Host Lifeform Shapes Phyllospheric Microbiome Assembly in Mountain Lake: Deterministic Selection and Stochastic Colonization Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Experimental Procedures
2.2.1. Physicochemical Parameter Analysis
2.2.2. DNA Extraction and High-Throughput Sequencing
2.3. Data Analysis
3. Results
3.1. Water Physicochemical Properties and Leaf Physiological Traits
3.2. Species Composition of Bacterial Communities
3.3. Alpha Diversity of Bacterial Communities
3.4. Spatial Distribution Patterns and Driving Factors of Bacterial Communities
3.5. Assembly Processes and Influencing Factors of Epiphytic Bacterial Communities
4. Discussion
4.1. Plant Life Forms and Assembly of Epiphytic Bacterial Communities
4.1.1. Differences in the Species Compositions of Bacterial Communities
4.1.2. Diversity Patterns and Driving Factors
4.1.3. Assembly Processes and Influencing Factors
4.2. Research Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.Z.; Zhang, C.L.; Xie, W. Deterministic processes dominate archaeal community assembly from the Pearl River to the northern South China Sea. Front. Microbiol. 2023, 14, 1185436. [Google Scholar] [CrossRef]
- Deng, Y.; Yan, Y.; Wu, Y.; Liu, G.; Ma, J.; Xu, X.; Wang, G. Response of aquatic plant decomposition to invasive algal organic matter mediated by the co—metabolism effect in eutrophic lakes. J. Environ. Manag. 2023, 329, 117037. [Google Scholar] [CrossRef]
- Bornerre, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Du, M.; Peng, X.; Zhang, H.; Ye, C.; Dasgupta, S.; Li, J.; Li, J.; Liu, S.; Xu, H.; Chen, C.; et al. Geology, environment, and life in the deepest part of the world’s oceans. Innovation 2021, 2, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Hilt, S.; Gross, E.M.; Hupfer, M.; Morscheid, H.; Mählmann, J.; Melzer, A.; Poltz, J.; Sandrock, S.; Scharf, E.M.; Schneider, S.; et al. Restoration of submerged vegetation in shallow eutrophic lakes—A guideline and state of the art in Germany. Limnologica 2020, 36, 155–171. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Liu, X.; Yao, P.; Ge, T.; Zhang, X.H. Spatiotemporal dynamics of the archaeal community in coastal sediments: Assembly process and co—occurrence relationship. ISME J. 2020, 14, 1463–1478. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, M.; Li, X.; Li, Y.; Wu, J. Effect of high-strength wastewater on formation process and characteristics of hydrophyte periphytic biofilms. Sustainability 2025, 17, 2654. [Google Scholar] [CrossRef]
- He, D.; Ren, L.J.; Wu, Q.L. Growing season drives the compositional changes and assembly processes of epiphytic bacterial communities of two submerged macrophytes in Taihu Lake. FEMS Microbiol. Ecol. 2020, 96, fiaa025. [Google Scholar] [CrossRef]
- Fang, H.; Zhen, Z.; Yang, F.; Su, H.; Wei, Y. Epiphytic bacterial community composition on four submerged macrophytes in different regions of Taihu Lake. Front. Plant Sci. 2024, 15, 1404718. [Google Scholar] [CrossRef]
- Jensen, M.B.; De Jonge, N.; Dolriis, M.D.; Kragelund, C.; Fischer, C.H.; Eskesen, M.R.; Noer, K.; Møller, H.B.; Ottosen, L.D.; Nielsen, J.L.; et al. Cellulolytic and xylanolytic microbial communities associated with lignocellulose-rich wheat straw degradation in anaerobic digestion. Front. Microbiol. 2021, 12, 645174. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, R.; Jiang, K.W.; Qi, J.; Hu, Y.; Guo, J.; Zhu, R.; Zhang, T.; Egan, A.N.; Yi, T.S.; et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol. Plant 2021, 14, 748–773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jing, H.M.; Liu, H. Geographical distribution and driving force of microbial communities in the sediments of Diamantina and Kermadec trenches. Front. Microbiol. 2024, 15, 1474645. [Google Scholar] [CrossRef] [PubMed]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, X.; He, R.; Wang, S.; Jiao, C.; Huang, R.; He, X.; Zeng, J.; Zhao, D. The Composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites Australis. Diversity. 2019, 11, 98. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Jing, J.; Zhao, P.; Luo, Z.; Cao, M.; Ma, Z.; Jia, T.; Chai, B. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water Res. 2018, 133, 99–109. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Ji, H.T.; Xie, D.; Zhou, H.J.; Leng, X.; Guo, X.; An, S.Q. Advances in ecological research on epiphytic communities of submerged macrophytes. J. Lake. Sci. 2013, 25, 163–170. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, J.; Wang, Z.; Wang, M.; Xie, S. Bacterial communities in sediments of a drinking water reservoir. Ann. Microbiol. 2014, 64, 875–878. [Google Scholar] [CrossRef]
- Hong, P.; Yang, K.; Shu, Y.; Xiao, B.; Wu, H.; Xie, Y.; Gu, Y.; Qian, F.; Wu, X. Efficacy of auto-aggregating aerobic denitrifiers with coaggregation traits for bioaugmentation performance in biofilm-formation and nitrogen-removal. Bioresour. Technol. 2021, 337, 125391. [Google Scholar] [CrossRef]
- Patil, A.; Gondi, R.; Rale, V.; Saroj, S.D. Microbial biofilms in plant disease management. In Biocontrol Mechanisms of Endophytic Microorganisms; Academic Press: Cambridge, MA, USA, 2022; pp. 239–259. [Google Scholar]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The seaweed holobiont: Understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 2013, 37, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, E.K.; Kumar, A.; Aswani, R. Biocontrol Mechanisms of Endophytic Microorganisms; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- He, D.; Ren, L.J.; Wu, Q.L. Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: Diversity and host-specificity. Chin. J. Oceanol. Limnol. 2012, 30, 237–247. [Google Scholar] [CrossRef]
- Ang, Z.Q.; Sun, X.J.; Cao, X.Y.; Zhou, Q.; Guan, B.H.; Zeng, J. Diversity and network structure of epiphytic bacterial communities on different submerged macrophytes. J. Lake Sci. 2020, 34, 1234–1249. [Google Scholar] [CrossRef]
- Jones, S.E.; Lennon, J.T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 5881–5886. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Thomas, T.; Lewis, M.; Steinberg, P.; Kjelleberg, S. Composition, uniqueness, and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 2011, 5, 590–600. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Chen, L.; Shen, H.; Chen, J. Proliferation of filamentous green algae along with submerged macrophytes planting, and the role of microbe. Ecol. Eng. 2019, 139, 105570. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Jiang, M.Z.; Zhou, N.; Jiang, C.Y.; Liu, S.J. Submerged macrophytes recruit unique microbial communities and drive functional zonation in an aquatic system. Appl. Microbiol. Biotechnol. 2021, 105, 7517–7528. [Google Scholar] [CrossRef]
- Li, Q.; Gu, P.; Ji, X.; Li, H.; Zhang, J.; Zheng, Z. Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment: Plant structural, physicochemical and microbial properties. Ecotoxicol. Environ. Saf. 2020, 189, 109990. [Google Scholar] [CrossRef]
- Yan, D.; Xia, P.; Song, X.; Lin, T.; Cao, H. Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China. Ann. Microbiol. 2019, 69, 933–944. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Adyel, T.M.; Liu, K.; Gong, L. Negative effects on the leaves of submerged macrophyte and associated biofilms growth at high nitrate induced—Stress. Aquat. Toxicol. 2020, 226, 105559. [Google Scholar] [CrossRef]
- Wang, X. Composition of biofilm-associated algae, phosphorus retention characteristics, and influencing factors on submerged plants. Ph.D. Thesis, Guizhou Normal University, Guiyang, China, 2024. [Google Scholar]
- He, D.; Ren, L.J.; Wu, Q.L. Contrasting diversity of epibiotic bacteria and surrounding bacterioplankton of a common submerged macrophyte, Potamogeton crispus, in freshwater lakes. FEMS Microbiol. Ecol. 2014, 90, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lu, Q.; Lapirov, A.G.; Freeland, J.; Xu, X. Clear phylogeographical structures shed light on the origin and dispersal of the aquatic boreal plant Hippuris vulgaris. Front. Plant Sci. 2022, 13, 1046600. [Google Scholar] [CrossRef] [PubMed]
- Dobretsov, S.; Abed, R.M.M.; Teplitski, M. Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling 2013, 29, 423–441. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Duan, S.Q. Lakes as sentinels of climate change on the Tibetan Plateau. All Earth 2021, 33, 161–165. [Google Scholar] [CrossRef]
- Shi, J.; Wang, L.; Yang, Y.; Huang, T. Effects of seasonal thermal stratification on ammonia nitrogen transformation in a source water reservoir. Processes 2021, 9, 2218. [Google Scholar] [CrossRef]
- Huang, L.; Timmermann, A.; Lee, S.S.; Rodgers, K.B.; Yamaguchi, R.; Chung, E.S. Emerging unprecedented lake ice loss in climate change projections. Nat. Commun. 2022, 13, 5798. [Google Scholar] [CrossRef]
Parameter | Hippuris vulgaris | Myriophyllum spicatum | Nymphoides peltatum | Scirpus validus |
---|---|---|---|---|
pH | 6.89 ± 0.05 c | 7.46 ± 0.17 a,b | 6.89 ± 0.01 c | 7.28 ± 0.05 b |
DO (mg/L) | 12.62 ± 0.04 b | 9.87 ± 0.03 c | 13.74 ± 0.05 a | 12.15 ± 0.01 b |
EC (μS/cm) | 372.00 ± 83.14 a | 393.33 ± 14.01 a | 380.00 ± 31.24 a | 512.67 ± 114.99 a |
SAL (ng/L) | 7.83 ± 0.21 a | 5.27 ± 0.27 b | 5.05 ± 1.39 b | 7.94 ± 0.41 a |
TN (mg/L) | 0.91 ± 0.01 b,c | 1.11 ± 0.02 b,c | 1.13 ± 0.04 b | 0.85 ± 0.01 c |
(mg/L) | 0.17 ± 0.00 a,b | 0.13 ± 0.02 b | 0.17 ± 0.00 a,b | 0.15 ± 0.00 a,b |
(mg/L) | 0.55 ± 0.02 b | 0.89 ± 0.03 a | 0.61 ± 0.01 b | 0.19 ± 0.03 c |
TC (mg/L) | 60.22 ± 0.03 b | 59.31 ± 0.51 b,c | 60.00 ± 1.07 b | 62.67 ± 1.49 a |
TOC (mg/L) | 16.26 ± 0.30 b | 16.08 ± 0.12 b | 16.50 ± 1.38 a,b | 17.94 ± 1.52 a |
IC (mg/L) | 43.96 ± 0.31 b | 43.23 ± 0.40 c,d | 43.50 ± 0.48 b,c | 44.72 ± 0.13 a |
C/N | 66.18 ± 0.73 b | 53.59 ± 1.06 c | 53.01 ± 2.56 c | 73.52 ± 2.74 a |
(mg/L) | 45.36 ± 0.67 c | 50.30 ± 2.76 a,b | 47.20 ± 1.15 b | 45.70 ± 0.26 c |
(mg/L) | 0.26 ± 0.18 b | 0.25 ± 0.03 b | 0.28 ± 0.05 b | 0.24 ± 0.05 b |
Parameter | Hippuris vulgaris | Myriophyllum spicatum | Nymphoides peltatum | Scirpus validus |
---|---|---|---|---|
Leaf nitrogen content (mg/g) | 2.98 ± 0.01 c | 1.42 ± 0.00 d | 4.10 ± 0.01 a | 3.09 ± 0.03 b |
Leaf carbon content (mg/g) | 35.25 ± 0.07 c | 20.96 ± 0.02 d | 40.01 ± 0.16 a | 37.62 ± 0.07 b |
Leaf sulfur content (mg/g) | 0.44 ± 0.02 a | 0.40 ± 0.03 a | 0.51 ± 0.25 a | 0.55 ± 0.02 a |
Soluble protein (mg/g) | 7.77 ± 1.39 a | 3.67 ± 0.98 b | 9.29 ± 0.68 a | 8.19 ± 0.88 a |
Soluble sugar (mg/g) | 2.77 ± 0.98 b | 3.20 ± 0.27 b | 8.99 ± 1.40 a | 7.15 ± 0.75 a |
Chlorophyll a (mg/g) | 0.36 ± 0.05 a | 0.16 ± 0.04 b | 0.22 ± 0.10 b | 0.17 ± 0.03 b |
Chlorophyll b (mg/g) | 2.98 ± 0.01 c | 1.42 ± 0.00 d | 0.11 ± 0.04 b | 3.09 ± 0.03 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Liu, J.; Cao, Y.; Wei, Y. Host Lifeform Shapes Phyllospheric Microbiome Assembly in Mountain Lake: Deterministic Selection and Stochastic Colonization Dynamics. Microorganisms 2025, 13, 960. https://doi.org/10.3390/microorganisms13050960
Xue Q, Liu J, Cao Y, Wei Y. Host Lifeform Shapes Phyllospheric Microbiome Assembly in Mountain Lake: Deterministic Selection and Stochastic Colonization Dynamics. Microorganisms. 2025; 13(5):960. https://doi.org/10.3390/microorganisms13050960
Chicago/Turabian StyleXue, Qishan, Jinxian Liu, Yirui Cao, and Yuqi Wei. 2025. "Host Lifeform Shapes Phyllospheric Microbiome Assembly in Mountain Lake: Deterministic Selection and Stochastic Colonization Dynamics" Microorganisms 13, no. 5: 960. https://doi.org/10.3390/microorganisms13050960
APA StyleXue, Q., Liu, J., Cao, Y., & Wei, Y. (2025). Host Lifeform Shapes Phyllospheric Microbiome Assembly in Mountain Lake: Deterministic Selection and Stochastic Colonization Dynamics. Microorganisms, 13(5), 960. https://doi.org/10.3390/microorganisms13050960