Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = Neuraminidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2225 KiB  
Article
The Persistence of Cross-Reactive Immunity to Influenza B/Yamagata Neuraminidase Despite the Disappearance of the Lineage: Structural and Serological Evidence
by Yulia Desheva, Polina Kudar, Maria Sergeeva, Pei-Fong Wong, Tamara Shvedova, Ekaterina Bazhenova, Evelyna Krylova, Maria Kurpiaeva, Ekaterina Romanovskaya-Romanko, Vera Krivitskaya, Kira Kudria, Irina Isakova-Sivak and Marina Stukova
Int. J. Mol. Sci. 2025, 26(15), 7476; https://doi.org/10.3390/ijms26157476 - 2 Aug 2025
Viewed by 204
Abstract
Influenza B viruses, divided into B/Victoria and B/Yamagata lineages, have not had B/Yamagata isolates after 2020. A study evaluated immunity to influenza B surface antigens hemagglutinin (HA) and neuraminidase (NA) in 138 patient sera from 2023 and 23 pairs of sera from 2018 [...] Read more.
Influenza B viruses, divided into B/Victoria and B/Yamagata lineages, have not had B/Yamagata isolates after 2020. A study evaluated immunity to influenza B surface antigens hemagglutinin (HA) and neuraminidase (NA) in 138 patient sera from 2023 and 23 pairs of sera from 2018 to 2019 vaccine recipients. The phylogenetic tree of the influenza B virus, based on HA and NA genes, shows that the Yamagata lineage evolves gradually, while the Victoria lineage exhibits rapid mutations with short branches. In 2023, mean levels of antibodies to HA and NA of B/Yamagata virus were higher than to B/Victoria, despite no cases of B/Yamagata lineage isolation after 2020. The titers of antibodies to NA of B/Yamagata statistically significantly differed among individuals born before and after 1988. Among patients examined in 2018–2019, neuraminidase-inhibiting (NI) antibody titers before vaccination were higher to B/Yamagata than to B/Victoria, and NI antibodies to B/Victoria and B/Yamagata positively correlated with neutralizing antibodies to B/Victoria virus before and after vaccination. Immunity to B/Yamagata virus was stronger in 2023, despite no isolation since 2020, probably due to the presence of cross-reactive antibodies from B/Victoria infections or vaccinations. Antibodies to NA of B/Victoria and B/Yamagata in 2023 correlated significantly in patients born before 1988, potentially supporting the concept of ‘antigenic sin’ phenomenon for influenza B viruses. The fact that NI antibody titers to B/Victoria and B/Yamagata correlated with neutralizing antibody titers to B/Victoria may suggest broad cross-protection. Studying influenza B virus NA antigenic properties helps understand the evolution and antigenic competition of HA and NA. Full article
(This article belongs to the Special Issue Respiratory Virus Infection)
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 400
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

17 pages, 863 KiB  
Article
Porcine Sample Type Characteristics Associated with Sequencing and Isolation of Influenza A Virus
by Daniel C. A. Moraes, Onyekachukwu H. Osemeke, Michael A. Zeller, Amy L. Baker, Gustavo S. Silva, Giovani Trevisan, Daniel C. L. Linhares and Phillip C. Gauger
Vet. Sci. 2025, 12(7), 683; https://doi.org/10.3390/vetsci12070683 - 19 Jul 2025
Viewed by 474
Abstract
Understanding how sample type may influence the probability of influenza A virus (IAV) sequencing and isolation success can help improve the use of diagnostic tests and refine surveillance strategies in swine populations. The objective of this study was to evaluate the probability of [...] Read more.
Understanding how sample type may influence the probability of influenza A virus (IAV) sequencing and isolation success can help improve the use of diagnostic tests and refine surveillance strategies in swine populations. The objective of this study was to evaluate the probability of success for IAV hemagglutinin (HA) and neuraminidase (NA) Sanger sequencing and virus isolation in Madin–Darby Canine Kidney (MDCK) cells across different porcine sample types submitted to the Iowa State University Veterinary Diagnostic Laboratory (ISU VDL) from 2018 to 2024. Antemortem and postmortem sample types were selected and analyzed based on reverse transcription real-time polymerase chain reaction (RT-rtPCR) cycle threshold (Ct) values. The Ct values corresponding to 95%, 75%, and 50% probabilities of sequencing or virus isolation success were determined for each sample type. For antemortem samples, a 95% probability of success for HA Sanger sequencing on nasal swabs exhibited a Ct value of 27.8 from 1046 samples and 23.6 for NA sequencing based on 66 nasal swabs. Using oral fluids, HA and NA Sanger sequencing success was at Ct values of 27.3 from 3446 samples and 22.1 from 137 samples, respectively. For postmortem samples, lung tissue had the highest number of sequences for the HA and NA, with Ct values of 25.7 and 21.5, respectively. For a 95% probability of successful virus isolation, nasal swabs demonstrated a Ct value of 21.1 from 647 samples, while lungs had a Ct value of 18.7 from 5892 samples. This study determined that nasal swabs and lung tissue had the highest probability of IAV gene sequencing and virus isolation success, while oral fluids, a common swine diagnostic sample type that is easy to collect and welfare-friendly, can be effective for gene sequencing when using lower IAV RT-rtPCR Ct values, i.e., ≤27.3. These results provide practical expectations for successful IAV HA and NA gene sequencing and virus isolation at 95%, 75%, and 50% probabilities based on sample type and RT-rtPCR Ct values to improve diagnostic testing strategies in swine populations. Full article
Show Figures

Figure 1

15 pages, 2000 KiB  
Article
Residue 365 in Hemagglutinin–Neuraminidase Is a Key Thermostable Determinant of Genotype VI.2.1.1.2.2 Newcastle Disease Virus
by Tao Di, Ran Zhao, Qiankai Shi, Fangfang Wang, Zongxi Han, Huixin Li, Yuhao Shao, Junfeng Sun and Shengwang Liu
Viruses 2025, 17(7), 977; https://doi.org/10.3390/v17070977 - 13 Jul 2025
Viewed by 361
Abstract
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In [...] Read more.
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In this study, an NDV strain, designated P0506, was isolated from a diseased pigeon in China and classified as genotype VI. Phylogenetic analysis on the basis of the Fusion gene coding sequence indicated that P0506 belonged to sub-genotype VI.2.1.1.2.2 of class II. The thermostability may be a universal characteristic of genotype VI NDV. Thus, the thermostability of two strains, including P0506 identified in this study and P0713 identified previously, belonging to VI.2.1.1.2.2, and another previously isolated strain, P0813, in VI.2.1.1.2.1, was investigated. It was indicated that all three viruses presented resistance to heat treatment, but P0713 was more robust than P0813 and P0506. By constructing a series of HN protein mutants, amino acid residues at both residues 365 and 497 in HN protein were found to be involved in the heat resistance. Furthermore, the effects of residues 365 and 497 in HN protein on the thermostability of the virus were further evaluated by using recombinant viruses generated by the reverse genetic system. Our results showed that residue at position 365 in HN protein was the key thermostable determinant of sub-genotype VI.2.1.1.2.2 NDV. These findings will help us better understand the thermostable mechanism of NDV and serve as a foundation for the further development of novel thermostable vaccines. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, 4th Edition)
Show Figures

Figure 1

25 pages, 3522 KiB  
Article
Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(7), 972; https://doi.org/10.3390/v17070972 (registering DOI) - 10 Jul 2025
Viewed by 477
Abstract
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, [...] Read more.
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, including the USA. Unfortunately, there are no specific vaccines or antiviral drugs that could help prevent and treat the infection caused by this virus in birds. Our major objective is to identify/repurpose some (novel/known) antiviral compounds that may inhibit viral replication by targeting some key viral proteins. (2) Methods: We used state-of-the-art machine learning tools such as molecular docking and MD-simulation methods from Biovia Discovery Studio (v24.1.0.321712). The key target proteins such as hemagglutinin (HA), neuraminidase (NA), Matrix-2 protein (M2), and the cap-binding domain of PB2 (PB2/CBD) homology models were validated through structural assessment via DOPE scores, Ramachandran plots, and Verify-3D metrics, ensuring reliable structural representations, confirming their reliability for subsequent in silico approaches. These approaches include molecular docking followed by molecular dynamics simulation for 50 nanoseconds (ns), highlighting the structural stability and compactness of the docked complexes. (3) Results: Molecular docking revealed strong binding affinities for both sofosbuvir and GS441524, particularly with the NA and PB2/CBD protein targets. Among them, GS441524 exhibited superior interaction scores and a greater number of hydrogen bonds with key functional residues of NA and PB2/CBD. The MM-GBSA binding free energy calculations further supported these findings, as GS441524 displayed more favorable binding energies compared to several known standard inhibitors, including F0045S for HA, Zanamivir for NA, Rimantadine and Amantadine for M2, and PB2-39 for PB2/CBD. Additionally, 50 ns molecular dynamics simulations highlighted the structural stability and compactness of the GS441524-PB2/CBD complex, further supporting its potential as a promising antiviral candidate. Furthermore, hydrogen bond monitor analysis over the 50 ns simulation confirmed persistent and specific interactions between the ligand and proteins, suggesting that GS441524 may effectively inhibit the NA, and PB2/CBD might potentially disrupt PB2-mediated RNA synthesis. (4) Conclusions: Our findings are consistent with previous evidence supporting the antiviral activity of certain nucleoside analog inhibitors, including GS441524, against various coronaviruses. These results further support the potential repurposing of GS441524 as a promising therapeutic candidate against H5N1 avian influenza clade 2.3.4.4b. However, further functional studies are required to validate these in silico predictions and support the inhibitory action of GS441524 against the targeted proteins of H5N1, specifically clade 2.3.4.4b. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

17 pages, 5007 KiB  
Review
PROTAC-Based Antivirals for Respiratory Viruses: A Novel Approach for Targeted Therapy and Vaccine Development
by Amith Anugu, Pankaj Singh, Dharambir Kashyap, Jillwin Joseph, Sheetal Naik, Subhabrata Sarkar, Kamran Zaman, Manpreet Dhaliwal, Shubham Nagar, Tanishq Gupta and Prasanna Honnavar
Microorganisms 2025, 13(7), 1557; https://doi.org/10.3390/microorganisms13071557 - 2 Jul 2025
Viewed by 520
Abstract
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this [...] Read more.
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this control is limited due to unexpected events, such as mutations and the development of antiviral resistance. The technology of proteolysis-targeting chimeras (PROTACs) has been emerging as a novel technology in viral therapeutics. These are small molecules that can selectively degrade target proteins via the ubiquitin–proteasome pathway. PROTACs as a therapy were initially developed against cancer, but they have recently shown promising results in their antiviral mechanisms by targeting viral and/or host proteins involved in the pathogenesis of viral infections. In this review, we elaborate on the antiviral potential of PROTACs as therapeutic agents and their potential as vaccine components against important respiratory viral pathogens, including influenza viruses, coronaviruses (SARS-CoV-2), and respiratory syncytial virus. Advanced applications of PROTAC antiviral strategies, such as hemagglutinin and neuraminidase degraders for influenza and spike proteins of SARS-CoV-2, are detailed in this review. Additionally, the role of PROTACs in targeting cellular mechanisms within the host, thereby preventing viral pathogenesis and eliciting an antiviral effect, is discussed. The potential of PROTACs as vaccines, utilizing proteasome-based virus attenuation to achieve a robust protective immune response, while ensuring safety and enhancing efficient production, is also presented. With the promises exhibited by PROTACs, this technology faces significant challenges, including the emergence of novel viral strains, tissue-specific expression of E3 ligases, and pharmacokinetic constraints. With advanced computational design in molecular platforms, PROTAC-based antiviral development offers an alternative, transformative path in tackling respiratory viruses. Full article
Show Figures

Figure 1

14 pages, 895 KiB  
Article
Integrated In Silico, In Vitro, and In Vivo Studies Reveal Mangiferin as a Promising Antiviral Agent Against H1N1/pdm2009 Influenza Virus
by Yinde Gan, Fucheng Guo, Ayan Roy, Xiao Wang and Yongyi Shen
Viruses 2025, 17(7), 873; https://doi.org/10.3390/v17070873 - 21 Jun 2025
Viewed by 477
Abstract
The ongoing global threat posed by the influenza A virus, exacerbated by antigenic drift and the emergence of antiviral resistance, accentuates the urgent need for innovative therapeutic strategies. Through molecular docking, this study revealed that mangiferin has a strong binding affinity for the [...] Read more.
The ongoing global threat posed by the influenza A virus, exacerbated by antigenic drift and the emergence of antiviral resistance, accentuates the urgent need for innovative therapeutic strategies. Through molecular docking, this study revealed that mangiferin has a strong binding affinity for the active site of the neuraminidase (NA) protein of influenza virus A(H1N1)pdm09, with a binding energy of −8.1 kcal/mol. In vitro assays confirmed a dose-dependent inhibition of NA, with an IC50 of 88.65 μM, and minimal cytotoxicity, as indicated by a CC50 of 328.1 μM in MDCK cells. In murine models, the administration of mangiferin at a dosage of 25 mg/kg significantly mitigated weight loss, decreased viral loads in nasal turbinates and lungs by over 1 log10 TCID50, and enhanced survival rates from 0% in control groups to 20% in mangiferin-treated group at 14 days post-infection. In addition, mangiferin was found to modulate host immune responses by simultaneously inhibiting pro-inflammatory cytokines, IL-6 and TNF-α, and upregulating the expression of anti-inflammatory IL-10 and antiviral IFN-γ, thus mitigating infection-induced inflammation. Our findings elucidate the dual mechanism of mangiferin involving the direct inhibition of NA and immunomodulation, thereby providing experimental evidence for exploring dual-mechanism-based anti-influenza strategies against resistant strains of influenza. Full article
(This article belongs to the Special Issue Antiviral Development for Emerging and Re-Emerging Viruses)
Show Figures

Figure 1

16 pages, 4389 KiB  
Article
Multivalent COBRA Hemagglutinin and Neuraminidase Influenza Vaccines Adjuvanted with TLR9 Agonist CpG 1018
by Pedro L. Sanchez, Amanda Lynch and Ted M. Ross
Vaccines 2025, 13(7), 662; https://doi.org/10.3390/vaccines13070662 - 20 Jun 2025
Viewed by 1313
Abstract
Background/Objectives: There is a need for effective seasonal influenza virus vaccines that provide broad and long-lasting protection against influenza virus infections. Methods: In this study, next-generation influenza hemagglutinin (HA) and neuraminidase (NA) vaccine candidates designed using the computationally optimized broadly reactive antigen (COBRA) [...] Read more.
Background/Objectives: There is a need for effective seasonal influenza virus vaccines that provide broad and long-lasting protection against influenza virus infections. Methods: In this study, next-generation influenza hemagglutinin (HA) and neuraminidase (NA) vaccine candidates designed using the computationally optimized broadly reactive antigen (COBRA) methodology were formulated with the TLR9 agonist, CpG 1018. These adjuvanted COBRA HA/NA vaccines were administered intramuscularly or intranasally to mice with pre-existing anti-influenza immunity or immunologically naïve mice. Results: Mice with pre-existing immune responses to historical influenza virus strains vaccinated intranasal (IN) with COBRA HA/NA vaccines adjuvanted with CpG 1018 had enhanced IgG titers in their bronchoalveolar lavages (BALF) compared to unadjuvanted vaccines. These mice also had increased serum IgG titers that were like antibody titers observed in mice that were vaccinated intramuscularly. Mice that were vaccinated intranasally with this adjuvanted vaccine also had antibodies with significantly higher hemagglutination inhibition activity against a broad range of H1N1 and H3N2 influenza viruses and more HA and NA specific antibody-secreting cells compared to unadjuvanted vaccine. Following the H1N1 influenza virus challenge, pre-immune mice that were vaccinated with the COBRA HA/NA vaccine with CpG 1018 were protected from morbidity and mortality and had no detectable viral lung titers. Conclusions: Overall, CpG 1018 adjuvanted COBRA HA/NA elicited enhanced protective antibodies compared to the unadjuvanted vaccine against several drifted H1N1 and H3N2 influenza viruses in pre-immune mice that were either intramuscularly or intranasally vaccinated with a balanced Th1/Th2 immune response. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

35 pages, 2933 KiB  
Review
NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting
by Mohd Adnan, Arif Jamal Siddiqui, Fevzi Bardakci, Malvi Surti, Riadh Badraoui and Mitesh Patel
Pharmaceuticals 2025, 18(6), 921; https://doi.org/10.3390/ph18060921 - 19 Jun 2025
Viewed by 683
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, [...] Read more.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, particularly in the propagation of pathological proteins in AD. Among the regulatory factors influencing EV composition and function, neuraminidase 1 (NEU1), a lysosomal sialidase responsible for desialylating glycoproteins has gained attention for its involvement in EV glycosylation. This review explores the role of NEU1 in modulating EV glycosylation, with particular emphasis on its influence on immune modulation and intracellular trafficking pathways and the subsequent impact on intercellular signaling and neurodegenerative progression. Altered NEU1 activity has been associated with abnormal glycan profiles on EVs, which may facilitate the enhanced spread of amyloid-β and tau proteins across neural networks. By regulating glycosylation, NEU1 influences EV stability, targeting and uptake by recipient cells, primarily through the desialylation of surface glycoproteins and glycolipids, which alters the EV charge, recognition and receptor-mediated interactions. Targeting NEU1 offers a promising therapeutic avenue to restore EV homeostasis and reduces pathological protein dissemination. However, challenges persist in developing selective NEU1 inhibitors and effective delivery methods to the brain. Furthermore, altered EV glycosylation patterns may serve as potential biomarkers for early AD diagnosis and monitoring. Overall, this review highlights the importance of NEU1 in AD pathogenesis and advocates for deeper investigation into its regulatory functions, with the aim of advancing therapeutic strategies and biomarker development for AD and related neurological disabilities. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Graphical abstract

22 pages, 1208 KiB  
Article
A Possible Involvement of Sialidase in the Cell Response of the Antarctic Fungus Penicillium griseofulvum P29 to Oxidative Stress
by Radoslav Abrashev, Ekaterina Krumova, Penka Petrova, Rumyana Eneva, Yana Gocheva, Stefan Engibarov, Jeny Miteva-Staleva, Vladislava Dishliyska, Galina Stoyancheva, Boryana Spasova, Vera Kolyovska and Maria Angelova
Life 2025, 15(6), 926; https://doi.org/10.3390/life15060926 - 8 Jun 2025
Viewed by 627
Abstract
Sialidases/neuraminidases remove terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Our previous research has revealed the distribution of sialidase in non-clinical fungal isolates from different ecological niches, including Antarctica. Fungi adapted to extremely low temperatures possess defense mechanisms necessary for their survival [...] Read more.
Sialidases/neuraminidases remove terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Our previous research has revealed the distribution of sialidase in non-clinical fungal isolates from different ecological niches, including Antarctica. Fungi adapted to extremely low temperatures possess defense mechanisms necessary for their survival such as the response against oxidative stress. The relationship between oxidative stress and sialidase synthesis has been studied extremely sparsely. The aim of the present study was to investigate the involvement of sialidase in the cell response of the Antarctic strain P. griseofulvum P29 against oxidative stress induced by long- and short-term exposure to low temperatures. The changes in growth temperatures for 120 h (long-term stress) affected biomass accumulation, glucose consumption, sialidase synthesis, and the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). The short-term temperature downshift (6 h) caused oxidative stress, evidenced by changes in the levels of biomarkers, including lipid peroxidation, oxidatively damaged proteins, and the accumulation of reserve carbohydrates. Simultaneously, a sharp increase in SOD and CAT activity was found, which coincided with a significant increase in sialidase activity. This study marks the first demonstration of increased sialidase activity in filamentous fungi isolated from extreme cold environments as a response to oxidative stress. Full article
(This article belongs to the Special Issue Sialic Acid and Sialic Acid Derivatives in Biomedicine)
Show Figures

Figure 1

30 pages, 4325 KiB  
Article
Discovery of Novel Natural Inhibitors of H5N1 Neuraminidase Using Integrated Molecular Modeling and ADMET Prediction
by Afaf Zekri, Mebarka Ouassaf, Shafi Ullah Khan, Kannan R. R. Rengasamy and Bader Y. Alhatlani
Bioengineering 2025, 12(6), 622; https://doi.org/10.3390/bioengineering12060622 - 7 Jun 2025
Viewed by 831
Abstract
The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA) inhibitors is critical. [...] Read more.
The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA) inhibitors is critical. In this study, an integrated in silico strategy was employed, beginning with the generation of an energy-optimized pharmacophore model (e-pharmacophore, ADDN) based on the reference inhibitor Zanamivir. A virtual screening of 47,781 natural compounds from the PubChem database was performed, followed by molecular docking validated through an enrichment assay. Promising hits were further evaluated via ADMET predictions, density functional theory (DFT) calculations to assess chemical reactivity, and molecular dynamics (MD) simulations to examine the stability of the ligand–protein complexes. Three lead compounds (C1: CID 102209473, C2: CID 85692821, and C3: CID 45379525) demonstrated strong binding affinity toward NA. Their ADMET profiles predicted favorable bioavailability and low toxicity. The DFT analyses indicated suitable chemical reactivity, particularly for C2 and C3. The MD simulations confirmed the structural stability of all three ligand–NA complexes, supported by robust and complementary intermolecular interactions. In contrast, Zanamivir exhibited limited hydrophobic interactions, compromising its binding stability within the active site. These findings offer a rational foundation for further experimental validation and the development of next-generation NA inhibitors derived from natural sources. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

17 pages, 2209 KiB  
Article
N-Glycosylation as a Key Requirement for the Positive Interaction of Integrin and uPAR in Glioblastoma
by Gretel Magalí Ferreira, Hector Adrian Cuello, Aylen Camila Nogueira, Jeremias Omar Castillo, Selene Rojo, Cynthia Antonella Gulino, Valeria Inés Segatori and Mariano Rolando Gabri
Int. J. Mol. Sci. 2025, 26(11), 5310; https://doi.org/10.3390/ijms26115310 - 31 May 2025
Viewed by 3171
Abstract
Integrin αV (IαV) and the urokinase-type plasminogen activator receptor (uPAR) are key mediators of tumor malignancy in Glioblastoma. This study aims to characterize IαV/uPAR interaction in GBM and investigate the role played by glycans in this scenario. Protein expression and interaction were confirmed [...] Read more.
Integrin αV (IαV) and the urokinase-type plasminogen activator receptor (uPAR) are key mediators of tumor malignancy in Glioblastoma. This study aims to characterize IαV/uPAR interaction in GBM and investigate the role played by glycans in this scenario. Protein expression and interaction were confirmed via confocal microscopy and co-immunoprecipitation. The role of N-glycosylation was evaluated using Swainsonine (SW) and PNGase F. IαV glycoproteomic analysis was performed by mass spectrometry. Sialic acids and glycan structures in IαV/uPAR interaction were tested using neuraminidase A (NeuA) and lectin interference assays, respectively. Protein expression and their interaction were detected in GBM cells, but not in low-grade glioma cells, even in cells transfected to overexpress uPAR. SW, PNGase, and NeuA treatments significantly reduced IαV/uPAR interaction. Also, lectin interference assays indicated that β1-6 branched glycans play a crucial role in this interaction. Analysis of the IαV glycosylation profile revealed the presence of complex and hybrid N-glycans in GBM, while only oligomannose N-glycans were identified in low-grade glioma. N-glycosylation inhibition and sialic acid removal reduced AKT phosphorylation. Our findings demonstrate, for the first time, the interaction between IαV and uPAR in GBM cells, highlighting the essential role of N-glycosylation, particularly β1-6 branched glycans and sialic acids. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

16 pages, 4152 KiB  
Article
Analysis of Epidemiological and Evolutionary Characteristics of Seasonal Influenza Viruses in Shenzhen City from 2018 to 2024
by Weiyu Peng, Hui Liu, Xin Wang, Chao Li, Shunwu Huang, Shiyu Qi, Zhongnan Hu, Xiaoying Xu, Haihai Jiang, Jinyu Duan, Hui Chen, Manyu Huang, Ying Sun, Weihua Wu, Min Jiang, Xuan Zou and Shisong Fang
Viruses 2025, 17(6), 798; https://doi.org/10.3390/v17060798 - 30 May 2025
Viewed by 644
Abstract
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly [...] Read more.
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly during the SARS-CoV-2 pandemic compared with the pre-pandemic period but returned to or even exceeded pre-pandemic levels in the post-pandemic era. Phylogenetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes from 58 H1N1pdm09, 78 H3N2, and 97 B/Victoria isolates revealed substantial genetic divergence from the WHO-recommended vaccine strains. Notably, key mutations in the HA genes of H1N1pdm09, H3N2, and B/Victoria viruses were concentrated in the receptor-binding site (RBS) and adjacent antigenic sites. Hemagglutination inhibition (HI) assays demonstrated that most circulating viruses remained antigenically matched to their corresponding vaccine strains. However, significant antigenic drift was observed in H3N2 clade 3C.2a1b.1b viruses during the 2018–2019 season and in B/Victoria clade V1A.3a.2 viruses during the 2023–2024 season. These findings highlight the impact of NPIs and pandemic-related disruptions on influenza virus circulation and evolution, providing critical insights for future surveillance and public health preparedness. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

20 pages, 3787 KiB  
Article
In Vitro Influenza A Virus-Inactivating Activity of HIDROX®, Hydroxytyrosol-Rich Aqueous Olive Pulp Extract
by Mayar Yasser Zeinelabideen Mohamed, Dulamjav Jamsransuren, Sachiko Matsuda, Koichi Narita, Toshihiro Murata, Haruko Ogawa and Yohei Takeda
Pathogens 2025, 14(6), 529; https://doi.org/10.3390/pathogens14060529 - 25 May 2025
Viewed by 712
Abstract
Influenza A virus (IAV) is an important respiratory pathogen. We evaluated the IAV-inactivation activity of hydroxytyrosol (HT)-rich aqueous olive pulp extract (HIDROX®) and its mechanisms. The HIDROX-containing solution and cream showed concentration- and time-dependent virucidal activity. The virucidal activity of HIDROX [...] Read more.
Influenza A virus (IAV) is an important respiratory pathogen. We evaluated the IAV-inactivation activity of hydroxytyrosol (HT)-rich aqueous olive pulp extract (HIDROX®) and its mechanisms. The HIDROX-containing solution and cream showed concentration- and time-dependent virucidal activity. The virucidal activity of HIDROX was higher than pure HT. With Western blotting (WB), the band intensities of multiple viral structural proteins in HIDROX- and HT-treated viruses were weaker than in the control, and high-molecular-mass bands were observed. These results suggest that HIDROX and HT may have induced the structural changes or abnormalities of viral proteins. HIDROX and HT had no or limited impact on hemagglutination and neuraminidase activities, as well as the virus genome. No apparent abnormalities in the viral particles were observed through electron microscopy following treatment with HIDROX and HT. Treatment with HT, but not HIDROX, resulted in the production of high levels of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). In HT treatment but not HIDROX treatment, the virucidal activity disappeared, and the induction of abnormal band patterns of a viral protein in WB was cancelled by ROS/RNS scavenger activity. These findings showed the possible utility of HIDROX as a naturally derived IAV virucidal component that may contribute to IAV control. Full article
(This article belongs to the Collection Emerging and Re-emerging Pathogens)
Show Figures

Figure 1

Back to TopTop