Adsorption and Sensing Properties of Ni-Modified InSe Monolayer Towards Toxic Gases: A DFT Study
Abstract
:1. Introduction
2. Computational Method and Details
3. Results and Discussion
3.1. Structural and Electronic Properties of Ni-InSe Monolayer
3.2. Adsorption of Different Gases on Ni-InSe Monolayer
3.3. Electronic Properties of Different Adsorption Systems
3.4. Effect of H2O on Adsorption
3.5. Gas-Sensing Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyet, T.T.; Hung, C.M.; Hong, H.S.; Thai, N.X.; Thang, P.V.; Xuan, C.T.; Van Duy, N.; Theu, L.T.; Van An, D.; Nguyen, H.; et al. Enhanced response characteristics of NO2 gas sensor based on ultrathin SnS2 nanoplates: Experimental and DFT study. Sens. Actuators A Phys. 2024, 373, 115384. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, M.; Deng, G.; Xiong, H. Theoretical insights into gas-sensitive properties of B, Ga and In doped WS2 monolayer towards oxygen-containing toxic gases. Appl. Surf. Sci. 2024, 670, 160725–160740. [Google Scholar] [CrossRef]
- Dolmaseven, S.; Yuksel, N.; Fellah, M. Au, Ag and Cu Doped BNNT for ethylene oxide gas detection: A density functional theory study. Sens. Actuators A Phys. 2023, 350, 114109. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Q.; Wang, J.; Xu, L.; Zeng, W. Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: A DFT study. Nanomaterials 2020, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Norouzzadeh, E.; Mohammadi, S.; Moradinasab, M. First principles characterization of defect-free and vacancy-defected monolayer PtSe2 gas sensors. Sens. Actuators A Phys. 2020, 313, 112209. [Google Scholar] [CrossRef]
- Tang, H.; Sacco, L.N.; Vollebregt, S.; Ye, H.; Fan, X.; Zhang, G. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: Mechanisms, applications, and perspectives. J. Mater. Chem. A 2020, 8, 24943–24976. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, L.; Luo, X.; Chen, T.; Tang, S.-H.; Huang, X.; Wang, L.-L. Z-scheme systems of ASi2N4 (A = Mo or W) for photocatalytic water splitting and nanogenerators. Tungsten 2022, 4, 52–59. [Google Scholar] [CrossRef]
- Yao, Q.; Ren, G.; Xu, K.; Zhu, L.; Khan, H.; Mohiuddin, M.; Khan, M.W.; Zhang, B.Y.; Jannat, A.; Haque, F.; et al. 2D Plasmonic Tungsten Oxide Enabled Ultrasensitive Fiber Optics Gas Sensor. Adv. Opt. Mater. 2019, 7, 1901383–1901391. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, G.; Xiong, H. Density function theory investigation of bimetallic phthalocyanine as a potential sensor and scavenger for nitrogen-containing toxic gases. J. Environ. Chem. Eng. 2024, 12, 113687. [Google Scholar] [CrossRef]
- Dong, X.; Peng, Z.; Chen, T.; Xu, L.; Ma, Z.; Liu, G.; Cen, K.; Xu, Z.; Zhou, G. Electronic structures and transport properties of low-dimensional GaN nanoderivatives: A first-principles study. Appl. Surf. Sci. 2021, 561, 150038–150045. [Google Scholar] [CrossRef]
- Yang, F.; Hu, P.; Hua, X.-J.; Chen, B.; Gao, L.; Wang, K.-S. Photocatalytic applications and modification methods of two-dimensional nanomaterials: A review. Tungsten 2024, 6, 77–113. [Google Scholar] [CrossRef]
- Wang, J.-H.; Yang, S.-W.; Ma, F.-B.; Zhao, Y.-K.; Zhao, S.-N.; Xiong, Z.-Y.; Cai, D.; Shen, H.-D.; Zhu, K.; Zhang, Q.-Y.; et al. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: A high-performance hydrogen evolution reaction catalyst. Tungsten 2023, 6, 114–123. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Dong, X.; Huang, L.; Xu, Z.; Xiao, X. High gas sensing performance of inorganic and organic molecule sensing devices based on the BC3N2 monolayer. Phys. Chem. Chem. Phys. 2023, 24, 23769–23778. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, G.; Zhang, Y.-W. Charge Transfer and Functionalization of Monolayer InSe by Physisorption of Small Molecules for Gas Sensing. J. Phys. Chem. C 2017, 121, 10182–10193. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, X.; Cui, H.; Tang, J.; Pi, S.; Cui, Z.; Li, Y.; Zhang, Y. High selectivity n-type InSe monolayer toward decomposition products of sulfur hexafluoride: A density functional theory study. Appl. Surf. Sci. 2019, 479, 852–862. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, C.; Li, Z.; Xie, J.; Lou, C.; Lei, G.; Liu, X.; Zhang, J. Indium selenide nanosheets for photoelectrical NO2 sensor with ultra sensitivity and full recovery at room temperature. Sens. Actuators B Chem. 2021, 329, 129127–129136. [Google Scholar] [CrossRef]
- Dong, X.; Chen, T.; Zhou, G. Design high performance field-effect, strain/gas sensors of novel 2D penta-like Pd2P2SeX (X=O, S, Te) pin-junction nanodevices: A study of transport properties. J. Alloys Compd. 2024, 977, 173417. [Google Scholar] [CrossRef]
- Ma, D.; Ju, W.; Tang, Y.; Chen, Y. First-principles study of the small molecule adsorption on the InSe monolayer. Appl. Surf. Sci. 2017, 426, 244–252. [Google Scholar] [CrossRef]
- Yang, M.; Xiong, H.; Ma, Y.; Yang, L. Theoretical investigation of Ag and Au modified CSiN monolayer as a potential gas sensor for air decomposition components detection. J. Mol. Liq. 2024, 410, 125648. [Google Scholar] [CrossRef]
- Junkaew, A.; Arróyave, R. Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: Promising materials for gas-sensing and -separation. Phys. Chem. Chem. Phys. 2018, 20, 6073–6082. [Google Scholar] [CrossRef]
- Ma, D.; Li, T.; Yuan, D.; He, C.; Lu, Z.; Lu, Z.; Yang, Z.; Wang, Y. The role of the intrinsic Se and In vacancies in the interaction of O2 and H2O molecules with the InSe monolayer. Appl. Surf. Sci. 2018, 434, 215–227. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Zhou, G.; Xu, Z.; Xiao, X. Nonvolatile Electrical Control and Reversible Gas Capture by Ferroelectric Polarization Switching in 2D FeI2/In2S3 van der Waals Heterostructures. ACS Sens. 2023, 8, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chen, T.; Liu, G.; Xie, L.; Zhou, G.; Long, M. Multifunctional 2D g-C4N3/MoS2 vdW Heterostructure-Based Nanodevices: Spin Filtering and Gas Sensing Properties. ACS Sens. 2022, 7, 3450–3460. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Huang, L.; Zhang, J.; Zhang, Y.; Feng, W.; Zeng, W.; Zhou, Q. Rh- and Ru-Modified InSe Monolayers for Detection of NH3, NO2, and SO2 in Agricultural Greenhouse: A DFT Study. ACS Appl. Nano Mater. 2023, 6, 14447–14458. [Google Scholar] [CrossRef]
- Cheng, W.; Ni, J. CO2 gas sensor based on Pt-, Ag-, Au- and Pd-doped InSe monolayer: A first-principles study. Semicond. Sci. Technol. 2022, 37, 095011–095020. [Google Scholar] [CrossRef]
- Yan, Y.; Luo, Y.; Li, Y.; Zhang, Y.; Wu, P.; Tang, J.; Zhang, X.; Xiao, S. Transition metal (Au, Ag, Pt, Pd, Ni) doped MoS2 as gas sensing materials for C4F7N leakage detection: A comparative study. Surf. Interfaces 2023, 44, 103625–103934. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, K.; Xie, K.; Wang, P.; Lin, L.; Su, L. Adsorption of toxic and harmful gas NO2 and SO2 on TM (Fe, Co and Ni) modified ZrSe2 monolayer: A DFT study. Mater. Today Commun. 2024, 39, 108483. [Google Scholar] [CrossRef]
- Lu, D.; Huang, L.; Zhang, J.; Zeng, W.; Zhou, Q. Density Functional Theory Investigation of Pristine and Ni-Doped CeO2 (110) for C2H4 Detection Based on Optimized Work Functions. ACS Appl. Nano Mater. 2024, 7, 4239–4251. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Zhang, H.; Huang, Z.; Zeng, W.; Zhou, Q. Ni decorated ReS2 monolayer as gas sensor or adsorbent for agricultural greenhouse gases NH3, NO2 and Cl2: A DFT study. Mater. Today Chem. 2024, 38, 102114. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Inada, Y.; Orita, H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 2008, 29, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jia, L.; Cui, X.; Zeng, W.; Zhou, Q. Adsorption and gas-sensing properties of SF6 decomposition components (SO2, SOF2 and SO2F2) on Co or Cr modified GeSe monolayer: A DFT study. Mater. Today Chem. 2023, 28, 101382–101395. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, W.; Jiang, J.; Zeng, W.; Zhou, Q. First-Principles Investigation of Transition Metal (Co, Rh, and Ir)-Modified WS2 Monolayer Membranes: Adsorption and Detection of SF6 Decomposition Gases. ACS Appl. Nano Mater. 2024, 7, 13379–13391. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, H.; Zhang, J. Proposals for gas-detection improvement of the FeMPc monolayer towards ethylene and formaldehyde by using bimetallic synergy. Phys. Chem. Chem. Phys. 2024, 26, 12070–12083. [Google Scholar] [CrossRef]
- Wang, M.; Cao, J.; Zhang, Y.; Liu, J.; Chen, D.; Jia, P. Crn (n = 1–4) clustered (8, 0) single-walled CNT: Comparison of gas-sensitive properties to air discharge pollutants (CO, NOx). Surf. Interfaces 2023, 44, 103619. [Google Scholar] [CrossRef]
- Qian, G.; Peng, Q.; Zou, D.; Wang, S.; Yan, B.; Zhou, Q. First-Principles Insight Into Au-Doped MoS2 for Sensing C2H6 and C2H4. Front. Mater. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Ju, W.; Li, T.; Zhou, Q.; Li, H.; Li, X.; Ma, D. Adsorption of 3d transition-metal atom on InSe monolayer: A first-principles study. Comput. Mater. Sci. 2018, 150, 33–41. [Google Scholar] [CrossRef]
- Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodríguez-Cantó, P.J.; Segura, A.; Cros, A.; Tobias, G.; Canadell, E.; et al. Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. Nano Lett. 2016, 16, 3221–3229. [Google Scholar] [CrossRef]
- Qiu, X.; Xu, D.; Li, Z.; Dong, J.; Hou, D.; Xiong, H. Atomic-level insights into sensing performance of toxic gases on the InSe monolayer decorated with Pd and Pt under humid environment. Sens. Actuators A Phys. 2024, 378, 115846. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Xiong, H.; Deng, G.; Yang, L.; Nie, Z. Highly sensitive and selective sensing-performance of 2D Co-decorated phthalocyanine toward NH3, SO2, H2S and CO molecules. Surf. Interfaces 2023, 36, 102641–102653. [Google Scholar] [CrossRef]
- Hou, T.; Zeng, W.; Zhou, Q. Pd-GaSe and Pd3-GaSe Monolayers: Two Promising Candidates for Detecting Dissolved Gases in Transformer Oil. Chemosensors 2022, 10, 236. [Google Scholar] [CrossRef]
- Lin, L.; Feng, Z.; Dong, Z.; Tao, H.; Hu, C. Transition metal disulfide (MoTe2, MoSe2 and MoS2) were modified to improve NO2 gas sensitivity sensing. J. Ind. Eng. Chem. 2023, 118, 533–543. [Google Scholar] [CrossRef]
- Naseem, N.; Tariq, F.; Malik, Y.; Zahid, W.A.; El-Fattah, A.A.; Ayub, K.; Iqbal, J. Sensing ability of carbon nitride (C6N8) for the detection of carbon monoxide (CO) and carbon dioxide (CO2). Sens. Actuators A Phys. 2023, 366, 114947. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Q.; Peng, R.; Liao, Y.; Zeng, W. Adsorption of SF6 decomposition gases (H2S, SO2, SOF2 and SO2F2) on Sc-doped MoS2 surface: A DFT study. Appl. Surf. Sci. 2021, 549, 149271. [Google Scholar] [CrossRef]
- Zhu, B.; Zheng, K.; Chen, X.; Qiu, J.; Guo, H.; Zhang, F.; Lang, L.; Yu, J.; Bao, J. Monolayer Janus Te2Se-based gas sensor to detect SO2 and NOx: A first-principles study. Phys. Chem. Chem. Phys. 2021, 23, 1675–1683. [Google Scholar] [CrossRef]
- Ayesh, A.I. DFT investigation of H2S and SO2 adsorption on Zn modified MoSe2. Superlattices Microstruct. 2021, 162, 107098. [Google Scholar] [CrossRef]
- Li, M.; Cen, W.; Tian, Z.; Zheng, Q. First Principles Calculation of Gas Sensitive Properties of Pd3-Modified Monolayer PtSe2 to SF6 Decomposition Products. Phys. Status Solidi 2024, 18, 2300367–2300377. [Google Scholar] [CrossRef]
- Huang, F.; Sang, T.-Y.; Hu, X.; Wang, Z.; Chen, W. Adsorption behaviors and electronic properties of Pd-doped MoTe2 monolayer for hazardous gases detecting and scavenging. Mater. Sci. Semicond. Process. 2023, 170, 107920. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, H.; Gan, L. A new bifunctional C3N nanosheet of NO2, SO2 gas sensor and CO2 separation: A first-principles study. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 126, 114463–114470. [Google Scholar] [CrossRef]
Gas Molecules | Eads | QT, e | D, Å | Rsum, Å | Eg, eV | Φ, eV |
---|---|---|---|---|---|---|
CO | −1.35 | 0.164 | 1.777 (Ni−C) | 2.44 (Ni−C) | 1.419 | 5.66 |
NO | −1.26 | 0.082 | 1.663 (Ni−N) | 2.33 (Ni−N) | 1.323 | 5.578 |
NO2 | −0.94 | −0.223 | 1.926 (Ni−N) | 2.33 (Ni−N) | 0.816 | 5.361 |
NH3 | −0.95 | 0.246 | 2.106 (Ni−N) | 2.33 (Ni−N) | 1.142 | 4.844 |
SO2 | −0.74 | −0.040 | 2.086 (Ni−S) | 2.65 (Ni−S) | 1.332 | 5.905 |
H2S | −0.79 | 0.235 | 2.243 (Ni−S) | 2.65 (Ni−S) | 1.190 | 5.061 |
H2O | −0.48 | 0.123 | 2.311 (Ni−O) | 2.25 (Ni−O) | 1.163 | 5.007 |
CO2 | −0.18 | 0.016 | 3.492 (Ni−C) | 2.44 (Ni−C) | 1.201 | 5.306 |
CH4 | −0.20 | 0.029 | 3.320 (Ni−C) | 2.44 (Ni−C) | 1.195 | 5.279 |
H2 | −0.13 | 0.014 | 2.690 (Ni−H) | 2.30 (Ni−H) | 1.202 | 5.306 |
N2 | −0.56 | 0.071 | 1.828 (Ni−N) | 2.33 (Ni−N) | 1.400 | 5.578 |
O2 | −0.01 | −0.007 | 2.354 (Ni−O) | 2.25 (Ni−O) | 1.197 | 5.311 |
Target Gases | Sensing Materials | Eads, eV | ΔEg, % | ΔΦ, % | τ, s (298 K) | Ref. |
---|---|---|---|---|---|---|
SO2 | Sc-MoS2 | −3.21 | −71.4 | / | 1.87 × 1042 | [46] |
Janus Te2Se | −0.38 | −0.05 | / | 2.66 × 10−6 | [47] | |
Zn–MoSe2 | −1.03 | 3.68 | 2.59 × 105 | [48] | ||
Pd3–PtSe2 | −3.54 | 2.96 | 3.94 | 7.08 × 1047 | [49] | |
Pd-MoTe2 | −1.32 | −6.18 | / | 2.07 × 1010 | [50] | |
C3N monolayer | −0.58 | 0.00 | / | 7.47 × 10−4 | [51] | |
Ni-InSe | −0.74 | 11.37 | 11.29 | 3.24 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Qiu, X.; Huang, S.; Lin, S.; Liu, L.; Xiong, H. Adsorption and Sensing Properties of Ni-Modified InSe Monolayer Towards Toxic Gases: A DFT Study. Chemosensors 2024, 12, 219. https://doi.org/10.3390/chemosensors12100219
Dong J, Qiu X, Huang S, Lin S, Liu L, Xiong H. Adsorption and Sensing Properties of Ni-Modified InSe Monolayer Towards Toxic Gases: A DFT Study. Chemosensors. 2024; 12(10):219. https://doi.org/10.3390/chemosensors12100219
Chicago/Turabian StyleDong, Jianhong, Xiaoqian Qiu, Shuying Huang, Shaomin Lin, Lisha Liu, and Huihui Xiong. 2024. "Adsorption and Sensing Properties of Ni-Modified InSe Monolayer Towards Toxic Gases: A DFT Study" Chemosensors 12, no. 10: 219. https://doi.org/10.3390/chemosensors12100219
APA StyleDong, J., Qiu, X., Huang, S., Lin, S., Liu, L., & Xiong, H. (2024). Adsorption and Sensing Properties of Ni-Modified InSe Monolayer Towards Toxic Gases: A DFT Study. Chemosensors, 12(10), 219. https://doi.org/10.3390/chemosensors12100219