Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = Nano-ecotoxicology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1656 KiB  
Article
Nanosilver Environmental Safety in Marine Organisms: Ecotoxicological Assessment of a Commercial Nano-Enabled Product vs an Eco-Design Formulation
by Arianna Bellingeri, Analía Ale, Tatiana Rusconi, Mattia Scattoni, Sofia Lemaire, Giuseppe Protano, Iole Venditti and Ilaria Corsi
Toxics 2025, 13(5), 338; https://doi.org/10.3390/toxics13050338 - 25 Apr 2025
Viewed by 493
Abstract
With the increasing use of manufactured nanomaterials in consumer products, especially silver nanoparticles (AgNPs), concerns about their environmental impact are rising. Two AgNP formulations were tested, the commercial nanosilver product nanArgen™ and a newly eco-designed bifunctionalized nanosilver (AgNPcitLcys), using marine organisms across three [...] Read more.
With the increasing use of manufactured nanomaterials in consumer products, especially silver nanoparticles (AgNPs), concerns about their environmental impact are rising. Two AgNP formulations were tested, the commercial nanosilver product nanArgen™ and a newly eco-designed bifunctionalized nanosilver (AgNPcitLcys), using marine organisms across three trophic levels, microalgae, microcrustaceans, and bivalves. Acute toxicity was assessed on the diatom Phaeodactylum tricornutum, brine shrimp larvae Artemia franciscana, and bivalve Mytilus galloprovincialis. The behavior of the formulations in marine media, including stability across a concentration range (0.001–100 mg/L), was also evaluated. Results showed that nanArgen™ was less stable compared to AgNpcitLcys, releasing more silver ions and exhibiting higher toxicity to microalgae (100% growth inhibition at 1 mg/L) and microcrustaceans (>80% mortality at 10 mg/L). Conversely, AgNPcitLcys (10 µg/L) was more toxic to bivalves, possibly due to the smaller nanoparticle size affecting lysosomal membrane stability. This study highlights how eco-design, such as surface coating, influences AgNP behavior and toxicity. These findings emphasize the importance of eco-design in minimizing environmental impacts and guiding the development of safer, more sustainable nanomaterials. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

17 pages, 3380 KiB  
Article
Effect of MnO2 Nanoparticles Stabilized with Cocamidopropyl Betaine on Germination and Development of Pea (Pisum sativum L.) Seedlings
by Andrey Nagdalian, Andrey Blinov, Alexey Gvozdenko, Alexey Golik, Zafar Rekhman, Igor Rzhepakovsky, Roman Kolesnikov, Svetlana Avanesyan, Anastasiya Blinova, Maxim Pirogov, Pavel Leontev, Alina Askerova, Evgeniy Tsykin and Mohammad Ali Shariati
Nanomaterials 2024, 14(11), 959; https://doi.org/10.3390/nano14110959 - 30 May 2024
Cited by 4 | Viewed by 1802
Abstract
This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50–600 nm, comprising spherical particles sized between 19 to 50 [...] Read more.
This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50–600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1–10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 μg/L at 10 mg/L and 892.6 μg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

20 pages, 8337 KiB  
Article
Polystyrene Plastic Particles Result in Adverse Outcomes for Hyalella azteca When Exposed at Elevated Temperatures
by Felix Biefel, Susanne M. Brander, Richard E. Connon and Juergen Geist
Water 2024, 16(10), 1360; https://doi.org/10.3390/w16101360 - 10 May 2024
Viewed by 1803
Abstract
Micro- and nano-plastics are pervasive pollutants in global ecosystems, yet their interactions with aquatic wildlife and abiotic factors are poorly understood. These particles are recognized to cause subtle detrimental effects, underscoring the necessity for sensitive endpoints in ecotoxicological exposure studies. We investigated the [...] Read more.
Micro- and nano-plastics are pervasive pollutants in global ecosystems, yet their interactions with aquatic wildlife and abiotic factors are poorly understood. These particles are recognized to cause subtle detrimental effects, underscoring the necessity for sensitive endpoints in ecotoxicological exposure studies. We investigated the effects of particle uptake, size, and temperature on Hyalella azteca. Organisms were exposed to blue fluorescent polystyrene beads (500 nm and 1000 nm in diameter) at 0.43 mg/L for 96 h at temperatures mirroring climate predictions (21 °C, 24 °C, 27 °C). Besides survival and growth, particle uptake, visualized via confocal microscopy, and swimming behavior were analyzed. Mortality rates increased at 27 °C, and particle presence and temperature affected organism growth. Particle treatments influenced various behaviors (thigmotaxis, cruising, movement, acceleration, meander, zone alternation, and turn angle), with hypoactivity observed with 1000 nm particles and hypo- as well as hyper-activity responses with 500 nm particles. Particle uptake quantities were variable and increased with temperature in 500 nm treatments, but no migration beyond the gut was observed. Particle size correlated with uptake, and relationships with behavior were evident. Elevated temperatures exacerbated particle effects, highlighting the urgency of addressing plastic pollution in light of climate change for aquatic organism welfare and ecosystem health. Full article
Show Figures

Figure 1

19 pages, 18813 KiB  
Article
The Effect of Silver Nanoparticles on the Digestive System, Gonad Morphology, and Physiology of Butterfly Splitfin (Ameca splendens)
by Maciej Kamaszewski, Kacper Kawalski, Wiktoria Wiechetek, Hubert Szudrowicz, Jakub Martynow, Dobrochna Adamek-Urbańska, Bogumił Łosiewicz, Adrian Szczepański, Patryk Bujarski, Justyna Frankowska-Łukawska, Aleksander Chwaściński and Ercüment Aksakal
Int. J. Mol. Sci. 2023, 24(19), 14598; https://doi.org/10.3390/ijms241914598 - 27 Sep 2023
Cited by 10 | Viewed by 2175
Abstract
The aim of this study was to determine the effects of silver nanoparticles (AgNPs) on the morphology and enzymatic activity of butterfly splitfin (Ameca splendens). Individuals of both sexes, aged about five months, were exposed to AgNPs at concentrations of 0 [...] Read more.
The aim of this study was to determine the effects of silver nanoparticles (AgNPs) on the morphology and enzymatic activity of butterfly splitfin (Ameca splendens). Individuals of both sexes, aged about five months, were exposed to AgNPs at concentrations of 0 (control group), 0.01, 0.1, and 1.0 mg/dm3 for 42 days. On the last day of the experiment, the fish were euthanized, subjected to standard histological processing (anterior intestine, liver, and gonads), and analysed for digestive enzyme activity in the anterior intestine and oxidative stress markers in the liver. Fish in the AgNP 0.01 and 0.1 groups had the lowest anterior intestinal fold and enterocyte height. However, there were no statistically significant changes in the digestive enzyme activity in the anterior intestine. Analysis of enzymatic activity in the liver showed an increase in superoxide dismutase activity in fish in the AgNP 0.1 group. Histological analyses showed that AgNPs inhibited meiotic divisions at prophase I in a non-linear manner in ovaries and testes. In the AgNP 0.1 and 1.0 groups, the area occupied by spermatocytes was lower compared to the other groups. These results indicate that exposure to AgNPs may lead to disturbances in morphology and enzymatic activity in the liver and intestine and may lead to disruption of reproduction in populations. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

18 pages, 2047 KiB  
Review
Towards Understanding the Factors behind the Limited Integration of Multispecies Ecotoxicity Assessment in Environmental Risk Characterisation of Graphene-Family Materials—A Bibliometric Review
by Ildikó Fekete-Kertész, Krisztina László and Mónika Molnár
C 2023, 9(4), 90; https://doi.org/10.3390/c9040090 - 25 Sep 2023
Cited by 1 | Viewed by 2261
Abstract
Even though graphene-family materials (GFMs) hold great promise for various applications, there are still significant knowledge gaps in ecotoxicology and environmental risk assessment associated with their potential environmental impacts. Here, we provide a critical perspective on published ecotoxicity studies of GFMs based on [...] Read more.
Even though graphene-family materials (GFMs) hold great promise for various applications, there are still significant knowledge gaps in ecotoxicology and environmental risk assessment associated with their potential environmental impacts. Here, we provide a critical perspective on published ecotoxicity studies of GFMs based on meticulous bibliometric research. Based on the results of our review paper, in order to fill in the current critical knowledge gaps, the following issues are recommended for consideration: performing more studies on GFMs’ effects at environmentally relevant concentrations and more field and laboratory studies with marine and terrestrial organisms. It is also recommended to assess the ecotoxicity of GFMs in more environmentally relevant conditions, such as in trophic chain transfer studies and by multispecies exposure in micro- or mesocosms, as well as gaining insights into the interactive effects between GFMs and environmental pollutants. It was also revealed that despite their widespread detection in different environmental compartments the potential impacts of GFMs in complex test systems where hierarchical trophic organisation or trophic transfer studies are significantly under-represented. One of the main causes was identified as the difficulties in the physicochemical characterisation of GFMs in complex terrestrial test systems or aquatic micro- and mesocosm studies containing a sediment phase. The lack of tools for adequate characterisation of GFMs in these complex test systems may discourage researchers from conducting experiments under environmentally relevant test conditions. In the coming years, fundamental research about these complex test systems will continue to better understand the mechanism behind GFM toxicity affecting organisms in different environmental compartments and to ensure their safe and sustainable use in the future. Full article
(This article belongs to the Special Issue Carbons for Health and Environmental Protection)
Show Figures

Graphical abstract

4 pages, 196 KiB  
Editorial
Ecotoxicological Impacts of Micro(Nano)plastics in the Environment: Biotic and Abiotic Interactions
by Farhan R. Khan, Miguel Oliveria, Tony R. Walker, Cristina Panti and Gary Hardiman
Microplastics 2023, 2(3), 215-218; https://doi.org/10.3390/microplastics2030017 - 26 Jun 2023
Cited by 2 | Viewed by 3010
Abstract
Plastic and microplastic pollution is a complex, muti-faceted challenge that has engaged a broad alliance of stakeholder groups who are concerned with environmental, biotic and human health [...] Full article
12 pages, 2729 KiB  
Article
Surface-to-Volume Ratio Affects the Toxicity of Nanoinks in Daphnids
by Dimitrios Kakavas, Konstantinos Panagiotidis, Keith D. Rochfort and Konstantinos Grintzalis
Stresses 2023, 3(2), 488-499; https://doi.org/10.3390/stresses3020035 - 7 Jun 2023
Cited by 3 | Viewed by 1952
Abstract
The Organization for Economic Co-operation and Development (OECD) has set widely used guidelines that are used as a standardized approach for assessing toxicity in a number of species. Given that various studies use different experimental setups, it is difficult to compare findings across [...] Read more.
The Organization for Economic Co-operation and Development (OECD) has set widely used guidelines that are used as a standardized approach for assessing toxicity in a number of species. Given that various studies use different experimental setups, it is difficult to compare findings across them as a result of the lack of a universally used setup in nano-ecotoxicology. For freshwater species, Daphnia magna, a commonly used filter feeding crustacean, can generate significant molecular information in response to pollutant exposure. One factor that has an effect in toxicity induced from nanomaterials in daphnids is the surface-to-volume ratio of the exposure vessels; however, there is limited information available about its impact on the observed effect of exposure. In this study, daphnids were exposed to silver nanoparticle ink in falcon tubes and Petri dishes for 24 h. Toxicity curves revealed differences in the observed mortality of daphnids, with animals exposed in Petri dishes displaying significantly higher mortality. Differences in the activities of a number of key enzymes involved in the catabolism of macromolecules and phosphate were also observed across the exposure setups, indicating possible differences in the toxicity mechanism of silver nano-ink. Understanding the impact of factors relevant to experimental setups in ecotoxicology can increase the reproducibility of testing, and also reduce experimental costs, time, generated waste, and daphnids used in research. Full article
(This article belongs to the Special Issue Responses and Defense Mechanisms against Toxic Metals 2.0)
Show Figures

Figure 1

21 pages, 2481 KiB  
Review
Silent Contamination: The State of the Art, Knowledge Gaps, and a Preliminary Risk Assessment of Tire Particles in Urban Parks
by Lorenzo Federico, Andrea Masseroni, Cristiana Rizzi and Sara Villa
Toxics 2023, 11(5), 445; https://doi.org/10.3390/toxics11050445 - 9 May 2023
Cited by 11 | Viewed by 4443
Abstract
Tire particles (TPs) are one of the main emission sources of micro- and nano-plastics into the environment. Although most TPs are deposited in the soil or in the sediments of freshwater and although they have been demonstrated to accumulate in organisms, most research [...] Read more.
Tire particles (TPs) are one of the main emission sources of micro- and nano-plastics into the environment. Although most TPs are deposited in the soil or in the sediments of freshwater and although they have been demonstrated to accumulate in organisms, most research has focused on the toxicity of leachate, neglecting the potential effects of particles and their ecotoxicological impact on the environment. In addition, studies have focused on the impact on aquatic systems and there are many gaps in the biological and ecotoxicological information on the possible harmful effects of the particles on edaphic fauna, despite the soil ecosystem becoming a large plastic sink. The aim of the present study is to review the environmental contamination of TPs, paying particular attention to the composition and degradation of tires (I), transport and deposition in different environments, especially in soil (II), the toxicological effects on edaphic fauna (III), potential markers and detection in environmental samples for monitoring (IV), preliminary risk characterization, using Forlanini Urban Park, Milan (Italy), as an example of an urban park (V), and risk mitigation measures as possible future proposals for sustainability (VI). Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

14 pages, 1286 KiB  
Systematic Review
Global Research Activities on Micro(nano)plastic Toxicity to Earthworms
by Wenwen Gong, Haifeng Li, Jiachen Wang, Jihua Zhou, Haikang Zhao, Xuexia Wang, Han Qu and Anxiang Lu
Toxics 2023, 11(2), 112; https://doi.org/10.3390/toxics11020112 - 24 Jan 2023
Cited by 6 | Viewed by 3129
Abstract
Micro(nano)plastics are emerging contaminants that have been shown to cause various ecotoxicological effects on soil biota. Earthworms, as engineers of the ecosystem, play a fundamental role in soil ecosystem processes and have been used as model species in ecotoxicological studies. Research that evaluates [...] Read more.
Micro(nano)plastics are emerging contaminants that have been shown to cause various ecotoxicological effects on soil biota. Earthworms, as engineers of the ecosystem, play a fundamental role in soil ecosystem processes and have been used as model species in ecotoxicological studies. Research that evaluates micro(nano)plastic toxicity to earthworms has increased greatly over the last decade; however, only few studies have been conducted to highlight the current knowledge and evolving trends of this topic. This study aims to visualize the research status and knowledge structure of the relevant literature. Bibliometrics and visualization analyses were conducted using co-citations, cooperation networks and cluster analysis. The results showed that micro(nano)plastic toxicity to earthworms is an emerging and increasingly popular topic, with 78 articles published from 2013 to 2022, the majority of which were published in the last two years. The most prolific publications and journals involved in this topic were also identified. In addition, the diversity of cooperative relationships among different countries and institutions confirmed the evolution of this research field, in which China contributed substantially. The high-frequency keywords were then determined using co-occurrence analysis, and were identified as exposure, bioaccumulation, soil, pollution, toxicity, oxidative stress, heavy metal, microplastic, Eisenia foetida and community. Moreover, a total of eight clusters were obtained based on topic knowledge clustering, and these included the following themes: plastic pollution, ingestion, combined effects and the biological endpoints of earthworms and toxic mechanisms. This study provides an overview and knowledge structure of micro(nano)plastic toxicity to earthworms so that future researchers can identify their research topics and potential collaborators. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

25 pages, 2464 KiB  
Review
Current Progress and Open Challenges for Combined Toxic Effects of Manufactured Nano-Sized Objects (MNO’s) on Soil Biota and Microbial Community
by Bismillah Mubeen, Ammarah Hasnain, Jie Wang, Hanxian Zheng, Syed Atif Hasan Naqvi, Ram Prasad, Ateeq ur Rehman, Muhammad Amir Sohail, Muhammad Zeeshan Hassan, Muhammad Farhan, Muhammad Altaf Khan and Mahmoud Moustafa
Coatings 2023, 13(1), 212; https://doi.org/10.3390/coatings13010212 - 16 Jan 2023
Cited by 20 | Viewed by 4406
Abstract
Soil is a porous matrix containing organic matter and minerals as well as living organisms that vary physically, geographically, and temporally. Plants choose a particular microbiome from a pool of soil microorganisms which helps them grow and stay healthy. Many ecosystem functions in [...] Read more.
Soil is a porous matrix containing organic matter and minerals as well as living organisms that vary physically, geographically, and temporally. Plants choose a particular microbiome from a pool of soil microorganisms which helps them grow and stay healthy. Many ecosystem functions in agrosystems are provided by soil microbes just like the ecosystem of soil, the completion of cyclic activity of vital nutrients like C, N, S, and P is carried out by soil microorganisms. Soil microorganisms affect carbon nanotubes (CNTs), nanoparticles (NPs), and a nanopesticide; these are called manufactured nano-objects (MNOs), that are added to the environment intentionally or reach the soil in the form of contaminants of nanomaterials. It is critical to assess the influence of MNOs on important plant-microbe symbiosis including mycorrhiza, which are critical for the health, function, and sustainability of both natural and agricultural ecosystems. Toxic compounds are released into rural and urban ecosystems as a result of anthropogenic contamination from industrial processes, agricultural practices, and consumer products. Once discharged, these pollutants travel through the atmosphere and water, settling in matrices like sediments and groundwater, potentially rendering broad areas uninhabitable. With the rapid growth of nanotechnology, the application of manufactured nano-objects in the form of nano-agrochemicals has expanded for their greater potential or their appearance in products of users, raising worries about possible eco-toxicological impacts. MNOs are added throughout the life cycle and are accumulated not only in the soils but also in other components of the environment causing mostly negative impacts on soil biota and processes. MNOs interfere with soil physicochemical qualities as well as microbial metabolic activity in rhizospheric soils. This review examines the harmful effect of MNOs on soil, as well as the pathways used by microbes to deal with MNOs and the fate and behavior of NPs inside the soils. Full article
Show Figures

Figure 1

16 pages, 4040 KiB  
Article
Synthesis and Characterisation of a Graphene Oxide-Gold Nanohybrid for Use as Test Material
by Taiwo Hassan Akere, Aline M. Z. de Medeiros, Diego Stéfani T. Martinez, Bashiru Ibrahim, Hanene Ali-Boucetta and Eugenia Valsami-Jones
Nanomaterials 2023, 13(1), 33; https://doi.org/10.3390/nano13010033 - 21 Dec 2022
Cited by 5 | Viewed by 2770
Abstract
This paper reports the synthesis and characterization of a graphene oxide–gold nanohybrid (GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of [...] Read more.
This paper reports the synthesis and characterization of a graphene oxide–gold nanohybrid (GO-Au) and evaluates its suitability as a test material, e.g., in nano(eco)toxicological studies. In this study, we synthesised graphene oxide (GO) and used it as a substrate for the growth of nano-Au decorations, via the chemical reduction of gold (III) using sodium citrate. The GO-Au nanohybrid synthesis was successful, producing AuNPs (~17.09 ± 4.6 nm) that were homogenously distributed on the GO sheets. They exhibited reproducible characteristics when characterised using UV-Vis, TGA, TEM, FTIR, AFM, XPS and Raman spectroscopy. The nanohybrid also showed good stability in different environmental media and its physicochemical characteristics did not deteriorate over a period of months. The amount of Au in each of the GO-Au nanohybrid samples was highly comparable, suggesting a potential for use as chemical label. The outcome of this research represents a crucial step forward in the development of a standard protocol for the synthesis of GO-Au nanohybrids. It also paves the way towards a better understanding of the nanotoxicity of GO-Au nanohybrid in biological and environmental systems. Full article
Show Figures

Figure 1

20 pages, 5311 KiB  
Article
Trophic Transfer of Single-Walled Carbon Nanotubes at the Base of the Food Chain and Toxicological Response
by Majed Al-Shaeri, Lynn Paterson, Margret Stobie, Paul Cyphus and Mark G. J. Hartl
Nanomaterials 2022, 12(24), 4363; https://doi.org/10.3390/nano12244363 - 7 Dec 2022
Cited by 3 | Viewed by 2185
Abstract
The potential for trophic transfer of single-walled carbon nanotubes (SWCNTs) was assessed using the green algae Tetraselmis suecica and the blue mussel Mytilus edulis in a series of laboratory experiments. Swanee River Natural Organic Matter (SRNOM)-dispersed SWCNTs were introduced into growing algal cultures. [...] Read more.
The potential for trophic transfer of single-walled carbon nanotubes (SWCNTs) was assessed using the green algae Tetraselmis suecica and the blue mussel Mytilus edulis in a series of laboratory experiments. Swanee River Natural Organic Matter (SRNOM)-dispersed SWCNTs were introduced into growing algal cultures. Light microscopical observations, confirmed by scanning electronic microscopy (SEM) and Raman spectroscopy, showed that SWCNT agglomerates adhered to the external algal cell walls and transmission electronic microscopy (TEM) results suggested internalization. A direct effect of SWCNT exposure on the algae was a significant decrease in growth, expressed as chlorophyll a concentration and cell viability. Mussels, fed with algae in the presence of SWCNTs, led to significantly increased pseudofaeces production, indicating selective feeding. Nevertheless, histological sections of the mussel digestive gland following exposure showed evidence of SWCNT-containing algae. Furthermore, DNA damage and oxidative stress biomarker responses in the mussel haemocytes and gill tissue were significantly altered from baseline values and were consistent with previously observed responses to SWCNT exposure. In conclusion, the observed SWCNT-algal interaction demonstrated the potential for SWCNT entrance at the base of the food chain, which may facilitate their trophic transfer with potential consequences for human exposure and health. Full article
(This article belongs to the Special Issue Advances in Toxicity of Nanoparticles in Organisms)
Show Figures

Figure 1

16 pages, 693 KiB  
Review
The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities
by Chunshui Sun, Ke Hu, Dashuai Mu, Zhijun Wang and Xiuxia Yu
Microorganisms 2022, 10(10), 2080; https://doi.org/10.3390/microorganisms10102080 - 21 Oct 2022
Cited by 24 | Viewed by 3525
Abstract
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people’s productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of [...] Read more.
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people’s productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of reports have proved that nanomaterials have certain toxic effects on bacteria, algae, plants, invertebrates, mammalian cell lines and mammals in these environments, but people still know little about the ecotoxicology of nanomaterials. Most relevant studies focus on the responses of model strains to nanomaterials in pure culture conditions, but these results do not fully represent the response of microbial communities to nanomaterials in natural environments. Over the years, the effect of nanomaterials infiltrated into the natural environment on the microbial communities has become a popular topic in the field of nano-ecological environment research. It was found that under different environmental conditions, nanomaterials have various effects on the microbial communities. The medium; the coexisting pollutants in the environment and the structure, particle size and surface modification of nanomaterials may cause changes in the structure and function of microbial communities. This paper systematically summarizes the impacts of different nanomaterials on microbial communities in various environments, which can provide a reference for us to evaluate the impacts of nanomaterials released into the environment on the microecology and has certain guiding significance for strengthening the emission control of nanomaterials pollutants. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 2106 KiB  
Article
Exposure of Midge Larvae (Chironomus riparius) to Graphene Oxide Leads to Development Alterations
by Lauris Evariste, Laura Lagier, Chloé Chary, Antoine Mottier, Stéphanie Cadarsi, Eric Pinelli, Emmanuel Flahaut, Laury Gauthier and Florence Mouchet
Toxics 2022, 10(10), 588; https://doi.org/10.3390/toxics10100588 - 5 Oct 2022
Cited by 2 | Viewed by 2438
Abstract
Despite the fast-growing use and production of graphene-based nanomaterials (GBMs), data concerning their effects on freshwater benthic macroinvertebrates are scarce. This study aims to investigate the effects of graphene oxide (GO) on the midge Chironomus riparius. Mortality, growth inhibition, development delay and [...] Read more.
Despite the fast-growing use and production of graphene-based nanomaterials (GBMs), data concerning their effects on freshwater benthic macroinvertebrates are scarce. This study aims to investigate the effects of graphene oxide (GO) on the midge Chironomus riparius. Mortality, growth inhibition, development delay and teratogenicity, assessed using mentum deformity analysis, were investigated after a 7-day static exposure of the first instar larvae under controlled conditions. The collected data indicated that the survival rate was not impacted by GO, whereas chronic toxicity following a dose-dependent response occurred. Larval growth was affected, leading to a significant reduction in larval length (from 4.4 to 10.1%) in individuals reaching the fourth instar at any of the tested concentrations (from 0.1 to 100 mg/L). However, exposure to GO is not associated with an increased occurrence of mouthpart deformities or seriousness in larvae. These results highlight the suitability of monitoring the larval development of C. riparius as a sensitive marker of GO toxicity. The potential ecological consequences of larval size decrease need to be considered for a complete characterization of the GO-related environmental risk. Full article
(This article belongs to the Special Issue Evaluation of the Toxic and Ecotoxic Potential of Nanoparticles)
Show Figures

Figure 1

17 pages, 2572 KiB  
Article
Ascorbate Supplementation: A Blessing in Disguise for Tomato Seedlings Exposed to NiO Nanoparticles
by Sofia Spormann, Filipa Sousa, Fátima Oliveira, Vasco Ferreira, Bárbara Teixeira, Cláudia Pereira, Cristiano Soares and Fernanda Fidalgo
Agriculture 2022, 12(10), 1546; https://doi.org/10.3390/agriculture12101546 - 25 Sep 2022
Cited by 5 | Viewed by 2598
Abstract
While nanomaterials offer wide-ranging solutions, their intensified use causes environmental contamination, posing ecotoxicological risks to several organisms, including plants. It becomes important to understand the phytotoxicity of NMs and find sustainable strategies to enhance plant tolerance to these emerging contaminants. Thus, this study [...] Read more.
While nanomaterials offer wide-ranging solutions, their intensified use causes environmental contamination, posing ecotoxicological risks to several organisms, including plants. It becomes important to understand the phytotoxicity of NMs and find sustainable strategies to enhance plant tolerance to these emerging contaminants. Thus, this study aimed to evaluate the potential of ascorbic acid (AsA) in increasing the tolerance of in vitro grown tomato seedlings to nickel oxide nanomaterials (nano-NiO). Seeds of Solanum lycopersicum cv. Micro-Tom were germinated in culture medium containing 30 mg/L nano-NiO, 150 mg/L AsA, or a combination of both. A control situation was included. Surprisingly, single AsA administration in the medium impaired the growth of tomato seedlings and increased the lipid peroxidation of biomembranes. Nonetheless, plant development was more severely repressed by nano-NiO, with evident macroscopic effects that did not translate into serious redox disorders. Still, proline and AsA levels diminished in response to nano-NiO, while glutathione and phenols increased. Despite the negative effects of AsA on non-stressed plants, nano-NiO-induced stress was counteracted by AsA supply, with enhanced levels of glutathione and phenols. Overall, the supplementation with AsA proved to be a “blessing in disguise” for plants under nano-NiO-induced stress, improving antioxidant capacity and activating other defense mechanisms. Full article
Show Figures

Figure 1

Back to TopTop