Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = NiO-doped Ga2O3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4578 KiB  
Article
Improving Balance Between Oxygen Permeability and Stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Through High-Entropy Design
by Yongfan Zhu, Meng Wu, Guangru Zhang, Zhengkun Liu and Gongping Liu
Membranes 2025, 15(8), 232; https://doi.org/10.3390/membranes15080232 - 1 Aug 2025
Viewed by 221
Abstract
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of [...] Read more.
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, Ba0.5Sr0.5Co0.71Fe0.2Ta0.03Ni0.03Zr0.03O3−δ. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm−2·min−1 and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO2/He atmosphere, the flux remained above 0.92 mL·cm−2·min−1 for over 100 h, demonstrating good CO2 tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm−2·min−1, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials. Full article
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 397
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

24 pages, 2707 KiB  
Article
Recoverable Detection of Dichloromethane by MEMS Gas Sensor Based on Mo and Ni Co-Doped SnO2 Nanostructure
by Mengxue Xu, Yihong Zhong, Hongpeng Zhang, Yi Tao, Qingqing Shen, Shumin Zhang, Pingping Zhang, Xiaochun Hu, Xingqi Liu, Xuhui Sun and Zhenxing Cheng
Sensors 2025, 25(9), 2634; https://doi.org/10.3390/s25092634 - 22 Apr 2025
Cited by 2 | Viewed by 2349
Abstract
The challenging problem of chlorine “poisoning” SnO2 for poorly recoverable detection of dichloromethane has been solved in this work. The materials synthesized by Ni or/and Mo doping SnO2 were spread onto the micro-hotplates (<1 mm3) to fabricate the MEMS [...] Read more.
The challenging problem of chlorine “poisoning” SnO2 for poorly recoverable detection of dichloromethane has been solved in this work. The materials synthesized by Ni or/and Mo doping SnO2 were spread onto the micro-hotplates (<1 mm3) to fabricate the MEMS sensors with a low power consumption (<45 mW). The sensor based on Mo·Ni co-doped SnO2 is evidenced to have the best sensing performance of significant response and recoverability to dichloromethane between 0.07 and 100 ppm at the optimized temperature of 310 °C, in comparison with other sensors in this work and the literature. It can be attributed to a synergetic effect of Mo·Ni co-doping into SnO2 as being supported by characterization of geometrical and electronic structures. The sensing mechanism of dichloromethane on the material is investigated. In situ infrared spectroscopy (IR) peaks identify that the corresponding adsorbed species are too strong to desorb, although it has demonstrated a good recoverability of the material. A probable reason is the formation rates of the strongly adsorbed species are much slower than those of the weakly adsorbed species, which are difficult to form significant IR peaks but easy to desorb, thus enabling the material to recover. Theoretical analysis suggests that the response process is kinetically determined by molecular transport onto the surface due to the free convection from the concentration gradient during the redox reaction, and the output steady voltage thermodynamically follows the equation only formally identical to the Langmuir–Freundlich equation for physisorption but is newly derived from statistical mechanics. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

17 pages, 4719 KiB  
Article
Synergistic Enhancement of Chemiresistive NO2 Gas Sensors Using Nitrogen-Doped Reduced Graphene Oxide (N-rGO) Decorated with Nickel Oxide (NiO) Nanoparticles: Achieving sub-ppb Detection Limit
by Chiheb Walleni, Mounir Ben Ali, Mohamed Faouzi Ncib and Eduard Llobet
Sensors 2025, 25(5), 1631; https://doi.org/10.3390/s25051631 - 6 Mar 2025
Cited by 1 | Viewed by 2927
Abstract
Detecting low nitrogen dioxide concentrations (NO2) is crucial for environmental monitoring. In this paper, we report the synergistic effect of decorating nitrogen-doped reduced graphene oxide (N-rGO) with nickel oxide (NiO) nanoparticles for developing highly selective and sensitive chemiresistive NO2 gas [...] Read more.
Detecting low nitrogen dioxide concentrations (NO2) is crucial for environmental monitoring. In this paper, we report the synergistic effect of decorating nitrogen-doped reduced graphene oxide (N-rGO) with nickel oxide (NiO) nanoparticles for developing highly selective and sensitive chemiresistive NO2 gas sensors. The N-rGO/NiO sensor was synthesized straightforwardly, ensuring uniform decoration of NiO nanoparticles on the N-rGO surface. Comprehensive characterization using SEM, TEM, XRD, and Raman spectroscopy confirmed the successful integration of NiO nanoparticles with N-rGO and revealed key structural and morphological features contributing to its enhanced sensing performance. As a result, the NiO/N-rGO nanohybrids demonstrate a significantly enhanced response five orders of magnitude higher than that of N-rGO toward low NO2 concentrations (<1 ppm) at 100 °C. Moreover, the present device has an outstanding performance, high sensitivity, and low limit of detection (<1 ppb). The findings pave the way for integrating these sensors into advanced applications, including environmental monitoring and IoT-enabled air quality management systems. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

14 pages, 10847 KiB  
Article
Promoting Effect of Copper Doping on LaMO3 (M = Mn, Fe, Co, Ni) Perovskite-Supported Gold Catalysts for Selective Gas-Phase Ethanol Oxidation
by Lijun Yue, Jie Wang and Peng Liu
Catalysts 2025, 15(2), 176; https://doi.org/10.3390/catal15020176 - 13 Feb 2025
Cited by 1 | Viewed by 968
Abstract
Developing more effective gold–support synergy is essential for enhancing the catalytic performance of supported gold nanoparticles (AuNPs) in the gas-phase oxidation of ethanol to acetaldehyde (AC) at lower temperatures. This study demonstrates a significantly improved Au–support synergy achieved by copper doping in LaMO [...] Read more.
Developing more effective gold–support synergy is essential for enhancing the catalytic performance of supported gold nanoparticles (AuNPs) in the gas-phase oxidation of ethanol to acetaldehyde (AC) at lower temperatures. This study demonstrates a significantly improved Au–support synergy achieved by copper doping in LaMO3 (M = Mn, Fe, Co, Ni) perovskites. Among the various Au/LaMCuO3 catalysts, Au/LaMnCuO3 exhibited exceptional catalytic activity, achieving an AC yield of up to 91% and the highest space-time yield of 764 gAC gAu−1 h−1 at 225 °C. Notably, this catalyst showed excellent hydrothermal stability, maintaining performance for at least 100 h without significant deactivation when fed with 50% aqueous ethanol. Comprehensive characterization reveals that Cu doping facilitates the formation of surface oxygen vacancies on the Au/LaMCuO3 catalysts and enhances Au–support interactions. The LaMnCuO3 perovskite stabilizes the crucial Cu+ species, resulting in a stable Au-Mn-Cu synergy within the Au/LaMnCuO3 catalyst, which facilitates the activation of O2 and ethanol at lower temperatures. The optimization of the reaction conditions further improves AC productivity. Kinetic studies indicate that the cleavages of both the O-H bond and the α-C-H bond of ethanol are the rate-controlling steps. Full article
(This article belongs to the Special Issue New Insights into Synergistic Dual Catalysis)
Show Figures

Figure 1

9 pages, 2324 KiB  
Article
Insights into the High Activity of Hydrotreating Catalysts for Heavy Gas Oil
by Yanfei Wang, Yalin Zhang, Bin Xie, Jingjing Wang and Yinglong Yu
Catalysts 2025, 15(1), 90; https://doi.org/10.3390/catal15010090 - 19 Jan 2025
Cited by 2 | Viewed by 1020
Abstract
The objective of this work was to develop a highly active hydrotreating catalyst for processing heavy gas oil to provide qualified feedstock for hydroisomerization or a hydrocracking unit. The NiMo/γ-Al2O3 catalysts doped with phosphate were prepared by introducing two kinds [...] Read more.
The objective of this work was to develop a highly active hydrotreating catalyst for processing heavy gas oil to provide qualified feedstock for hydroisomerization or a hydrocracking unit. The NiMo/γ-Al2O3 catalysts doped with phosphate were prepared by introducing two kinds of additives, and the influencing factors for highly active hydrodenitrogenation (HDN) were revealed. TEM analysis results showed that the catalyst with a small MoS2 stack length tended to have high activity due to more active sites being exposed. Laser Raman spectroscopy demonstrated that the catalysts contained PMo12O403− metal active phases. For industrial heavy VGO feedstock, the nitrogen content can be reduced to 2 ppm with a hydrotreating process. The VI of the hydrotreated product can be improved from 132 to 145 after hydrotreatment, which is necessary to produce group III base oil as the most valuable base oil type. This work provides an insight into the high activity of hydrotreating catalysts for industrial lubricant hydroprocessing. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

16 pages, 5584 KiB  
Article
Analyses of the Properties of the NiO-Doped Ga2O3 Wide-Bandgap Semiconductor Thin Films
by Cheng-Fu Yang, En-Chi Tsao, Yi-Wen Wang, Hsin-Pei Lin, Teen-Hang Meen and Shu-Han Liao
Coatings 2024, 14(12), 1615; https://doi.org/10.3390/coatings14121615 - 23 Dec 2024
Cited by 1 | Viewed by 1248
Abstract
The study began by pre-sintering Ga2O3 powder at 950 °C for 1 h, followed by the preparation of a mixture of Ga2O3 and 12 at% NiO powders to fabricate a source target material. An electron beam (e-beam) [...] Read more.
The study began by pre-sintering Ga2O3 powder at 950 °C for 1 h, followed by the preparation of a mixture of Ga2O3 and 12 at% NiO powders to fabricate a source target material. An electron beam (e-beam) system was then used to deposit NiO-doped Ga2O3 thin films on Si substrates. X-ray diffraction (XRD) analyses revealed that the pre-sintered Ga2O3 at 950 °C exhibited β-phase characteristics, and the deposited NiO-doped Ga2O3 thin films exhibited an amorphous phase. After the deposition of the NiO-doped Ga2O3 thin films, they were divided into two portions. One portion underwent various analyses directly, while the other was annealed at 500 °C in air before being analyzed. Field-emission scanning electron microscopy (FESEM) was utilized to process the surface observation, and the cross-sectional observation was primarily used to measure the thickness of the NiO-doped Ga2O3 thin films. UV-Vis spectroscopy was used to calculate the bandgap by analyzing the transmission spectra, while the Agilent B1500A was employed to measure the I-V characteristics. Hall measurements were also performed to assess the mobility, carrier concentration, and resistivity of both NiO-doped Ga2O3 thin films. The first innovation is that the 500 °C-annealed NiO-doped Ga2O3 thin films exhibited a larger bandgap and better electrical conductivity. The manuscript provides an explanation for the observed increase in the bandgap. Another important innovation is that the 500 °C-annealed NiO-doped Ga2O3 thin films revealed a high-energy bandgap of 4.402 eV. The third innovation is that X-ray photoelectron spectroscopy (XPS) analyses of the Ga2p3/2, Ga2p1/2, Ga3d, Ni2p3/2, and O1s peaks were conducted to further investigate the reasons behind the enhanced electrical conductivity of the 500 °C-annealed NiO-doped Ga2O3 thin films. Full article
(This article belongs to the Special Issue Coatings for Advanced Devices)
Show Figures

Figure 1

14 pages, 3165 KiB  
Article
The Effect of Nitrogen as a Co-Dopant in p-Type NiO:Nb Films on the Photovoltaic Performance of NiO/TiO2 Transparent Solar Cells
by Chrysa Aivalioti, Maria Androulidaki, Katerina Tsagaraki, Emmanouil G. Manidakis, Charidimos Koliakoudakis, Nikolaos T. Pelekanos, Mircea Modreanu and Elias Aperathitis
Solids 2024, 5(4), 651-664; https://doi.org/10.3390/solids5040044 - 7 Dec 2024
Viewed by 1617
Abstract
Doping engineering has been applied in niobium-doped NiO (NiO:Nb) by adding nitrogen (N) in its structure. The rf-sputtered films were made from a Ni-Nb composite target on unheated substrates at 300 W rf power and 5 mTorr total pressure. The plasma contained 50% [...] Read more.
Doping engineering has been applied in niobium-doped NiO (NiO:Nb) by adding nitrogen (N) in its structure. The rf-sputtered films were made from a Ni-Nb composite target on unheated substrates at 300 W rf power and 5 mTorr total pressure. The plasma contained 50% Ar and 50% O2 for the fabrication of the single-doped NiO:Nb film (AΝ film), and N2 gas for the incorporation of N in the Ni-O-Nb structure. The N2 in plasma was introduced by keeping constant the flow rates of O2 and N2 gasses (O2/N2 = 1) and reducing the amount of Ar gas, namely 94% Ar, 3% O2, and 3% N2 (film AN1); 50% Ar, 25% O2, and 25% N2 (film AN2); and 6% Ar, 47% O2, and 47% N2 (film AN3). All films had the single phase of cubic NiO and both Nb and N in the Ni-O structure were revealed by XPS experiments. The roughness of the films was increased with the increase in N in plasma. Post-deposition thermal treatment improved the crystallinity and reduced the structural disorder of the films. The AN2 film was found to be the most transparent of all films, exhibiting the widest band gap, 3.72 eV, and the narrowest Urbach tail states’ width, 313 meV. The AN and the AN2 films were employed to form NiO/TiO2 heterostructures. The NiO:Nb/TiO2 and NiO:(Nb,N)/TiO2 heterostructures exhibited a visible transmittance of around 42% and 75%, respectively, and both showed rectification properties. Upon illumination with UV light, the NiO:(Nb,N)/TiO2 diode exhibited enhanced photovoltaic performance when compared to the NiO:Nb/TiO2 solar cell: the short-circuit current densities were 0.2 mA/cm2 versus 1.4 μA/cm2 and the open-circuit voltages were 0.5 V versus 0.2 V. The output characteristics of the p-NiO:(Nb,N)/n-TiO2 UV photovoltaics can be further improved by proper engineering of the individual layers and device processing procedures. Full article
Show Figures

Figure 1

15 pages, 9983 KiB  
Article
Adsorption and Sensing Properties of Ni-Modified InSe Monolayer Towards Toxic Gases: A DFT Study
by Jianhong Dong, Xiaoqian Qiu, Shuying Huang, Shaomin Lin, Lisha Liu and Huihui Xiong
Chemosensors 2024, 12(10), 219; https://doi.org/10.3390/chemosensors12100219 - 18 Oct 2024
Cited by 6 | Viewed by 1799
Abstract
The emission of toxic gases from industrial production has intensified issues related to atmospheric pollution and human health. Consequently, the effective real-time monitoring and removal of these harmful gases have emerged as significant challenges. In this work, the density functional theory (DFT) method [...] Read more.
The emission of toxic gases from industrial production has intensified issues related to atmospheric pollution and human health. Consequently, the effective real-time monitoring and removal of these harmful gases have emerged as significant challenges. In this work, the density functional theory (DFT) method was utilized to examine the adsorption behaviors and electronic properties of the Ni-decorated InSe (Ni-InSe) monolayer when interacting with twelve gases (CO, NO, NO2, NH3, SO2, H2S, H2O, CO2, CH4, H2, O2, and N2). A comparative assessment of adsorption strength and sensing properties was performed through analyses of the electronic structure, work function, and recovery time. The results show that Ni doping enhances the electrical conductivity of the InSe monolayer and improves the adsorption capabilities for six toxic gases (CO, NO, NO2, NH3, SO2, and H2S). Furthermore, the adsorption of these gases on the Ni-InSe surface is characterized as chemisorption, as indicated by the analysis of the adsorption energy, density of states, and charge density difference. Additionally, the adsorption of CO, NO, NO2, and SO2 results in significant alterations to the bandgap of Ni-InSe, with changes of 18.65%, 11.37%, 10.62%, and −31.77%, respectively, underscoring its exceptional sensitivity. Moreover, the Ni-InSe monolayer exhibits a moderate recovery time of 3.24 s at 298 K for the SO2. Consequently, the Ni-InSe is regarded as a promising gas sensor for detecting SO2 at room temperature. This research establishes a foundation for the development of an Ni-InSe-based gas sensor for detecting and mitigating harmful gas emissions. Full article
Show Figures

Figure 1

14 pages, 9126 KiB  
Article
Acetone Sensors Based on Al-Coated and Ni-Doped Copper Oxide Nanocrystalline Thin Films
by Dinu Litra, Maxim Chiriac, Nicolai Ababii and Oleg Lupan
Sensors 2024, 24(20), 6550; https://doi.org/10.3390/s24206550 - 11 Oct 2024
Cited by 3 | Viewed by 1690
Abstract
Acetone detection is of significant importance in various industries, from cosmetics to pharmaceuticals, bioengineering, and paints. Sensor manufacturing involves the use of different semiconductor materials as well as different metals for doping and functionalization, allowing them to achieve advanced or unique properties in [...] Read more.
Acetone detection is of significant importance in various industries, from cosmetics to pharmaceuticals, bioengineering, and paints. Sensor manufacturing involves the use of different semiconductor materials as well as different metals for doping and functionalization, allowing them to achieve advanced or unique properties in different sensor applications. In the healthcare field, these sensors play a crucial role in the non-invasive diagnosis of various diseases, offering a potential way to monitor metabolic conditions by analyzing respiration. This article presents the synthesis method, using chemical solutions and rapid thermal annealing technology, to obtain Al-functionalized and Ni-doped copper oxide (Al/CuO:Ni) nanostructured thin films for biosensors. The nanocrystalline thin films are subjected to a thorough characterization, with examination of the morphological properties by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. The results reveal notable changes in the surface morphology and structure following different treatments, providing insight into the mechanism of function and selectivity of these nanostructures for gases and volatile compounds. The study highlights the high selectivity of developed Al/CuO:Ni nanostructures towards acetone vapors at different concentrations from 1 ppm to 1000 ppm. Gas sensitivity is evaluated over a range of operating temperatures, indicating optimum performance at 300 °C and 350 °C with the maximum sensor signal (S) response obtained being 45% and 50%, respectively, to 50 ppm gas concentration. This work shows the high potential of developed technology for obtaining Al/CuO:Ni nanostructured thin films as next-generation materials for improving the sensitivity and selectivity of acetone sensors for practical applications as breath detectors in biomedical diagnostics, in particular for diabetes monitoring. It also emphasizes the importance of these sensors in ensuring industrial safety by preventing adverse health and environmental effects of exposure to acetone. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

16 pages, 8762 KiB  
Article
Roles of Impurity Levels in 3d Transition Metal-Doped Two-Dimensional Ga2O3
by Hui Zeng, Chao Ma, Xiaowu Li, Xi Fu, Haixia Gao and Meng Wu
Materials 2024, 17(18), 4582; https://doi.org/10.3390/ma17184582 - 18 Sep 2024
Cited by 2 | Viewed by 957
Abstract
Doping engineering is crucial for both fundamental science and emerging applications. While transition metal (TM) dopants exhibit considerable advantages in the tuning of magnetism and conductivity in bulk Ga2O3, investigations on TM-doped two-dimensional (2D) Ga2O3 are [...] Read more.
Doping engineering is crucial for both fundamental science and emerging applications. While transition metal (TM) dopants exhibit considerable advantages in the tuning of magnetism and conductivity in bulk Ga2O3, investigations on TM-doped two-dimensional (2D) Ga2O3 are scarce, both theoretically and experimentally. In this study, the detailed variations in impurity levels within 3d TM-doped 2D Ga2O3 systems have been explored via first-principles calculations using the generalized gradient approximation (GGA) +U method. Our results show that the Co impurity tends to incorporate on the tetrahedral GaII site, while the other dopants favor square pyramidal GaI sites in 2D Ga2O3. Moreover, Sc3+, Ti4+, V4+, Cr3+, Mn3+, Fe3+, Co3+, Ni3+, Cu2+, and Zn2+ are the energetically favorable charge states. Importantly, a transition from n-type to p-type conductivity occurs at the threshold Cu element as determined by the defect formation energies and partial density of states (PDOS), which can be ascribed to the shift from electron doping to hole doping with respect to the increase in the atomic number in the 3d TM group. Moreover, the spin configurations in the presence of the square pyramidal and tetrahedral coordinated crystal field effects are investigated in detail, and a transition from high-spin to low-spin arrangement is observed. As the atomic number of the 3d TM dopant increases, the percentage contribution of O ions to the total magnetic moment significantly increases due to the electronegativity effect. Additionally, the formed 3d bands for most TM dopants are located near the Fermi level, which can be of significant benefit to the transformation of the absorbing region from ultraviolet to visible/infrared light. Our results provide theoretical guidance for designing 2D Ga2O3 towards optoelectronic and spintronic applications. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Graphical abstract

31 pages, 3833 KiB  
Article
Transition Metal-Promoted LDH-Derived CoCeMgAlO Mixed Oxides as Active Catalysts for Methane Total Oxidation
by Marius C. Stoian, Cosmin Romanitan, Katja Neubauer, Hanan Atia, Constantin Cătălin Negrilă, Ionel Popescu and Ioan-Cezar Marcu
Catalysts 2024, 14(9), 625; https://doi.org/10.3390/catal14090625 - 17 Sep 2024
Cited by 2 | Viewed by 1538
Abstract
A series of M(x)CoCeMgAlO mixed oxides with different transition metals (M = Cu, Fe, Mn, and Ni) with an M content x = 3 at. %, and another series of Fe(x)CoCeMgAlO mixed oxides with Fe contents x ranging from 1 to 9 at. [...] Read more.
A series of M(x)CoCeMgAlO mixed oxides with different transition metals (M = Cu, Fe, Mn, and Ni) with an M content x = 3 at. %, and another series of Fe(x)CoCeMgAlO mixed oxides with Fe contents x ranging from 1 to 9 at. % with respect to cations, while keeping constant in both cases 40 at. % Co, 10 at. % Ce and Mg/Al atomic ratio of 3 were prepared via thermal decomposition at 750 °C in air of their corresponding layered double hydroxide (LDH) precursors obtained by coprecipitation. They were tested in a fixed bed reactor for complete methane oxidation with a gas feed of 1 vol.% methane in air to evaluate their catalytic performance. The physico-structural properties of the mixed oxide samples were investigated with several techniques, such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), elemental mappings, inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction under hydrogen (H2-TPR) and nitrogen adsorption–desorption at −196 °C. XRD analysis revealed in all the samples the presence of Co3O4 crystallites together with periclase-like and CeO2 phases, with no separate M-based oxide phase. All the cations were distributed homogeneously, as suggested by EDX measurements and elemental mappings of the samples. The metal contents, determined by EDX and ICP-OES, were in accordance with the theoretical values set for the catalysts’ preparation. The redox properties studied by H2-TPR, along with the surface composition determined by XPS, provided information to elucidate the catalytic combustion properties of the studied mixed oxide materials. The methane combustion tests showed that all the M-promoted CoCeMgAlO mixed oxides were more active than the M-free counterpart, the highest promoting effect being observed for Fe as the doping transition metal. The Fe(x)CoCeMgAlO mixed oxide sample, with x = 3 at. % Fe displayed the highest catalytic activity for methane combustion with a temperature corresponding to 50% methane conversion, T50, of 489 °C, which is ca. 40 °C lower than that of the unpromoted catalyst. This was attributed to its superior redox properties and lowest activation energy among the studied catalysts, likely due to a Fe–Co–Ce synergistic interaction. In addition, long-term tests of Fe(3)CoCeMgAlO mixed oxide were performed, showing good stability over 60 h on-stream. On the other hand, the addition of water vapors in the feed led to textural and structural changes in the Fe(3)CoCeMgAlO system, affecting its catalytic performance in methane complete oxidation. At the same time, the catalyst showed relatively good recovery of its catalytic activity as soon as the water vapors were removed from the feed. Full article
Show Figures

Graphical abstract

14 pages, 5354 KiB  
Article
Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors
by Olena Yurchenko, Patrick Diehle, Frank Altmann, Katrin Schmitt and Jürgen Wöllenstein
Sensors 2024, 24(8), 2599; https://doi.org/10.3390/s24082599 - 18 Apr 2024
Cited by 6 | Viewed by 1832
Abstract
The present work deals with the development of Co3O4-based catalysts for potential application in catalytic gas sensors for methane (CH4) detection. Among the transition-metal oxide catalysts, Co3O4 exhibits the highest activity in catalytic combustion. [...] Read more.
The present work deals with the development of Co3O4-based catalysts for potential application in catalytic gas sensors for methane (CH4) detection. Among the transition-metal oxide catalysts, Co3O4 exhibits the highest activity in catalytic combustion. Doping Co3O4 with another metal can further improve its catalytic performance. Despite their promising properties, Co3O4 materials have rarely been tested for use in catalytic gas sensors. In our study, the influence of catalyst morphology and Ni doping on the catalytic activity and thermal stability of Co3O4-based catalysts was analyzed by differential calorimetry by measuring the thermal response to 1% CH4. The morphology of two Co3O4 catalysts and two NixCo3−xO4 with a Ni:Co molar ratio of 1:2 and 1:5 was studied using scanning transmission electron microscopy and energy dispersive X-ray analysis. The catalysts were synthesized by (co)precipitation with KOH solution. The investigations showed that Ni doping can improve the catalytic activity of Co3O4 catalysts. The thermal response of Ni-doped catalysts was increased by more than 20% at 400 °C and 450 °C compared to one of the studied Co3O4 oxides. However, the thermal response of the other Co3O4 was even higher than that of NixCo3−xO4 catalysts (8% at 400 °C). Furthermore, the modification of Co3O4 with Ni simultaneously brings stability problems at higher operating temperatures (≥400 °C) due to the observed inhomogeneous Ni distribution in the structure of NixCo3−xO4. In particular, the NixCo3−xO4 with high Ni content (Ni:Co ratio 1:2) showed apparent NiO separation and thus a strong decrease in thermal response of 8% after 24 h of heat treatment at 400 °C. The reaction of the Co3O4 catalysts remained quite stable. Therefore, controlling the structure and morphology of Co3O4 achieved more promising results, demonstrating its applicability as a catalyst for gas sensing. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Figure 1

15 pages, 6985 KiB  
Article
Study of the Gas Sensing Performance of Ni-Doped Perovskite-Structured LaFeO3 Nanospheres
by Fanli Meng, Zhenhua Yu, Renze Zhang, Hongliang Gao and Zhenyu Yuan
Chemosensors 2024, 12(4), 65; https://doi.org/10.3390/chemosensors12040065 - 16 Apr 2024
Cited by 7 | Viewed by 2180
Abstract
This study synthesizes Ni-doped perovskite-structured LaFeO3 composite materials via a one-step hydrothermal method, characterizes the morphology and structure of the materials, and tests their gas sensing performance. The test results show that compared to pure LaFeO3 material, the gas sensing performance [...] Read more.
This study synthesizes Ni-doped perovskite-structured LaFeO3 composite materials via a one-step hydrothermal method, characterizes the morphology and structure of the materials, and tests their gas sensing performance. The test results show that compared to pure LaFeO3 material, the gas sensing performance of Ni-doped LaFeO3 material is improved in all aspects. Specifically, LFO-Ni2% exhibits a response as high as 102 towards 100 ppm of triethylamine at 190 °C, along with better selectivity and stability. Furthermore, the gas sensing mechanism is investigated. On one hand, doping with an appropriate proportion of Ni can lead to the formation of more-complete and smaller-sized microsphere structures with pores. This is beneficial for the adsorption of oxygen from the air onto the material surface, as well as for the diffusion of the target gas to the surface of the material, thereby enhancing gas sensitivity performance. On the other hand, the doped Ni enters the interior of the LaFeO3 crystal, replacing some of the cations in LaFeO3, increasing the concentration of charge carriers in the material, and reducing the material’s resistance. The sample can adsorb more oxygen, promoting the reaction between adsorbed oxygen and the target gas, and thereby improving the gas sensitivity performance of the sample. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Figure 1

28 pages, 14874 KiB  
Review
β-Ga2O3-Based Heterostructures and Heterojunctions for Power Electronics: A Review of the Recent Advances
by Dinusha Herath Mudiyanselage, Bingcheng Da, Jayashree Adivarahan, Dawei Wang, Ziyi He, Kai Fu, Yuji Zhao and Houqiang Fu
Electronics 2024, 13(7), 1234; https://doi.org/10.3390/electronics13071234 - 27 Mar 2024
Cited by 15 | Viewed by 5103
Abstract
During the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and [...] Read more.
During the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and a high Baliga’s figure of merit (BFOM). Unipolar β-Ga2O3 devices such as Schottky barrier diodes (SBDs) and field-effect transistors (FETs) have been demonstrated. Recently, there has been growing attention toward developing β-Ga2O3-based heterostructures and heterojunctions, which is mainly driven by the lack of p-type doping and the exploration of multidimensional device architectures to enhance power electronics’ performance. This paper will review the most recent advances in β-Ga2O3 heterostructures and heterojunctions for power electronics, including NiOx/β-Ga2O3, β-(AlxGa1−x)2O3/β-Ga2O3, and β-Ga2O3 heterojunctions/heterostructures with other wide- and ultra-wide-bandgap materials and the integration of two-dimensional (2D) materials with β-Ga2O3. Discussions of the deposition, fabrication, and operating principles of these heterostructures and heterojunctions and the associated device performance will be provided. This comprehensive review will serve as a critical reference for researchers engaged in materials science, wide- and ultra-wide-bandgap semiconductors, and power electronics and benefits the future study and development of β-Ga2O3-based heterostructures and heterojunctions and associated power electronics. Full article
(This article belongs to the Special Issue Young Investigators in Electronics)
Show Figures

Figure 1

Back to TopTop