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Abstract: The aim of this study was to determine the effects of silver nanoparticles (AgNPs) on the
morphology and enzymatic activity of butterfly splitfin (Ameca splendens). Individuals of both sexes,
aged about five months, were exposed to AgNPs at concentrations of 0 (control group), 0.01, 0.1, and
1.0 mg/dm3 for 42 days. On the last day of the experiment, the fish were euthanized, subjected to
standard histological processing (anterior intestine, liver, and gonads), and analysed for digestive
enzyme activity in the anterior intestine and oxidative stress markers in the liver. Fish in the AgNP
0.01 and 0.1 groups had the lowest anterior intestinal fold and enterocyte height. However, there
were no statistically significant changes in the digestive enzyme activity in the anterior intestine.
Analysis of enzymatic activity in the liver showed an increase in superoxide dismutase activity in
fish in the AgNP 0.1 group. Histological analyses showed that AgNPs inhibited meiotic divisions at
prophase I in a non-linear manner in ovaries and testes. In the AgNP 0.1 and 1.0 groups, the area
occupied by spermatocytes was lower compared to the other groups. These results indicate that
exposure to AgNPs may lead to disturbances in morphology and enzymatic activity in the liver and
intestine and may lead to disruption of reproduction in populations.

Keywords: enzymatic activity; Goodeidae fishes; histology; nanoecotoxicology; silver nanoparticles

1. Introduction

Silver nanoparticles (AgNPs) are released into the environment as a result of both
natural and anthropogenic processes. The second is more significant—the effect of envi-
ronmental contamination as a consequence of the use of nanomaterials. They pollute both
water and terrestrial areas at every stage of the product life cycle [1–8]. To date, the toxic
effects of silver nanoparticles and gold nanoparticles on gonads and fertility, among others,
have been described [9–12], including the disruption of meiotic divisions during spermato-
genesis and oogenesis, induction of oxidative stress, genotoxicity, endocrine disruption,
and stimulation of apoptosis in ovarian follicle cells [12,13].

The effects of nanoxenobiotics on gonadal development and fertility of fish are still
poorly understood, mainly because of the use of research fish models characterised by
oviparity, which is the most basic reproductive strategy among this group of animals.
Viviparity is a type of reproduction that evolved from oviparity to increase the survival
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rate of offspring [14] and involves embryonic development in the mother’s body. One
type of viviparity is matrotrophic viviparity, wherein the embryo is nourished by the
placenta or other structures that perform similar functions. Goodeidae is a family of
viviparous Cyprinodontiformes fishes whose natural occurrence is limited to the Mexican
Plateau. It is a small family that, depending on the systematic view, includes 38 [15] to
51 (fishbase.org, accessed on 28 August 2023) species of fish, most of which are endemic, of
which butterfly splitfin (Ameca splendens) is used as a model fish in scientific studies [16–18].
The butterfly splitfin is characterised by its small body size, with adults reaching body
lengths of approximately 75–100 mm [19]. They are omnivorous fish, although under
natural conditions their main source of nutrients is algae or small invertebrate animals such
as mosquito larvae, copepods, or oligochaeta [19]. This species is commonly maintained
in aquaria as an ornamental fish (fishbase.org, accessed on 28 August 2023). In addition,
the histological structure of the ovaries has been studied and revealed asynchronous
development, indicating the occurrence of multiple reproductive cycles in this species. This
allows for the obtaining of numerous offspring, usually between 11 and 17 individuals
per litter, and sometimes even more, depending on storage conditions [19]. All viviparous
species belonging to the family Goodeidae and, with the exception of Ataeniobius toweri,
have a unique structure called the ‘trophotenic placenta’, a type of pseudoplacenta that has
the function of absorbing nutrients from the mother [20,21].

Another area under study is the effect of nanoproducts on gastrointestinal physiology.
Changes in liver morphology and physiology as a result of the negative effects of NPs on
this organ have been previously described [22–24], but the effects of NPs on the gut remain
poorly described. Dias de Cunha and Brito-Gitirana [25] observed that exposure of ze-
brafish (Danio rerio) to titanium dioxide nanoparticles can lead to abnormal morphology of
intestinal mucosal cells, including vacuolization. In addition, such changes as shedding of
cells and necrosis of mucosal cells as well as degeneration of mucosal cells.were observed in
the intestines of common carp (Cyprinus carpio) exposed to AgNPs long term [26]. Moreover,
Nile tilapia (Oreochromis niloticus) fed a diet enriched with sodium butyrate nanoparticles
showed increased intestinal fold length/width, crypt depth, surface absorption area, and
number of goblet cells compare with the control group [27].

As suggested by Wang et al. [28], nanoproducts can also affect the activities of various
enzymes, including digestive enzymes. These authors showed that copper nanoparticles
can inhibit protease, amylase, and lipase activity in the digestive tract. However, serum
amylolytic, proteolytic, and lipolytic activities were shown to increase in Nile tilapia fed
feed with sodium butyrate nanoparticles [27]. These contradictory results regarding the
effect of nanoparticles on enzymatic activity demonstrate that their impact is not fully
understood and requires further research.

The exemplary studies by other authors indicate that the toxic effect of NPs can be
observed across the entire organism of the fish, leading to disruption of homeostasis and
even death of the individual [29,30].

Therefore, the aim of this study was to determine the long-term effects of silver
nanoparticles coated with polyvinylpyrrolidone (AgNPs PvP) on the morphology and
enzymatic activity of a model fish species—butterfly splitfin (Ameca splendens). The effects
of the nanoxenobiotic on the histological structure of the liver and anterior intestine were
analysed, as well as the activity of digestive enzymes in the intestine and markers of
oxidative stress in both organs. In addition, the effects of the AgNPs on spermatogenesis
and oogenesis were histologically analysed.

2. Results

During the experiment, no mortality was observed in any of the experimental or
control groups (Figure 1). On the last day of the experiment, there were no statistically
significant differences in the body weight, body length, or Fulton’s fitness index (Figure 1).
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Figure 1. Morphometric measurements of butterfly splitfin treated with AgNPs from 0.01 to
1.0 mg/dm3: (A) body weight (g); (B) Fulton condition factor; (C) standard body length (mm);
(D) total body length at the end of the experiment (mm).

2.1. Histology of Anterior Intestine

The analysis of histological structure of the anterior intestine revealed that the AgNP
1.0 group showed the longest anterior intestinal folds, the height of which differed signif-
icantly (p ≤ 0.05) compared to the values of this parameter in the other AgNP-exposed
groups (Figure 2). The structure of the anterior intestinal wall in all groups was preserved
with a properly formed mucosa containing numerous goblet cells. Enterocytes in the
groups of fish exposed to AgNPs concentrations of 0.01 mg/dm3 and 0.1 mg/dm3 showed
statistically significantly (p ≤ 0.05) lower heights of enterocytes compared to fish in the
other experimental groups (Figure 2). Similarly, the lowest heights of supranuclear areas
were observed in the AgNP 0.01 and 0.1 groups, and the values in these groups were
significantly (p ≤ 0.05) different compared to those in the control and AgNP 1.0 groups
(Figure 2). The highest supranuclear height (p ≤ 0.05) was found in the group of fish
exposed to AgNP 1.0 mg/dm3 (Figure 2).
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Figure 2. The histomorphometric parameters of fish anterior intestines and livers on the last day of the
experiment: (A) height of anterior intestinal folds (µm); (B) height of enterocytes (µm); (C) supranu-
clear height of enterocytes (µm); (D) width of lamina propria (µm); (E) area of hepatocytes (µm2).
Mean values ± SD are shown. Different letters indicate the statistical differences between groups
(p ≤ 0.05).
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In the experimental groups, there was local detachment of the epithelium from the
middle lamina propria at the top of the intestinal folds, along with the presence of lym-
phocytes or small inflammatory infiltrates in the mucosa, compared to the control group
(mainly lymphocytes, eosinophils, and macrophages) (Figure 3A–D). Analysis of the width
of the lamina propria in the anterior intestinal folds showed that fish exposed to AgNPs
0.01 and 0.1 mg/dm3 had the narrowest lamina propria compared to the other experimental
groups, and the differences were statistically significant (p ≤ 0.05) (Figure 2). At the
base of the intestinal folds there was infiltration of inflammatory cells, mainly lympho-
cytes, macrophages, and eosinophilic cells. Macrophages were also present in the mucosa
and submucosa throughout their height, along with deposits of pigment granules in the
cytoplasm (Figure 3B–D).
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Figure 3. The histological structure of the anterior intestine in butterfly splitfin from the control group
(A) and the groups treated with AgNPs from 0.01 mg/dm3 (B); 0.1 mg/dm3 (C); and 1.0 mg/dm3

(D). Lesions of varying severity were observed in all fish in the experimental groups. In control fish,
goblet cells (Gb) and singular lymphocyte infiltration (SiL) were observed in the intestinal mucosa.
The mucosa of the experimental fish was often infiltrated with lymphocytes (singular—SiL, or as
a cluster—ClL), apoptotic-like cells in the apical of folds (Ap), local exfoliation (LoEx). Details of
histopathological changes and immune cells in the anterior intestine of fish from the AgNP 0.1 (E)
and AgNP 1.0 (F) group. Eosinophilic immune cells (filled arrowhead) and macrophages (empty
arrowhead). H&E staining, scale bars—50 µm (A–D); scale bars—25 µm (E,F).
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2.2. Histology of Liver

Histomorphometric measurements showed that the fish in the AgNP 1.0 mg/dm3

group had the highest average cross-sectional area through hepatocytes; however, there
were no statistical differences in the values of this parameter between the experimental
groups (Figure 3). The livers of the studied fish were characterized by varying steatosis
of hepatocytes. The predominant type of steatosis was microvesicular steatosis, with some
individuals in the group of fish exposed to AgNP 1.0 mg/dm3 also showing white adipose
tissue in the exocrine pancreatic parenchyma adjacent to the liver (Figure 4A–D). The
normal morphological and histological structure of the liver was preserved in the control
group and the AgNP 0.1 mg/dm3 group. In the other groups, a disordered cytoarchitecture
of the liver parenchyma, consisting of hepatocytes diffusion and compressed sinusoids, was
observed. In all analysed fish from all experimental groups, small eosin and PAS-positive
granules were present in the cytoplasm of hepatocytes, indicating the presence of glycogen
(Figure 4). Yellow pigment granules and melanomacrophage centres were also visible
among the hepatocytes, especially at higher concentrations of AgNPs (Figure 4).

2.3. Histology of the Ovaries

Morphological analysis revealed no pathological changes in the female gonads. Oogo-
nia and oocytes at different stages of development were observed in the ovarian cortex
(Figure 5). The total number of female germinal cells counted and summed in the 6 tested
females from each experimental group differed between groups. The highest number of
female germinal cells (489 cells) was found in the ovaries of fish in the control group. A
lower number was found in the AgNP 0.01 and AgNP 1.0 groups (300 cells and 305 cells,
respectively), while the lowest number of germinal cells was observed in females from the
AgNP 0.1 group (128 cells).

Histomorphometric analysis showed no changes in the number of oogonia (0–25 µm
diameter) between the control group and the AgNP 0.01 and AgNP 0.1 groups, where
oogonia accounted for more than 10% of all germinal cells in the female gonads (Figure 5).
The AgNP 1.0 group had fewer oogonia than the other groups and accounted for 7.2% of all
germinal cells in the ovary (Figure 5). The highest proportion (above 70%) of previtellogenic
oocytes was found in the gonads of fish from all experimental groups (Figure 5). The largest
number of oocytes of this stage was observed in the gonads of fish exposed to AgNP 0.1.
However, the distribution of stages 1, 2, and 3 was unequal (Figure 5). The largest number
of oocytes at stage 2 (50–110 µm) and stage 3 (110–175 µm) was observed in the AgNP 0.1
group, while this experimental group had the fewest oocytes at stage 1 (Figure 5), where
the proportion was more than twice as low compared to the other experimental groups. In
contrast, the fewest oocytes at stage 3 were observed in sections throughout the ovaries
of fish in the AgNP 0.01 group (Figure 5). Vitellogenic oocytes were the least frequently
observed in the gonads of fish exposed to AgNP 0.1 mg/dm3, where their proportion
was 5.4% (Figure 5). Very few stage-5 oocytes were found in these gonads and no stage-6
oocytes were observed (Figure 5).

2.4. Histology of the Testes

The presence of spermatogonia, spermatocytes, and spermatids was observed in the
cross-sections of the testes of the analysed fish from all experimental groups. In addition,
morphological analysis did not reveal any pathological changes in the structure of the testis
or the ultrastructure of male germinal cells in fish from all investigated groups (Figure 6E–J).
Ultrastructural analysis revealed spermatogonia located at the base of the seminal tubules,
which were mitotically divided (Figure 6G,J). Spermatocytes were located inside the seminal
tubules above the areas occupied by the spermatogonia (Figure 6F,I). No changes indicative
of pathological meiosis were observed in any of the experimental groups. Furthermore,
microscopic image analysis of spermatids and spermatozoa revealed no abnormalities in
sperm head formation, chromatin condensation, or strand formation (Figure 6E,H). These
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germinal cells were located above the area occupied by the spermatocytes and were closest
to the seminal duct.
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Figure 4. Cross-section through the liver of the butterfly splitfin from (A) control group; (B) AgNP
0.01 group; (C) AgNP 0.1 group; (D) AgNP 1.0 group. (E) Control group; (F) AgNP 0.01 group;
(G) AgNP 0.1 group; (H) AgNP 1.0 group. H&E staining (A–D); AB/PAS staining (E–H). Scale bars
50 µm (A–D); scale bars 100 µm (E–H).
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Figure 5. Morphology and histomorphometry of the female gonad butterfly splitfin. (A) Percentage
of the diameter of female germinal cells (oogonia, previtellogenic oocytes and vitellogenic oocytes) in
the experimental groups studied; (B) percentage of the diameter of female germinal cells according
to developmental stages described by Tinguely [15]. Sections through the female gonad: (C) from
the control group; (D) from the AgNP 1.0 group. PrO—previtellogenic oocytes; VO—vitellogenic
oocytes. H&E staining. 500 µm scale bar.
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Figure 6. Cross-section through the male gonad of the butterfly splitfin from: (A) Control group;
(B) AgNP 0.01 group; (C) AgNP 0.1 group; (D) AgNP 1.0 group. Ultrastructure of male germinal
cells of fish from the control group (E–G) and AgNP 1.0 group (H–J)—spermatids (E,H), spermato-
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However, AgNPs affected the population of male germinal cells. The area occupied by
spermatogonia was the highest in the testes of fish from the AgNP 1.0 group (Figure 7). The
largest area occupied by spermatocytes in the testis was observed in sections through the
male gonad of the butterfly splitfin exposed to AgNPs at a concentration of 0.01 mg/dm3

(more than 60% of the area), while the smallest was in the AgNP 1.0 group (less than 40%
of the area). The largest area occupied by spermatids was found in the gonads of fish in
the AgNP 0.1 group (54.4% of the area), whereas the smallest area was found in the AgNP
0.01 group (33.7% of the area) (Figure 7).

2.5. Enzymatic Activity in Anterior Intestine

Analysis of digestive enzyme activity showed no statistically significant differences
between the experimental groups (Figure 8). Regarding the ACP, higher activity was
found in the intestines of fish in the AgNP 0.01 and AgNP 1.0 groups (Figure 8). In
contrast, ALP activity decreased with increasing concentrations of the xenobiotic to which
the fish were exposed (Figure 8). Amylolytic (amylase), lipolytic (lipase), and proteolytic
(trypsin) activities did not differ between the experimental groups. There was only a slight
reduction in digestive activity in fish in the AgNP 0.1 group, but no statistically significant
differences were found (Figure 8). In addition, a large variation in the activities of these
digestive enzymes was observed between the analysed individuals in the experimental
group (Figure 8).
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2.6. Enzymatic Activity in Liver

In the liver parenchyma of fish exposed to the tested AgNPs, an increase in ACP and
ALP activity was observed depending on the concentration of the tested xenobiotic. In
the case of ACP, statistically significant differences (p ≤ 0.05) were found in the activity
of this enzyme between the AgNP 0.01 and AgNP 0.1 groups (Figure 9). On the other
hand, ALP expressed the highest statistically significant activity (p ≤ 0.05) of this enzyme
in the livers of fish from the AgNP 1.0 group compared to the control group (Figure 9).
AgNP concentration did not affect GPX activity, whereas there was a statistically significant
increase (p ≤ 0.05) in SOD activity in the AgNP 0.1 group compared to fish in the control
and AgNP 0.01 groups (Figure 9).
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3. Discussion

The rapid development of nanotechnology applies mainly to the food, textile, and
construction industries, as well as to medicine, cosmetology, pharmaceuticals, and others.
A particularly popular nanomaterial is AgNPs, which are characterised by antiseptic
and antibacterial properties, among others [31]. In recent years, the global production
of nanosilver has exceeded 550 tons per year [32]. This increase in production, and the
popularity of AgNPs in various spheres of life, raises the possibility of interaction of
this nanoxenobiotic with the terrestrial and aquatic environments, which may also affect
human health. As suggested by Ferdous and Nemmar [33], the effects of AgNPs on
humans as well as the environment are not fully understood; therefore, it is necessary
to explore the existing gap related to the risk assessment of exposure to AgNPs. It is
particularly important to know the effects of long-term exposure to AgNPs at the molecular,
organism, and ecosystem levels [34,35]. In particular, industrial wastewater removal and
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erosion of engineering materials in household products are examples of the potential for
their introduction into the environment [36]. It is estimated that up to 800 t of AgNPs
may be released into water bodies worldwide each year [37]. This results in predicted
environmental concentrations of AgNPs of approximately 10–1800 ng/L in surface water
and 40–80,000 µg/kg in sediments [32]. Therefore, it is important to investigate the effects
of AgNPs on butterfly splitfin. The obtained results indicate that exposure to AgNPs
may lead to disturbances in morphology and enzymatic activity in the liver and anterior
intestine and may lead to disruption of meiotic divisions in the testes and ovaries. It
was observed that higher concentrations of AgNPs could interfere with the meiosis, as
previously observed by the authors in earlier studies [12]. However, the effects of AgNPs
on gastrointestinal histology and digestive enzyme activities are still poorly understood,
and the results presented here provide a better understanding of this phenomenon.

The mortality of organisms is a basic parameter that indicates the toxic effects of the
xenobiotics. In the present study, no mortality was observed among butterfly splitfins
subjected to long-term exposure to AgNPs. Moreover, no statistically significant differences
were observed in the other growth parameters of the fish: weight, total and standard
length, or condition factor. The results obtained may be surprising, since many publications
indicate that metal nanoparticles can benefit the growth of various fish species [38–40] or
are toxic to aquatic organisms. This negative effect can manifest as mortality, with a linear
relationship not always found between increasing AgNPs concentrations and increased
mortality [12] or inhibition of fish growth [32,41].

Many factors influence fish growth, but food intake and digestive processes in the
digestive tract play a crucial role. To date, the effects of AgNPs on the digestive physiology
of various fish species are poorly understood. Analysis of the morphology of the anterior
intestine of the butterfly splitfin showed statistically significant lower intestinal folds in
groups exposed to AgNPs at concentrations of 0.01 and 0.1 mg/dm3, as well as lower
enterocytes and narrower lamina propria compared to the values of these parameters in
fish from the control group. This affects the reduction of the absorption surface area and,
consequently, can lead to malnutrition. Similarly, Shahare et al. [42] found that AgNPs
affected the mucosa of the small intestine of mice by damaging the brush border and
intestinal glands. These histopathological changes can significantly reduce the absorption
of nutrients from the intestinal lumen. In contrast, the values of these parameters were
statistically significantly higher in the AgNP 1.0 experimental group. This lack of linear
toxicity of AgNPs has already been found in previous studies and may be related to
the aggregation of nanoxenobiotics [12]. In addition, the use of PvP-coated AgNPs in
the experiment affected their stabilization and limited their potential to bind to proteins,
making this nanoxenobiotic less available to the organism (bioavailability) [43].

Similarly, a reduction in the efficiency of absorption of food digestion products during
exposure of common carp to AgNPs was observed by Kakakhel et al. [26]. In addition,
Khorshidi et al. [44] observed that AgNPs reduce lipase and ALP activity and, consequently,
lower growth rates. In contrast, no statistically significant differences were observed in the
activity of the enzymes studied in the tested butterfly splitfins. However, in general, the
activity of digestive enzymes is subject to strong variation between individuals, which may
suggest the plasticity and adaptability of the enzyme apparatus to changing conditions,
not only nutritional, but also environmental. Moreover, as Mwaanga et al. [45] suggest, the
effect of sublethal doses of nanoxenobiotics may affect biochemical parameters faster than
morphology, physiology, and growth parameters.

Unlike in the anterior intestine, the effects of AgNPs on liver function are better
understood. The following were most commonly observed in the liver parenchyma of fish
exposed to silver and other metal nanoparticles: changes in the size of hepatocytes—often
associated with their vacuolization—necrosis, formation of melanomacrophage centres, and
infiltration of immune cells or increased deposition of Browicz–Kupffer cells [22,24,46,47].
In the tested fish, changes in the surface area of liver cells were observed (the smallest
in the control group, the largest in the AgNP 1.0 group, with no statistically significant
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differences), vacuolisation of hepatocytes was observed, and melanomacrophage centres
were formed in the AgNP-exposed groups. This indicates a toxic effect of the studied
nanoxenobiotic on liver homoeostasis, although some of the histopathological changes
were not correlated with the AgNP concentration. On the other hand, an increase in the
activity (without statistically significant differences found) of ACP and ALP in the livers
may indicate damage to this organ [48]. Many authors have reported changes in the activity
of enzymes responsible for antioxidant protection during exposure to nanoparticles [12].
In the fish studied, a statistically significant increase in SOD activity was found in the
liver in the AgNP 0.1 mg/dm3 group. It is the enzyme responsible for deactivating free
radicals formed in the body [49], becoming the first line of defence against oxidative stress.
In contrast, in the group exposed to the lowest concentration of AgNPs, comparable to
that modelled in the environment, SOD activity was comparable to that found in fish
from the control group. The increase in SOD activity in the livers of fish exposed to high
concentrations of AgNPs compared to the level of activity found in the control group is
in accordance with the observations of Vrček et al. [50]. As found in human hepatoma
cells in vitro, the cells exposed to silver ions and AgNPs are characterised by depletion of
GSH activity, increased production of ROS, and increased SOD activity. This may indicate
progressive oxidative stress. However, in the viviparous species Chapalichthys pardalis,
which is related to the butterfly splitfin, Valerio-García et al. [51] observed a decrease in
SOD activity, as well as GPX activity. In the analysed butterfly splitfins, SOD activity
increased, while GPX activity was not statistically significantly different, although lower
activity than that found in the control group was observed in fish exposed to AgNPs at
concentrations of 0.01 and 0.1 mg/dm3. These observations may confirm the nonlinear
activity of the studied PvP-coated AgNPs and their tendency to agglomerate, in accordance
with the mechanism proposed by Szudrowicz et al. [12].

The effects of nanoparticles on the oogenesis in various fish species are still poorly
understood. It has been shown that exposure of fish to aqueous solutions of metal nanopar-
ticles can disrupt meiotic divisions [12] but also induce cytotoxicity and genotoxicity [10]
in the female gonad. In the butterfly splitfins studied, it was shown that AgNPs at a
concentration of 0.1 mg/dm3 had a strong effect on the process of oogenesis. In fish from
this group, the highest percentage of previtellogenic oocytes was observed compared to the
other experimental groups. However, there was a clear imbalance between the proportion
of stage 1 and stage 2 oocytes, indicating the inhibition of meiotic divisions in the first
stages. In contrast, the proportion of oocytes at advanced stages of meiotic division (stages
5 and 6) was the lowest compared to that in the other experimental groups, indicating
an obvious inhibition of oogenesis and a reduction in reproductive potential. This strong
effect of AgNPs at a concentration of 0.1 mg/dm3 was also expressed in a drastic reduction
in the total number of female germinal cells in the gonads of fish from this experimental
group. Similar observations were described by Orbea et al. [52], who found that the ex-
posure of zebrafish to PVP/PEI-coated AgNPs caused a decrease in the number of eggs
laid by females. It is possible that the long-term exposure of the tested butterfly splitfins to
silver nanoparticle solutions may have affected the hormonal regulation of oogenesis. As
indicated by Degger et al. [9], AgNPs affect the process of steroidogenesis in fish, which,
as a consequence, may lead to the disruption of the secretion of hormones responsible for
the regulation of oogenesis. As suggested by Szudrowicz et al. [12], this may affect fertility
disorders in the fish populations.

Many authors have indicated that AgNPs can penetrate the male gonad and can
infiltrate the blood/nucleus barrier, affecting spermatogenesis and reproductive poten-
tial [53,54]. Histological analysis showed no pathological changes in the male gonad
and did not confirm the presence of AgNPs in the testis. Similar observations regarding
the structure of the seminal tubules in the male gonads of the zebrafish were shown by
Szudrowicz et al. [12]. Similarly to oogenesis, during the development of male germinal
cells in the testes of fish exposed to silver nanoparticle solutions, many authors observed the
formation of oxidative stress, the development of pathological changes, and the disruption
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of sex hormone secretion [55–57]. In addition, disorders of spermatogenesis, spermiogene-
sis, and oocyte fertilization are often observed [12,55]. In the current study, AgNPs were
shown to affect spermatogenesis in the butterfly splitfin. The decrease in the proportion
of spermatids in the male gonads of fish exposed to the two highest concentrations of
AgNPs (0.1 and 1.0 mg/dm3) is particularly pronounced. This may be due to the depletion
of the meiotic potential of germinal cells during prolonged exposure, as confirmed by
Thakur et al. [55] in the testes of rats exposed to AgNPs. In contrast to the observations of
Fathi et al. [56] in the gonads of male rats, no decrease in the number of spermatogonia
was observed in the animals exposed to AgNPs. In the fish studied, there was even an
increase in the proportion of spermatogonia in the testes of butter splitfin exposed to AgNPs
1.0 mg/dm3, compared to fish in the control group and others exposed to AgNPs. This
effect of AgNPs in the tested fish may be related to the tendency of the nanoparticles used
in the experiment to agglomerate, which reduces the toxicity of the nanoproduct [12].

4. Materials and Methods
4.1. Scheme of the Experiment

The experiment was performed with the approval of the 2nd Local Ethical Committee
for Animal Experiments at the Warsaw University of Life Sciences (approval number
WAW2/009/2019, dated 30 January 2019).

The study material consisted of adult, sexually mature butterfly splitfin (Ameca splen-
dens) of approximately 5 months of age. The fish were kept in 15-L tanks at a density
of 2.5 individuals/dm3. Prior to the experiment, the fish in the aquaria underwent a
seven-day acclimatization. After acclimatisation, the fish were divided into four groups
according to the concentration of polyvinylpyrrolidone (PvP)-coated silver nanoparticles
(AgNPs PvP) to which they were exposed—0.01 mg/dm3, 0.1 mg/dm3, and 1.0 mg/dm3

for 42 days. Individuals in the control group were maintained in water without tested
xenobiotics. Each experimental group was conducted in 3 replicates with 6 individuals in
each tank—4 females and 2 males (n = 18 in each experimental group). Half of the water
volume in the tanks was changed every 24 h, and the level of xenobiotics was supple-
mented to the initial concentration. During the experiment, fish were fed twice a day ad
libitum with commercial feed: TetraMin (Tetra GmbH, Herrenteich, Germany) or Spirulina
Forte (Tropical, Chorzów, Poland) every other day at 9 a.m. and frozen Artemia at 4 p.m.
During the experiment, in accordance with the breeding requirements of the species, the
temperature difference between day and night was used (the average daily temperature
was 23.0 ± 3.2 ◦C). The total hardness of the water was in the range of 6–10 ◦n, while
the carbon hardness reached 5–6 ◦n. During the experiment, the pH of the water was
6.8 ± 0.2. No nitrite (NO2−) was detected in the water, and the amount of nitrate (NO3−)
was less than 20 mg/dm3. The day/night light regime lasted for 12 h each. At the end of
the experiment, the survival rates were assessed, and then all fish from each group were
anaesthetized with MS-222 solution (tricaine methanesulfonate, 3-amino-benzoic acid ethyl
ester, Sigma-Aldrich, St. Louis, MO, USA) and decapitated. The material was collected
for histological (light and electron microscopy) and biochemical analyses. The fish were
measured and weighed before decapitation, and, based on these measurements, the Fulton
condition factor was calculated using the formula [58]

K =
m

Si3
× 100 (1)

where:

m—body weight (g),
Si—body length (mm).

4.2. Characterization of Nanoparticles

The polyvinylpyrrolidone (PvP)-coated silver nanoparticles (AgNPs PvP) used in the
study were purchased from Sigma Aldrich (Schnelldorf, Germany, part number 576832-5G;
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less than 100 nm in diameter). This nanoxenobiotic has been used in previous studies.
Nanoparticle dilutions were prepared according to the previously described method:
AgNPs were suspended in water at 1000 mg/dm3 concentration and sonicated for 3 cycles
of 15 min each using Ultron U-505 ultrasonic cleaner (Ultron, Dywity, Poland) at 45 ◦C. To
confirm the characterisation of nanoparticles in solution, NPs and their agglomerates were
analysed by transmission electron microscopy, DLS analysis, and zeta potential analysis
according to the methods described by Szudrowicz et al. (2022) [12]. The results of these
analyses are presented in Table 1. The results of the analyses confirmed that the studied
AgNPs’ PvPs had a diameter smaller than 100 nm, and the diameters of their agglomerates
were larger than 200 nm (Table 1). The zeta potential ranged from −25 to −20 mV (Table 1).
A detailed description of the analysis of AgNPs has been presented by Szudrowicz et al.
(2022) [12].

Table 1. Characterisation of the AgNPs used in the experiment, according to Szudrowicz et al. (2022) [12].

Parameter Value

Hydrodynamic diameter range (DLS analysis) min. 39 nm; max. 93 nm

Diameter of agglomerates (DLS analysis) >202 nm

Diameter range (TEM analysis) min. 6.14 nm; max. 108.79 nm

Diameter of agglomerates (TEM analysis) >200 nm

Mean of zeta potential (in 25 ◦C) −23.4 mV

4.3. Histological Analyses

For histological analyses, six specimens of whole female ovaries and male testes and
nine digestive systems were taken from each study group. The material was fixed in Bouin’s
solution and subjected to a standard histological procedure: dehydration in an increasing
range of ethanol concentrations. The material was cleared in xylene and embedded in
paraffin. The samples were sectioned into 5 µm thick slides (Leica RM 2265 microtome,
Leica Microsystems, Wetzlar, Germany). The histology of livers, intestines, and gonads was
evaluated based on slides stained with hematoxylin and eosin (H&E). The glycogen was
detected using the combined method of alcian blue (pH 2.5) and periodic acid and Schiff
(AB/PAS).

Histomorphometric analysis of the sections through the H&E-stained male gonads
included measurements of the areas occupied by spermatogonia, spermatocytes, and sper-
matids in 15 separate seminal tubules of 6 males from each experimental group. Meanwhile,
in the ovaries of all females (n = 6) subjected to the histological analysis, the diameter dis-
tribution of oogonia and oocytes in the ovaries was measured. The results of the female
germinal cell diameter measurements allowed us to distinguish the classes describing the
maturity of germinal cells. The division into classes for the development of oocytes of
the butterfly splitfin was adopted based on the scale developed by Tinguely (2015) [15]
for the related species Xenotoca eiseni, as shown in Table 2. In addition, the total number
of germinal cells visible on cross sections through the ovaries was counted in all females
studied. Moreover, an analysis of the digestive tract was performed. On H&E-stained
liver sections: the area of the hepatocytes (µm2) (100 measurements in each individual);
H&E-stained intestinal sections: the height of the intestinal folds (10 measurements in each
individual), the height of the enterocytes (50 measurements in each individual), and the
height of the supranuclear surface of the enterocytes (50 measurements in each individual).
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Table 2. Developmental stages of female germinal cells of butterfly splitfin based on Tinguely (2015) [15].

Stage Name Diameter (µm)

Oogonia 0 Oogonia 0–25

Primary growth
(previtellogenic)

1 Early primary growth 25–50

2 Mid primary growth 50–110

3 Late primary growth 110–175

Secondary growth
(vitellogenic)

4 Early secondary growth 175–215

5 Late secondary growth 215–330

6 Fully growth oocytes above 330

All measurements were performed using a Nikon Eclipse Ni-E and Nikon Eclipse 90i
microscope (Nikon, Tokyo, Japan) and the image analysis program QuPath (v0.3.0) [59].

The analyses of testis ultrastructure were performed on fragments that were fixed
in 2% (w/v) of paraformaldehyde and 2.5% (v/v) of glutaraldehyde solution in a 0.05 M
cacodylate buffer (pH 7.2) for 2 h. Sections were prepared, embedded in resin, and cut on
an ultramicrotome according to the methodology described by Szudrowicz et al. (2022).
Ultra-thin slices on meshes were examined on an FEI 268D “Morgagni” transmission
electron microscope (FEI Company, Hillsboro, OR, USA) equipped with an Olympus-SIS
“Morgagni” digital camera (Olympus, Münster, Germany).

4.4. Detection of Enzymatic Activity

In order to determine the effect of AgNPs on enzymatic activity in the livers and
anterior intestines of the tested fish, enzymatic analyses were performed. Specimens from
10 individuals from each group were collected (n = 10); livers and anterior intestines sec-
tions were frozen in liquid nitrogen and stored at −80 ◦C. The collected tissues were then
homogenised in deionized water at 4 ◦C and centrifuged for 10 min at 14,000× g at the
same temperature. The supernatant was collected, and then the tissues were refrozen in
liquid nitrogen and stored at −80 ◦C. In livers, the activities of alkaline phosphatase (ALP),
acid phosphatase (ACP), superoxide dismutase (SOD), and glutathione peroxidase (GPX)
were examined [60,61]. In the anterior intestine, the activities of alkaline phosphatase
(ALP), acid phosphatase (ACP), amylase, trypsin, and lipase were measured according
to the methodologies described by Palińska-Zarska et al. [60] and Wiszniewski et al. [61].
The activity results were divided by the protein concentration (measured using the biuret
method) in the sample and expressed as U/g. The determinations were conducted in
96-well plates, and enzymatic activity was determined from absorbance readings at 37 ◦C
using a Tecan microplate spectrophotometer (Infinite 200 PRO; Tecan, Männedorf, Switzer-
land); measurements were made in triplicates.

4.5. Statistical Analysis

Quantitative results from measurements from all organs and body indices were sub-
jected to a test for consistency with a normal distribution (Shaphiro-Wilk test). To test
for statistically significant differences between groups, data were subjected to one-way
ANOVA with post hoc Tuckey test or, for non-parametric data, Kruskall–Wallis test. All
tests were performed in STATISTICA software (version 13.0).

5. Conclusions

Based on the results obtained, it can be concluded that 42-day exposure of butterfly
splitfin to AgNPs induces morphological changes in the anterior intestine and liver, disrupts
spermatogenesis and oogenesis, and generates oxidative stress. The strongest pathological
changes were not correlated with the highest-tested concentration of the nanoxenobiotic,
which confirms previous observations regarding the nonlinear toxicity of AgNPs. The
analysis of the results shows that even the effect of low concentrations of AgNPs, referring to
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those modelled in the environment, affects fish homeostasis and reproductive potential. The
described results of the analysis are the first report indicating the effect of low concentrations
of AgNPs during prolonged exposure on a model species that is intriguing from the
perspective of toxicological studies—the butterfly splitfin.
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