ Pl(10~15%) + Bt(<5%)

125.8 ± 1.6,
126.4 ± 3.5

[112];
123.8.4 ± 2.1

[84]

0.706444
[115]

−6.8~−7.7
[115]

−4~+1.1,−7.8~−3.6
[112];

−3.41 [84]
- [84,112,115]

15 Anqing-
Guichi Huashan 117◦09′00′ ′ N 30◦42′00′ ′ E 21 Syenogranite Kfs(70%) + Qtz(20%)

+ Pl(10%) + Bt(<5%)
126.2 ± 0.8;
124.4 ± 2.2 - - −3.51 - [84]

16 Anqing-
Guichi Zongyang 117◦14′00′ ′ N 30◦43′00′ ′ E 10 Syenogranite Kfs(70%) + Qtz(20%)

+ Pl(12%) + Bt(<1%)

124.8 ± 2.2
[98];

125.4 ± 1.5
[84]

- - −3.57 [84] - [84,98]

17 Anqing-
Guichi Chengshan 117◦14′00′ ′ N 30◦46′00′ ′ E 19 Syenogranite

Kfs(70%) + Qtz(20%) +
Pl(8%) + Aegirine(a small

amount)

126.5 ± 2.1
[98]

125.0 ± 1.7
[84]

0.7076 [115];
0.70695~0.70742

[101]

−5.0,
−6.3~−4.2

[101]
−4.72 [84] - [84,98,101,

115]

18 Anqing-
Guichi Hejiaao 117◦13′00′ ′N 30◦43′00′ ′ E 5 Syenogranite

Kfs(75%) + Qtz(20%)
+ Pl(8%) + Ae(a small

amount)
128 ± 1 0.70795~0.70931−6.4~−5.8 - - [101]
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Table 1. Cont.

No. Area Rock
Massif

Location
(Approximate Center)

Outcrop
Area (km2)

Lithology Minerals
Sr-Nd Hf-O

References
Ages (Ma) (87Sr/86Sr) εNd (t) εHf (t) δ18O‰

19 Anqing-
Guichi Meilin 117◦12′30′ ′ N 30◦43′00′ ′ E 7 Syenogranite

Kfs(75%) + Qtz(20%)
+ Pl(5%) + Ae(a small

amount)
128 ± 2 0.7364~0.7659

−5.2,
−6.0,
−5.4

- - [101]

20 Anqing-
Guichi Huangmeijian 117◦34′00′ ′ N 30◦55′30′ ′ E 120 Quartz

syenite
Kfs(86%) + Qtz(12%)

+ Pl(<2%)
127.6 ± 2.1;
127.2 ± 2.1

[112]
0.7078 [115];
0.7089 [110]

−7.7
[115];

−2.5 [110]

−3.3~+2.1
[112];

−3.8~−0.1
[112];

−3.38 [84]

- [84,110,112,
115,116]

21 Anqing-
Guichi Changgang 117◦12′00′ ′ N 31◦20′00′ ′ E 0.5 Syenogranitic

porphyry

Kfs(45~55%) +
Qtz(15~20%)

+ Pl(20~30%) + Bt(a small
amount)

120 ± 2 0.7082 −14.9 −18.3 5.99 [100]
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2. Geological Background of the Fanchang Volcanic Basin

According to the geological characteristics, mineral assemblages, and metallogenic
ages of the deposits in the MLYMB, two metallogenic stages are distinguished: one related
to Hercynian submarine eruptive volcano-sedimentary processes, and the other related to
Yanshanian (Late Jurassic and Early Cretaceous) intermediate-acid intrusive rocks [117,118].
The metallogenic stage related to the Yanshanian intermediate-acid intrusive rocks is the
most important and is connected to the thinning of the continental lithosphere in eastern
China [67,71,72,117,119,120]. The Yanshanian metallogenic stages can be subdivided into
three types (Figure 1B): (1) the skarn-porphyry Cu and Au mineralization associated with
high-K calc-alkaline, adakitic rocks (147~137 Ma), mainly developed in Jiurui, Anqing-
Guichi, Tongling (fault uplift area) [121–125], and the southeastern Hubei province in a tran-
sitional zone of fault depression and fault uplift [126–129]; (2) the subvolcanic or porphyrite-
type Fe mineralization related to Na-rich calc-alkaline subvolcanic diorite (135–127 Ma),
mainly developed in volcanic basins such as Ningwu and Luzong [107,130–132]; and (3) Fe,
Au, Mo, and U mineralization related to alkaline or A-type granites (130–120 Ma), devel-
oped both in fault uplift areas and volcanic basins, mainly the FVB, Luzong volcanic basin,
and the uplift area of Chizhou [67,69,72,118].

The FVB is a compound basin covered by Mesozoic volcanic rocks, which are su-
perposed on an earlier fault-bounded basin [105,133], found between the fault uplift area
(Tongling) and the volcanic basin (Ningwu) (Figure 1B). Late Mesozoic magmatic activity
in the FVB was intense, and the volcanic rocks are mainly distributed in the southern part,
whereas A-type granites are mainly found in the central and northern parts (Figure 1C).

Volcanic rocks are mainly distributed around Tadpole Mountain, Maren Mountain,
and other craters, with a total thickness of between 220 and 2250 m. There are three
eruptive cycles from bottom to top, namely the Kedoushan Formation, Chisha Formation,
and Zhongfencun Formation, characterized by successive bimodal eruptions of basalt and
rhyolite [113], dated between 129 and 131 Ma [134]. The crystallization time of the intrusive
rocks is slightly later than that of the extrusive rocks, and they are dominated by A-type
granites [75,89,135]. There are similar abundance patterns of trace elements (especially
incompatible elements), Sr-Nd isotopes, and zircon Hf-O isotopes between the intrusive
rocks and volcanic rocks in the FVB [85,90,134].

Previous studies have shown that the mantle endmember of the Yanshanian magmatic
rocks in the MLYMB appears to be enriched [71,72,136–141]. On the other hand, crustal
materials were also obviously involved during the petrogenetic process [122,142–147]. Our
previous studies have also shown that the patterns of trace elements in the intrusive rocks
in the FVB are similar to those in typical crustal rocks, indicating the participation of crustal
materials during the formation of the A-type granites [83,89].

3. Evolution of the A-Type Granites in the FVB

The A-type granites in the FVB mainly belong to the high-K calc-alkaline and shoshon-
ite suites (Figure 3a). They are mainly metaluminous and peraluminous (Figure 3c).
Granites and quartz mozonites are the main rock types of A-type granites in the FVB
(Figures 3b and 4d,e), followed by a few syenite and granodiorite rocks. The A-type gran-
ites in the FVB and MYLMB are enriched in light rare-earth elements with flat, heavy
rare-earth element curves (Figure 3d). They are enriched in Rb, Th, U, Ce, Pb, Nd, Sm,
and Gd, but depleted in Ba, Nb, Ta, Sr, P, and Ti, reflecting a trace element abundance
pattern roughly consistent with the crust, with more marked peaks and troughs (Figure 3e).
The crystallization age of Mesozoic intrusive rocks in the FVB is mainly between 128 and
123 Ma, which essentially overlaps with the crystallization ages of A-type granites in the
rest of the MLYMB (Figure 3f).
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SiO2 diagram (after [148]); (b) TAS diagram (after [149]); (c) A/NK vs. A/CNK diagram (after [148]);
(d) chondrite-normalized rare earth element patterns (normalization values after [150]), data of
the lower and upper crusts are from [151]; (e) primitive mantle-normalized trace element patterns
(normalization values after [150]), crust data are from [152]; (f) crystallization ages. Data source (see
Supplement Table S2): major and trace elements of A-type rocks in the FVB are from [46,82,85,88,89];
major and trace elements of A-type granites in other areas of the MLYMB are from [46,84,92–94,96,98,
100,101,107,108]; and crystallization ages of A-type granites in the FVB and other parts of the MLYMB
are from [46,83–85,89,92–94,96,98,100,101,107–109].
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lated to A-type granite: j-Xiaoyangchong skarn magnetite ore; k-Suishan hydrothermal magnetite-
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In other areas of the MLYMB, the mineralization related to A-type granites consists 
of Fe, U, Mo, and Au, etc. (Table 2) [77,92,114,164,175–179]. The A-type granites in the FVB 
are mostly identical to those in other parts of the MLYMB in terms of magmatic evolution 
characteristics (Figures 4–7), characteristics of major and trace elements [70,86,89], crystal-
lization ages (Figure 17), and magmatic source (Figures 8 and 9). The dominant metals in 

Figure 4. Photos of typical A-type granites and related ores in the FVB. (a) Xiaoyangchong mining
area; (b) trench in Suishan mining area; (c) outcrop of hematitization skarn; (d,e) typical A-type
granite in Taochong mining area; (f) typical A-type granite in Suishan mining area; (g–i) cores of main
ore-bearing strata: g-banded limestone, h-siltstone, and i-anhydrite; (j–l) main ore types related to A-
type granite: j-Xiaoyangchong skarn magnetite ore; k-Suishan hydrothermal magnetite-sphalerite ore;
l-Suishan garnet skarn; (m) microphotograph (crossed nicols) of typical A-type granite; (n) reflected
light photograph of magnetite ore; (o) reflected light photograph of pyrite–sphalerite ore.

The Harker diagram and trace element covariant diagram are used to investigate the
magmatic evolution process. As can be seen from Figure 5, the intrusive rocks in the FVB
are similar to other A-type granites in the MLYMB, and fractional crystallization plays
a dominant role in the magmatic evolution process. According to the Harker diagram
(Figure 6), SiO2 content is negatively correlated with Fe2O3T, MgO, P2O5, and TiO2 con-
tent, indicating the separation and crystallization of Fe-bearing mafic minerals (pyroxene,
amphibole, and biotite), apatite, and titanite. The negative correlation with Al2O3, CaO,
and Eu/Eu* indicates the crystallization of plagioclase.
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The Zr-Zr/Y covariant diagram (Figure 7) can further identify the controlling role
of orthopyroxene during the fractional crystallization or partial melting process. It can
crystallize as separate cumulate phases during the crystallization process or remain as
residual phases during the partial melting process [152].
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Figure 7. Zr/Y vs. Zr diagrams of A-type granite rocks in the FVB and other areas in the MLYMB
(after [152]). Gt—garnet; Hbl—hornblende; Cpx—clinopyroxene; Opx—orthopyroxene; Ol—olivine;
Pl—plagioclase.

The logarithmic diagrams of Ba-Sr and Rb-Sr (Figure 8) can reflect the fractional
crystallization of K-feldspar, plagioclase, and other rock-forming minerals during the
evolution of granitoid magmas [153]. The A-type granites in the FVB and in other areas of
the MLYMB show trends suggesting fractionation of K-feldspar, plagioclase, and biotite.
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granites in other parts of the MLYMB (after [153]). PlAn50: plagioclase (An = 50); plagioclase (An = 15);
Kfs: K-feldspar; Bt: biotite; Ms: muscovite; Grt: garnet; Amp: amphibole.
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In summary, we consider that the magmatic evolution of the A-type granites in the
FVB and other areas in the MLYMB are mainly controlled by fractional crystallization, with
orthopyroxene, plagioclase, K-feldspar, and biotite as the main crystallization phases.

4. Magmatic Source Characteristics of A-Type Granites in the FVB

According to εNd(t)–(S7Sr/86Sr)i (Figure 9), the variation trend of Sr-Nd isotopes in the
source area of the A-type granites in the FVB indicates that the source area is a mixture of
three possible sources: the lithospheric mantle, late Archean Paleoproterozoic lower crust,
and Neoproterozoic upper crust. The mantle endmember can be considered to consist
of a somewhat enriched mantle, similar in composition to the basalts of the Kedoushan
Formation (129.5 ± 3.3 Ma) [90,134,138]. The lower crustal endmember suggests late
Archean or Paleoproterozoic crustal materials in the MLYMB, perhaps represented by the
Kongling Group [154–157]. In addition, the Sr-Nd isotopes also show an obvious trend
towards the Neoproterozoic crust in the Yangtze block [85,86]. However, this trend is mainly
seen for A-type granites in other parts of the MLYMB, while the A-type granites in the FVB
are dominated by the older lower crustal component in addition to the enriched mantle.

Minerals 2023, 13, x FOR PEER REVIEW 13 of 39 
 

 

with orthopyroxene, plagioclase, K-feldspar, and biotite as the main crystallization 
phases. 

4. Magmatic Source Characteristics of A-type Granites in the FVB 
According to εNd(t)–(S7Sr/86Sr)i (Figure 8), the variation trend of Sr-Nd isotopes in the 

source area of the A-type granites in the FVB indicates that the source area is a mixture of 
three possible sources: the lithospheric mantle, late Archean Paleoproterozoic lower crust, 
and Neoproterozoic upper crust. The mantle endmember can be considered to consist of 
a somewhat enriched mantle, similar in composition to the basalts of the Kedoushan For-
mation (129.5 ± 3.3 Ma) [90,134,138]. The lower crustal endmember suggests late Archean 
or Paleoproterozoic crustal materials in the MLYMB, perhaps represented by the 
Kongling Group [154–157]. In addition, the Sr-Nd isotopes also show an obvious trend 
towards the Neoproterozoic crust in the Yangtze block [85,86]. However, this trend is 
mainly seen for A-type granites in other parts of the MLYMB, while the A-type granites 
in the FVB are dominated by the older lower crustal component in addition to the enriched 
mantle. 

 
Figure 8. Diagram of initial εNd(t) vs. initial (S7Sr/86Sr)i of A-type granites in the MLYMB. Data 
sources (see Supplement Table S3): Ocean basalt and primitive mantle [158]; metasomatically en-
riched mantle [138]; global subducted sediments [159]; Neoproterozoic basement [160]; Lower 
Yangtze crust [161]; A-type granites of the FVB [86,89]; A-type granites of the MLYMB 
[91,93,94,96,100,101,108,110]. 

Figure 9. Diagram of initial εNd(t) vs. initial (S7Sr/86Sr)i of A-type granites in the MLYMB.
Data sources (see Supplement Table S3): Ocean basalt and primitive mantle [158]; meta-
somatically enriched mantle [138]; global subducted sediments [159]; Neoproterozoic base-
ment [160]; Lower Yangtze crust [161]; A-type granites of the FVB [86,89]; A-type granites of the
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The initial εHf(t) in zircon from A-type granites in the FVB dominantly falls between
–4 and 10 (Figure 10), indicative of a Neoproterozoic crustal source. Therefore, some
scholars believed that the Archean ancient material did not contribute to the magmatic
source [85,134]. This is, however, at odds with the Nd isotope data from A-type gran-
ites in the FVB above, which indicated an Archean or Paleoproterozoic crustal source
for these granites (Figure 9). In addition, the inherited zircons in the late Mesozoic
magmatic rocks in the FVB and other parts of the MYLMB have multi-stage age ranges,
also reflecting the involvement of Archaean–Paleoproterozoic and Neoproterozoic crustal
materials [154–156,162].
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Thus, when it comes to the apparent discrepancy between the indications of crustal
components (Archean–Paleoproterozoic versus Neoproterozoic) from zircon Hf and whole
rock Nd-Sr isotope data in the FVB, this may be simply an effect of too little Hf isotope
data from the FVB granites, failing to capture the whole range of Hf isotope compositions,
in combination with the fact that the Hf and Nd-Sr data have not been obtained from the
same samples and therefore not directly comparable.

Compared to the FVB, the initial zircon εHf(t) of A-type granites in other areas of
the MLYMB ranges from –20 to +6 (Figure 10 and Supplement Table S4). The low range
of –20—-10 can be considered the result of the involvement of the enriched mantle or
Archaean–Paleoproterozoic crust in the magmatic source [154], while the high range of
0–6 could be due to juvenile crust as a source [163], with the initial εHf(t) range of −10–0
corresponding to Neoproterozoic crustal materials. Combing with εNd(t)–(S7Sr/86Sr)i
(Figure 9), it can be concluded that the magmatic source area of A-type granites in other
parts of the MLYMB included enriched mantle and Neoproterozoic crustal materials;
perhaps Archean–Paleoproterozoic crust and juvenile crust are also involved.

To sum up, we believe that there are several sources of A-type granites in the FVB, with
the enriched mantle, Archean–Paleoproterozoic lower crust, and Neoproterozoic upper
crust involved. Compared with other areas in the MLYMB, the participation of ancient
lower crust materials in the source area of A-type granites in the FVB may be higher.

5. Ore-Controlling Characteristics and Typical Deposits

Skarn-type and hydrothermal-type iron and zinc deposits are the main ore types
closely related to the A-type granites in the FVB, and there is more of a gradual shift
between them. They are mainly hosted in interlayer faults or other fractures in carbonate
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rocks as well as in contact zones with granites. The difference between them lies in whether
there are obvious skarn minerals [113].

Gravity and magnetic anomaly features show that there are granite massifs below
these mining areas; combined with the outcrops, these anomalies are likely to be A-type
granites [77,113]. In addition, taking the Taochong and Suishan deposits as examples,
granite can be seen in the deep part of the drillings at the edge of these mining areas
(Figure 3d–f, Figure 11b and Figure 13). In terms of mineralization time, the Re-Os model
age of pyrite in the Xiaoyangchong skarn stage indicates that its metallogenetic age is about
125.7 Ma [89], which is clearly located in the same age region as the A-type granites in
the FVB.

The skarn-type ore bodies are always restricted to the contact zone between magmatic
rocks and carbonate rocks or occur within faults in the granite massif. The hydrothermal
deposits are mainly hosted within fracture zones in granite massifs or carbonate strata. The
characteristic gangue minerals include calcite, diopside, and quartz, and the ore minerals
are mainly specularite, hematite, magnetite, and sphalerite (Figure 3) [77,81,113,164].

The deposit and ore characteristics of the main typical deposits in the FVB are as follows.

5.1. Taochong Iron Ore Deposit

(1) Geological characteristics

The main structure of the mining area is a fan-shaped anticline with an axis trending
northeast. The deposit is located in the northwest limb of the anticline (Figure 1). The ore
body is controlled by the faults between the upper and lower limbs of a recumbent fold.
There are diorite porphyrite, microcrystalline diorite, and syenite porphyry veins inter-
spersed in the deposit, and the alteration mainly consists of skarn alteration, epidotization,
and carbonation. The ore body occurs near the contact zone between skarn and limestone,
and it is sickle-like or lamellar in profile (Figure 11) [80,113].

(2) Ore mineral characteristics

The natural types of ore are as follows: (1) iron ore in the outer skarn zone and (2) iron
ore in the inner skarn belt. The content of pseudohematite and specularite is higher in the
outer skarn zone than in the inner skarn belt, while the content of magnetite is relatively
lower. The gangue minerals in the outer skarn zone are mainly calcite and quartz, while in
the inner skarn belt, they are mainly garnet, followed by pyroxene, calcite, and quartz [77].

5.2. Xiaoyangchong Zinc-Iron Ore

(1) Geological characteristics

The deposit is located in the southeastern limb of an anticline, and early Permian
limestone and pre-mineralization diorite porphyrite are the main host rocks (Figure 12).
The diorite porphyrite is shaped like an irregular tube that branches toward the surface but
is connected at depth. The surrounding limestone is altered to marble or skarn [77,113].

(2) Ore mineral characteristics

The natural types of ore are as follows: (1) massive zinc-iron ore; (2) disseminated
magnetite; (3) iron-bearing breccia; and (4) massive limonite. The first has a dense and
massive structure, while the latter three have disseminated, vein-like and brecciated, and
massive structures, respectively.

Ore minerals are mainly sphalerite, magnetite, and hematite, with a small amount
of specularite, limonite, pyrite, chalcopyrite, and gold. Gangue minerals include garnet,
tremolite, epidote, wollastonite, quartz, and opal.
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5.3. Suishan Zinc Ore Deposit

(1) Geological characteristics

The deposit is hosted in the southeast limb of the Fanchang compound syncline, with
the limestone of the upper member of the Lower Triassic Nanlinghu Formation being
exposed in the area (Figure 1). The ore bodies are mainly lens-like (Figure 13) [113].

Skarnization and marmarization are closely related to zinc mineralization, with dolomi-
tization, chloritization, and silicification processes also being involved. Skarn formation is
the main alteration phenomenon in the area, and pyroxene and garnet skarns often have
strong zinc mineralization, forming rich ore.
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The natural types of ore are as follows: (1) massive sphalerite; (2) zinc-bearing
skarn; and (3) zinc-bearing marble. The ore has massive, disseminated, banded, and
brecciated structures.

Ore mineral composition: mainly sphalerite, pyrite, and cobaltite, followed by chal-
copyrite, galena, specularite, and chalcocite, and with secondary minerals including
limonite, siderite, and lead oxide. Gangue minerals are mainly pyroxene, garnet, and
actinolite, followed by calcite, quartz, tourmaline, and epidote.

6. Metallogenesis
6.1. Genesis of Mineral Deposits

The ore minerals in the zinc–iron deposits in the FVB are mainly of hydrothermal
origin [113] (Figure 14). Taking the Xiaoyangchong zinc–iron deposit as an example, the
electron probe analysis shows that the magnetite in the zinc–iron deposit principally formed
during the post-magmatic hydrothermal stage [89], and the main genetic types are the
contact metasomatic-type and the skarn-type.
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bly in association with the Triassic gypsum–salt formation (such as Triassic gypsum solu-
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Figure 14. Genetic classification diagram of magnetite of the Xiaoyangchong deposit in the FVB
(on the basis of [167]) (modified from [81]). Data sources (see Supplement Table S5): I—accessory
mineral type; II—magma-type; III—volcanic-type; IV—contact metasomatic-type. V—skarn-type;
VI—sedimentary metamorphic-type.

The studies on fluid inclusions and S isotopes of metal sulfides show that during the
evolution process of skarn fluid to quartz–sulfide-bearing hydrothermal fluid, in addition
to the mixing of magmatic water and meteoric water [80], there is also the presence of
brine (hot brine formed by deep circulation of meteoric water or sealed hot brine), probably
in association with the Triassic gypsum–salt formation (such as Triassic gypsum solution
breccia, gravelly dolomite, etc.) (Figure 15) [81].



Minerals 2023, 13, 571 21 of 37Minerals 2023, 13, x FOR PEER REVIEW 21 of 39 
 

 

 
Figure 14. δ18O water vs. δD plot of the isotopic composition of fluid inclusions in the typical depos-
its of the FVB. Data sources (see Supplement Table S6): Data of the Xiaoyanghcong and Taochong 
deposits are from [80,81]; range of Mesozoic meteoric water in the MLYMB is from [168,169]; fluid 
boiling trend is from [170]. 

The range of sulfur isotopic compositions of metal sulfides in skarn and hydrother-
mal deposits related to A-type granites in the FVB is relatively narrow (δ34S = 5.8‰–
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Figure 15. δ18O water vs. δD plot of the isotopic composition of fluid inclusions in the typical deposits
of the FVB. Data sources (see Supplement Table S6): Data of the Xiaoyanghcong and Taochong
deposits are from [80,81]; range of Mesozoic meteoric water in the MLYMB is from [168,169]; fluid
boiling trend is from [170].

The range of sulfur isotopic compositions of metal sulfides in skarn and hydrothermal
deposits related to A-type granites in the FVB is relatively narrow (δ34S = 5.8‰–19.2‰)
(Figure 16); only metal sulfides are found in the ore rocks, no sulfate minerals, so the δ34S
of these metal sulfides should approximately represent the sulfur isotope composition
of the hydrothermal system [171]. Possible sulfur sources of these deposits related to
A-type granites include magmatic rocks (0.09‰–7.87‰, with an average value of 3.50‰),
sedimentary clastic rocks (−16.7‰–−31.1‰, with an average value of −24.0‰), Triassic
gypsum–salt strata (25.3‰–34.4‰, with an average value of 30‰) (Figure 16) [117,169].
Therefore, we consider that the sulfur in the skarn and hydrothermal deposits comes from
two sources: A-type granite magma and gypsum–salt strata.
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6.2. Metallogenic Potential

Pijajno [21] considered that metal precipitation depends on the oxygen fugacity of
intrusive rocks in the order Sn–W–Mo–Cu-Mo–Cu-Au, with increasing oxygen fugacity, as
well as on the iron content of intrusive rocks in the order Mo–Sn–W–Cu-Mo–Cu-Au, with
increasing iron content. Blevin [20] suggested that four factors could determine the metal-
logenic potential of granitoids and related rocks: (1) the oxidation state; (2) compositional
character (including alkalinity, petrogenic type, SiO2 content, K2O content, etc.); (3) degree
of compositional evolution (e.g., Rb/Sr and K/Rb); and (4) the presence of fractionation.
Zhao et al. [62] simplified the criteria to determine the mineralization potential of granitoids
and believed that the types of granitoids (diorite, monzodiorite, monzonite, alkaline granite,
etc.) reflected the comprehensive characteristics of the above four parameters [20], except
for the oxidation state. Therefore, the combination of oxygen fugacity and rock type can
ideally characterize the mineralization potential of granitoids [62].



Minerals 2023, 13, 571 23 of 37

As shown in Figure 17, Au and Cu (Au, Fe) correspond to the oxidized alkaline ore-
forming system related to diorite and monzodiorite. Cu, Mo, W, Pb, and Ag correspond to
the relatively reduced and peraluminous ore-forming system related to granodiorite (mon-
zonite). Cu, Au, Mo, Fe, and Zn are related to the oxidized and peraluminous ore-forming
system related to tonalite and monzonite. Sn, W, Be, Mo, F, and Zn correspond to a strongly
reduced and peraluminous greisen metallogenic system related to granite or alkaline gran-
ite. Zn, Mo, F, W, and Ag tend to be formed in oxidized and peralkaline systems [62]. This
is very consistent with the known metallogenic regularity of granite [172,173].
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Our previous studies have shown that for the A-type granites in the FVB, both the
magmatic rocks and post-mineralization hydrothermal fluids are relatively oxidized [81,89];
the rock types are mainly K-feldspar granite, granite, and monzonite; and they essentially
belong to the metaluminous intrusive types [81,89,174]. It can be seen from Figure 17 that
besides Fe and Zn, the A-type granites in the FVB have prospecting potential for Cu, Au,
Ag, Mo, etc. [172,173].

In other areas of the MLYMB, the mineralization related to A-type granites consists of
Fe, U, Mo, and Au, etc. (Table 2) [77,92,114,164,175–179]. The A-type granites in the FVB
are mostly identical to those in other parts of the MLYMB in terms of magmatic evolution
characteristics (Figures 5–8), characteristics of major and trace elements [70,86,89], crystal-
lization ages (Figure 3f), and magmatic source (Figures 9 and 10). The dominant metals
in the ores related to the A-type granites in the FVB are mainly Zn and Fe, which seem to
be different from other parts of the MLYMB (Table 2). However, from the perspective of
metallogenic types and mineral compositions (Table 2), skarn and hydrothermal deposits
are dominant, and sphalerite and magnetite are common in all these deposits. This indicates
that the A-type granites in the FVB also potentially contain U, Mo, Au, and other metals.
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Table 2. Summary of deposits related to A-type granites in the MLYMB.

No. Location
Related

Intrusive
Rock Type

Deposit Ore
Type Amount Grade Type of Ore Alteration Ore Minerals

Metallogenic Age Metallogenic
Type References

Mineral Method Age

1 Fanchang
Banshiling,

biotite quartz
monzonite

Zishanling Cu No data 0.35%

Copper-bearing
limonite ore and
copper-bearing

marble ore

Marbleization,
skarnization,

silicification, and
chloritization

Chalcopyrite,
bornite, and

limonite
- - - Hydrothermal-

type [113]

2 Fanchang
Binjiang,
granitic

porphyry
Taochong Fe, Zn 34.71 Mt 44.29% Skarn-type iron

ore

Skarnization,
breccification,

marblelization,
and silicification

Magnetite,
hematite, and

specularite
- - - Layered

skarn-type [164]

3 Fanchang Suishan,
granite Suishan Zn 7331 t 10%

Massive zinc ore,
zinc-bearing

skarn ore,
zinc-bearing
marble ore

Skarnization,
dolomitization,

carbonation,
chloritization,

silicification, etc.

Mainly
sphalerite,
pyrite, and

cobaltite

- - - Skarn-type [77]

4 Fanchang Suishan,
granite Songyuan S(Fe) No data 28.35% Pyrite ore

Garnet
skarnization,

carbonation, and
silicification

Pyrite and
specularite - - - Skarn-type [77]

5 Fanchang Xiaoyangchong,
granodiorite Xiaoyangchong Zn

(Fe)
Zn: 91,962 t;

Fe: 2898 t
Zn: 6.7%; Fe:

37.97%

Massive
zinc-iron ore,
disseminated
magnetite ore

Marbleization
and skarnization

Sphalerite,
magnetite, and

hematite
Pyrite Re-Os 125.7 Ma Skarn-type [77]

6 Chizhou Huayuangong,
Syenogranite Liwan Cu 40,000 t 0.62%

Copper-bearing
pyrite,

copper-bearing
sulfur skarn,

lead-zinc skarn

Marbleization
and skarnization

Chalcopyrite,
bornite,

sphalerite,
pyrite, and

molybdenite

- - - Skarn-type [92]

7 Chizhou
Guilinzheng,

granitic
porphyry

Guilinzheng Mo
(W) 0.15 Mt 0.13% Disseminated ore

and banded ore

Silicification,
sericitization,

skarnization, and
serpentinization

Molybdenite,
sphalerite,

molybdenum-
rich scheelite,

magnetite, and
galena

- - - Skarn-type [114,179]

8 Anqing-
Zongyang

Dalongshan,
quartz syenite Dalongshan U Small

deposit 0.81%
Sandstone type
ore and quartz

syenite type ore

Hydromica,
albitization,

hematite,
carbonation,
silicification,

pyritization, and
chloritization

Pitchblende,
microcrys-

talline quartz,
hematite, and

pyrite

Pitchblende
U-Pb

isochron
method

130.0 Ma
and

111.7 Ma
Hydrothermal-

type [178]

9 Anqing-
Zongyang

Huangmeijian,
quartz syenite Dingjiashan U No data 0.1~0.2%

Sandstone type
ore and quartz

syenite type ore

Silicification,
carbonation,

chloritization,
discoloration,
pyritization,

brass
mineralization,

and
kaolinization

Pitchblende
and uranium Pitchblende

U-Pb
isochron
method

108.7 Ma Hydrothermal-
type [176]
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Table 2. Cont.

No. Location
Related

Intrusive
Rock Type

Deposit Ore
Type Amount Grade Type of Ore Alteration Ore Minerals

Metallogenic Age Metallogenic
Type References

Mineral Method Age

10 Anqing-
Zongyang

Huangmeijian,
quartz syenite Xucun U No data 0.28%

Felsic sandstone
type and quartz

syenite type

Silicitization,
pyritization,

carbonatization,
greenization, and

hydromicatiza-
tion

Pitchblende
and uranium

Single
mineral
zircon in

pitch-
blende

U-Pb
108 ±
1.5 Ma

and 71.3
± 1.0 Ma

Hydrothermal-
type [116]

11 Anqing-
Zongyang

Huangmeijian,
quartz syenite Makou Fe 0.08 Mt No data

Reticulated and
massive

magnetite ore
Potassic

mineralization

Magnetite,
apatite, pyrite,
and sphalerite

Phlogopite 40Ar-39Ar 127.3 ±
0.8 Ma

Hydrothermal-
type [175]
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6.3. Metallogenetic Mechanism

Most scholars consider that many A-type granites contain an abnormally high F
content [1,3], and F is positively correlated with Fe, Zn, Nb, Zr, and Ga. These ore-forming
elements can form stable complexes with fluorine [14]. In an oxidizing environment, Fe in
a magmatic hydrothermal fluid mainly migrates in the form of a Fe3+–F− complex, and
after entering a relatively reducing environment, the Fe3+ in the ore-forming fluid changes
to Fe2+, and the Fe3+–F− complex decompounds, resulting in the precipitation of a large
amount of iron to form magnetite or pyrrhotite [180,181]. At high temperatures, zinc also
forms a complex with F (such as ZnF2) [182,183]. The above findings may explain the
metallogenic mechanism of zinc and iron deposits formed by A-type granite magmatism in
the FVB.

6.4. Preliminary Analysis of the Metallogenetic Potential of Key Metals

The chemical analysis results of iron and zinc ores from typical deposits in the FVB,
both of skarn-type and hydrothermal-type ores, show their additional utilization potential
as sources of Cd, Ga, and Se (Table 3) [77].

Table 3. Key metals associated with important deposits in the FVB [77].

Name of Mine Exploration Stage Ore Type Associated Key Metal and Grade

Xiaoyangchong
zinc-iron mine Mining Massive sphalerite and

magnetite ores Cd: 100–900 ppm

Suishan zinc mine Mineral prospecting Sphalerite ore and pyrite ore Cd: 1111 ppm
Se: 25–60 ppm

Shunfengshan iron mine Detailed mineral prospecting Magnetite ore Ga: 21 ppm

Fuchengdun copper mine Mineral prospecting Chalcopyrite ore Cd: 100 ppm

The metallic element cadmium has a very low abundance in the crust (0.2 ppm, [153]).
Cadmium is mainly produced from lead–zinc mines, which account for 90% of the total
cadmium resources. It has been generally believed that cadmium is mainly enriched in
sphalerite by replacing Zn [184,185].

In this new round of comprehensive evaluations of metal resources in the FVB, it
was found that the utilization potential of rare, scattered elements in zinc ores was great
(Table 3), especially for cadmium. Taking the Xiaoyangchong zinc–iron deposit as an
example, the Cd content of the massive sphalerite ore in the Xiaoyangchong mine reached
an economic level for industrial production, with the content of Cd in massive magnetite
ore also being relatively high. The content of Cd in sphalerite ore in the Suishan zinc
deposit was also high, at 1111 ppm and 379 ppm, respectively, in two samples of sphalerite
ore [77].

Ga can be enriched in metal sulfides instead of Fe, Zn, and Al, such as chalcopyrite,
sphalerite, and bornite [186–188]. In the magnetite ore of the Shunfengshan iron mine, the
content of Ga reaches 21 ppm. In addition, the anionic sulfur in sphalerite can be replaced
by selenium to form selenium-rich sphalerite ore. The content of Se in sphalerite ore and
pyrite ore in the Suishan zinc mine is high (25–60 ppm), reaching the economic levels
of selenium.

7. Regional Petrogenetic and Metallogenetic Model

The crystallization temperatures of intrusive rocks in the FVB show a roughly ris-
ing trend (802 ◦C–931 ◦C) (Figure 18) [89], indicating that the high temperature condi-
tions required for the formation of A-type granites were present during the extensional
process [1–3,5]. This extension may have been caused by the roll-back movement of
the Paleo-Pacific plate, resulting in upwelling of the asthenosphere [189–192]. As men-
tioned above, the A-type granites in the FVB are similar to coeval intrusions in the
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MLYMB when it comes to the magma source, with a mixture of enriched mantle and
crust [71,72,84,86,136,137,141,143] components. It can be suggested that asthenospheric
upwelling led to the partial melting of the enriched subcontinental mantle [5,8]. Then,
the enriched magma migrated upward and underwent assimilation and contamination
from the lower crust to form intermediate magma [1,3,7]. During the continued upward
migration of intermediate magma, assimilation and contamination with the upper crustal
materials occurred [16,17], and plagioclase and other minerals crystallized as cumulate
phases. In addition, fluorine-containing minerals in the crust entered the magma sys-
tem [14], in which F− could replace OH−, forming skarn and hydrothermal ore deposits,
as fluorine formed complexes with metals enriched in the A-type magma, which were
concentrated into ore-forming hydrothermal solutions (Figure 18) [9,30].
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Figure 18. Crystallization temperature vs. crystallization time of A-type granites in the FVB (modified
from [89]).

The A-type granite suite in the FVB mainly intruded into the dominating Triassic
carbonate strata, forming skarn-type deposits in the contact zone between the granites and
the carbonate strata or yielding hydrothermal-type mineralization along fault systems after
the magmatic period. The ore-forming magmatic–hydrothermal fluid of the skarn deposits
in the FVB was affected by mixing with gypsum salt brine and meteoric waters [89]. The
gypsum salt layer is rich in CaSO4, MgSO4, and Cl−, which is conducive to the extraction,
migration, and transportation of iron, zinc, and other metal elements (Figure 19) [193,194].
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8. Conclusions

The A-type granites in the FVB are mainly similar to those in the other parts of the
MLYMB in terms of magmatic evolution characteristics, with fractionation caused by
the crystallization and separation of orthopyroxene, plagioclase, K-feldspar, and biotite.
The magmatic source of A-type granites in the FVB is mixed and includes the enriched
mantle, lower crust, and upper crust materials as components, perhaps with relatively
stronger participation of Archaean–Paleoproterozoic crustal materials than that of other
regions in the MLYMB. The main ore types of A-type granites in the FVB are skarn-type
and hydrothermal-type ores, with the ore-forming fluid being a mixture of magmatic
hydrothermal fluid, meteoric waters, and deep brine related to the gypsum–salt layer.
The sulfur of metal sulfides may be a mixture of magmatically derived sulfur and sulfur
originating from the Triassic gypsum-bearing layers. The iron and zinc ores in the FVB
may be of interest also for the recovery of Cd, Ga, Se, and other minor elements contained
within the ores. Furthermore, it is concluded that the FVB potentially harbors Cu, Au, Ag,
Mo, etc., in addition to the already known metals in the area.

Supplementary Materials: The following supporting information can be downloaded at: https://
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