Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = NaOH-autoclave pretreatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1557 KiB  
Article
Lignin Extracted from Green Coconut Waste Impregnated with Sodium Octanoate for Removal of Cu2+ in Aqueous Solution
by Jéssyca E. S. Pereira, Eduardo L. Barros Neto, Lindemberg J. N. Duarte, Ruan L. S. Ferreira, Ricardo P. F. Melo and Paula F. P. Nascimento
Processes 2025, 13(5), 1590; https://doi.org/10.3390/pr13051590 - 20 May 2025
Viewed by 657
Abstract
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly [...] Read more.
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly environmental ones. Its structure and composition make lignin compatible with the concept of sustainability, since it can be used to produce new chemical products with high added value. As such, this study aims to extract lignin from green coconut fiber (LIG), with the subsequent impregnation of a sodium-octanoate-based surfactant (LIG-SUR), and determine its applicability as an adsorbent for removing copper ions from synthetic waste. To this end, the green coconut fiber lignocellulosic biomass was initially subjected to alkaline pre-treatment with 2% (w/v) sodium hydroxide in an autoclave. Next, the surface of the lignin was modified by impregnating it with sodium octanoate, synthesized from the reaction of octanoic acid and NaOH. The physical and chemical traits of the lignin were studied before and after surfactant impregnation, as well as after copper ion adsorption. The lignin was analyzed by X-ray fluorescence (XRF), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The adsorption tests were carried out using lignin pre-treated with surfactant in a batch system, where the effects of pH and adsorbent concentration were investigated. XRF and SEM analyses confirmed surfactant impregnation, with Na2O partially replaced by CuO after Cu2+ adsorption. FTIR analysis revealed shifts in O–H, C–H, C=O, and C=C bands, indicating electrostatic interactions with lignin. Adsorption kinetics followed the pseudo-second-order model, suggesting chemisorption, with equilibrium reached in approximately 10 and 60 min for LIG-SUR and LIG, respectively. The Langmuir model best described the isotherm data, indicating monolayer adsorption. LIG-SUR removed 91.57% of Cu2+ and reached a maximum capacity of 30.7 mg·g−1 at 25 °C and a pH of 6. The results of this research showed that pre-treatment with NaOH, followed by impregnation with surfactant, significantly increased the adsorption capacity of copper ions in solution. This technique is a viable and sustainable alternative to the traditional adsorbents used to treat liquid waste. In addition, by using green coconut fiber lignin more efficiently, the research contributes to adding value to this material and strengthening practices in line with the circular economy and environmental preservation. Full article
(This article belongs to the Special Issue Emerging Technologies in Solid Waste Recycling and Reuse)
Show Figures

Figure 1

21 pages, 3375 KiB  
Article
Enhanced Sugar and Bioethanol Production from Broom Grass via NaOH-Autoclave Pretreatment
by Duangporn Premjet and Siripong Premjet
Polymers 2025, 17(3), 266; https://doi.org/10.3390/polym17030266 - 21 Jan 2025
Viewed by 1317
Abstract
The effective utilization of nonfood biomass for bioethanol production represents a promising strategy for sustainable energy development. Moreover, limited research has been conducted on broom grass (Thysanolaena latifolia) as a potential feedstock for bioethanol production, particularly regarding the effects of NaOH [...] Read more.
The effective utilization of nonfood biomass for bioethanol production represents a promising strategy for sustainable energy development. Moreover, limited research has been conducted on broom grass (Thysanolaena latifolia) as a potential feedstock for bioethanol production, particularly regarding the effects of NaOH autoclave pretreatment on its enzymatic digestibility and fermentability. This study optimized sodium hydroxide (NaOH) pretreatment combined with autoclaving to enhance the enzymatic digestibility of broom grass biomass. The effects of NaOH concentration (1–4%) and temperature (110–130 °C) on biomass composition, structural features, and enzymatic hydrolysis were systematically evaluated. Pretreatment with 2% NaOH at 120 °C emerged as optimal, achieving 74.7% lignin removal and 93.2% glucan recovery, thereby significantly improving enzymatic hydrolysis efficiency (88.0%) and glucose recovery (33.3%). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that these improvements were attributed to the increased surface porosity and the selective removal of amorphous components while maintaining cellulose crystallinity. The pretreated biomass hydrolysate exhibited excellent bioethanol production. Fermentation using Saccharomyces cerevisiae TISTR 5339 achieved an 86.4% ethanol conversion rate, yielding 147 g of bioethanol per 1000 g of pretreated biomass and representing a 2.6-fold increase compared to untreated feedstock. These findings demonstrate the potential of the NaOH autoclave pretreatment in enhancing bioethanol production from broom grass biomass, aiding the advancement of sustainable and cost-effective lignocellulosic biorefinery processes. The utilization of broom grass for bioethanol production presents an opportunity to valorize this multifaceted plant and expand its potential beyond its traditional uses. Full article
(This article belongs to the Special Issue Preparation and Application of Biodegradable Polymers)
Show Figures

Figure 1

24 pages, 3957 KiB  
Article
Alkali Pretreatment of Lignocellulose Feedstock Improves Morphological Structure and Biomethane Yield
by Daniel M. Madyira and Kehinde O. Olatunji
Sustainability 2025, 17(2), 534; https://doi.org/10.3390/su17020534 - 12 Jan 2025
Cited by 2 | Viewed by 1100
Abstract
This study investigates the effects of NaOH pretreatment on the microstructural distribution and biomethane released from Xyris capensis. Xyris capensis was pretreated with NaOH using 1, 2, 3, 4, and 5% w/w concentrations for 60, 45, 30, 20, and 15 [...] Read more.
This study investigates the effects of NaOH pretreatment on the microstructural distribution and biomethane released from Xyris capensis. Xyris capensis was pretreated with NaOH using 1, 2, 3, 4, and 5% w/w concentrations for 60, 45, 30, 20, and 15 min of exposure time, respectively, at a 90 °C autoclave temperature. The impacts of the pretreatment technique on microstructural arrangement, crystallinity, and functional groups were examined with a scanning electron microscope (SEM), X-ray diffraction, and Fourier transform infrared (FTIR), respectively. NaOH-pretreated and untreated feedstocks were digested at the laboratory scale at a mesophilic temperature (37 ± 2 °C) for 35 days for their biomethane potential. It was discovered from the SEM analysis that NaOH pretreatment affects the microstructural arrangement of Xyris capensis, and the sample with the longer exposure time is the most affected. The results of XRD and FTIR also indicated that NaOH pretreatment lowered the crystallinity of the feedstock and significantly influenced the functional groups at varying degrees. Biomethane yield was recorded to be 258.68, 287.80, 304.02, 328.20, 310.20, and 135.06 mL CH4/gVSadded, representing 91.53, 113.09, 125.10, 143.00, and 129.68% more increases than the untreated feedstock. It was discovered that the optimum biomethane generation was achieved when 4% w/w of NaOH concentration was utilized for 20 min. This study shows that a higher NaOH concentration with a shorter retention time is more suitable for Xyris capensis. This pretreatment method can improve the biomethane yield of Xyris capensis and can be investigated for industrial applications and its use on other lignocellulose feedstocks, especially energy grasses. Full article
Show Figures

Figure 1

17 pages, 2714 KiB  
Article
From Microalgae to Biofuels: Investigating Valorization Pathways Towards Biorefinery Integration
by Panagiotis Fotios Chatzimaliakas, Ermis Koutsaftis-Fragkos, Sofia Mai, Dimitris Malamis and Elli Maria Barampouti
Processes 2024, 12(12), 2936; https://doi.org/10.3390/pr12122936 - 22 Dec 2024
Cited by 1 | Viewed by 1672
Abstract
The rapid growth of the world population led to an exponential growth in industrial activity all around the world. Consequently, CO2 emissions have risen almost 400% since 1950 due to human activities. In this context, microalgae biomass has emerged as a renewable [...] Read more.
The rapid growth of the world population led to an exponential growth in industrial activity all around the world. Consequently, CO2 emissions have risen almost 400% since 1950 due to human activities. In this context, microalgae biomass has emerged as a renewable and sustainable feedstock for producing third-generation biofuels. This study explores the laboratory-scale production of bioethanol and biomethane from dried algal biomass. The first step was to evaluate and optimize the production of glucose from the biomass. Thus, three different techniques with three different solvents were tested to identify the most effective and efficient in terms of saccharification yield. With the assistance of an autoclave or a high-temperature water bath and 0.2 M NaOH as a solvent, yields of 79.16 ± 3.03% and 85.73 ± 3.23% were achieved which correspond to 9.24 and 9.80 g/L of glucose, respectively. Furthermore, the most efficient method from the pretreatment step was chosen to carry out a factorial design to produce bioethanol. The experiments showed that the loading of cellulase was of crucial importance to the optimization of the process. Optimized ethanolic fermentation yielded ethanol concentrations up to 4.40 ± 0.28 g/L (76.12 ± 4.90%) (0.3 Μ NaOH, 750 μL/gcellulose and 65 μL/gstarch), demonstrating the critical role of cellulase loading. Biomethane potential (BMP) assays on fermentation residues showed increased yields compared to untreated feedstock, with a maximum methane yield of 217.88 ± 10.40 mL/gVS. Combined energy production from bioethanol and biomethane was calculated at up to 1044.48 kWh/tn of algae feedstock, with biomethane contributing 75.26% to the total output. These findings highlight the potential of integrated algae-based biorefineries to provide scalable and sustainable biofuel solutions, aligning with circular economy principles. Full article
(This article belongs to the Special Issue Progress on Biomass Processing and Conversion)
Show Figures

Graphical abstract

19 pages, 7190 KiB  
Article
Optimization of Alkali Treatment for Production of Fermentable Sugars and Phenolic Compounds from Potato Peel Waste Using Topographical Characterization and FTIR Spectroscopy
by Qudsia Mushtaq, Nicolas Joly, Patrick Martin and Javed Iqbal Qazi
Molecules 2023, 28(21), 7250; https://doi.org/10.3390/molecules28217250 - 24 Oct 2023
Cited by 10 | Viewed by 2177
Abstract
Potato peel waste (PPW) was utilized as a bio-template for the production of valuable compounds such as reducing sugars (RS), total sugar (TS) and total phenolic compounds (TPC). Two methods of alkali treatments, i.e., chemical (NaOH) and thermochemical (NaOH assisted with autoclaving) processes, [...] Read more.
Potato peel waste (PPW) was utilized as a bio-template for the production of valuable compounds such as reducing sugars (RS), total sugar (TS) and total phenolic compounds (TPC). Two methods of alkali treatments, i.e., chemical (NaOH) and thermochemical (NaOH assisted with autoclaving) processes, were employed for the deconstruction of PPW. Response surface methodology (RSM) was used to study the effects of alkali concentration (0.6–1.0 w/v), substrate concentration (5–15 g) and time (4–8 h) on the extraction of RS, TS and TP from PPW. The application of alkali plus steam treatment in Box-Behnken design (BBD) with three levels yielded the optimum releases of RS, TS and TP as 7.163, 28.971 and 4.064 mg/mL, respectively, corresponding to 10% substrate loading, in 0.6% NaOH for 8 h. However, the alkali treatment reported optimum extractions of RS, TS and TP as 4.061, 17.432 and 2.993 mg/mL, respectively. The thermochemical pretreatment was proven a beneficial process as it led to higher productions of TP. FTIR and SEM were used to analyze the deterioration levels of the substrate. The present work was used to explore the sustainable management of PPW, which is a highly neglected substrate bioresource but is excessively dumped in open environment, raising environmental concerns. The cost-effective methods for the breakdown of PPW starch into fermentable sugars might be utilized to extract valuable compounds. Full article
Show Figures

Graphical abstract

24 pages, 9256 KiB  
Article
Physicochemical Pretreatment of Vietnamosasa pusilla for Bioethanol and Xylitol Production
by Suwanan Wongleang, Duangporn Premjet and Siripong Premjet
Polymers 2023, 15(19), 3990; https://doi.org/10.3390/polym15193990 - 4 Oct 2023
Cited by 5 | Viewed by 1742
Abstract
The consumption of fossil fuels has resulted in severe environmental consequences, including greenhouse gas emissions and climate change. Therefore, transitioning to alternative energy sources, such as cellulosic ethanol, is a promising strategy for reducing environmental impacts and promoting sustainable low-carbon energy. Vietnamosasa pusilla [...] Read more.
The consumption of fossil fuels has resulted in severe environmental consequences, including greenhouse gas emissions and climate change. Therefore, transitioning to alternative energy sources, such as cellulosic ethanol, is a promising strategy for reducing environmental impacts and promoting sustainable low-carbon energy. Vietnamosasa pusilla, an invasive weed, has been recognized as a high potential feedstock for sugar-based biorefineries due to its high total carbohydrate content, including glucan (48.1 ± 0.3%) and xylan (19.2 ± 0.4%). This study aimed to examine the impact of NaOH pretreatment-assisted autoclaving on V. pusilla feedstock. The V. pusilla enzymatic hydrolysate was used as a substrate for bioethanol and xylitol synthesis. After treating the feedstock with varying concentrations of NaOH at different temperatures, the glucose and xylose recovery yields were substantially higher than those of the untreated material. The hydrolysate generated by enzymatic hydrolysis was fermented into bioethanol using Saccharomyces cerevisiae TISTR 5339. The liquid byproduct of ethanol production was utilized by Candida tropicalis TISTR 5171 to generate xylitol. The results of this study indicate that the six- and five-carbon sugars of V. pusilla biomass have great potential for the production of two value-added products (bioethanol and xylitol). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 3014 KiB  
Article
Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane
by Tawaf Ali Shah, Sabiha Khalid, Hiba-Allah Nafidi, Ahmad Mohammad Salamatullah and Mohammed Bourhia
Sustainability 2023, 15(11), 8755; https://doi.org/10.3390/su15118755 - 29 May 2023
Cited by 22 | Viewed by 7222
Abstract
The purpose of the NaOH pretreatment of rice straw with a recycling strategy was to enhance the economic efficiency of producing biomethane. Anaerobic digestion is used for converting rice straw into biogas. In this work, 5% NaOH and rice straw mixed samples were [...] Read more.
The purpose of the NaOH pretreatment of rice straw with a recycling strategy was to enhance the economic efficiency of producing biomethane. Anaerobic digestion is used for converting rice straw into biogas. In this work, 5% NaOH and rice straw mixed samples were autoclaved at 121 °C for 20 min for lignin removal. The NaOH black liquor was separated using filtration for the subsequent treatment cycle. The NaOH liquor was utilized in one more subsequent recycling procedure to test its ability to remove lignin from the rice straw. The 5% NaOH treatment results in a reduction in rice straw (RC) lignin of 73.6%. The lignin content of the recycled NaOH-filtrated rice straw samples (RCF1) was reduced by 55.5%. The 5% NaOH-treated rice straw sample yields a total cumulative biogas of 1452.4 mL/gVS, whereas the recycled NaOH-filtered (RCF1) samples generate 1125.2 mL/gVS after 30 days of incubation. However, after 30 days of incubation, the untreated rice straw (RCC) bottle produced a total of 285.5 mL/gVS of biogas. The total increase in methane output after NaOH treatment is 6–8 times greater, and the biogas yield improves by 80–124%. We show here that the recycled NaOH black solution has still the effectiveness to be used for successive pretreatment cycles to remove lignin and generate methane. In the meantime, the NaOH black solution contains useful materials (lignin, sugars, potassium, and nitrogen) that could be purified for commercial purposes, and more importantly recycling the NaOH solution decrease the chances of environmental pollution. Thus, recycling NaOH decreased chemical consumption, which would provide net benefits instead of using fresh NaOH solution, had a lower water consumption, and provided the prospect of producing an optimum yield of methane in anaerobic digestion. This method will decrease the chemical treatment costs for biomass pretreatment prior to anaerobic digestion. Recycling of NaOH solution and the integration of pretreatment reactors could be a novel bioprocessing addition to the current technology. Full article
(This article belongs to the Special Issue Prospects and Challenges of Bioeconomy Sustainability Assessment)
Show Figures

Figure 1

12 pages, 4726 KiB  
Article
Optimization of Textile Waste Blends of Cotton and PET by Enzymatic Hydrolysis with Reusable Chemical Pretreatment
by Antika Boondaeng, Jureeporn Keabpimai, Preeyanuch Srichola, Pilanee Vaithanomsat, Chanaporn Trakunjae and Nanthavut Niyomvong
Polymers 2023, 15(8), 1964; https://doi.org/10.3390/polym15081964 - 21 Apr 2023
Cited by 24 | Viewed by 5295
Abstract
Textile waste usually ends up in landfills and causes environmental pollution. In this study, pretreatment methods for textile recycling, including autoclaving, freezing alkali/urea soaking, and alkaline pretreatment, were applied to textile waste with various cotton/polyester blending ratios. The best condition for enzymatic hydrolysis [...] Read more.
Textile waste usually ends up in landfills and causes environmental pollution. In this study, pretreatment methods for textile recycling, including autoclaving, freezing alkali/urea soaking, and alkaline pretreatment, were applied to textile waste with various cotton/polyester blending ratios. The best condition for enzymatic hydrolysis was a 60/40 textile waste blend of cotton/polyethylene terephthalate (PET) with a reusable chemical pretreatment (15% NaOH) at 121 °C for 15 min. The hydrolysis of pretreated textile waste by cellulase was optimized using response surface methodology (RSM) based on central composite design (CCD). The optimized conditions were 30 FPU/g of enzyme loading and 7% of substrate loading, which resulted in a maximum observed value of hydrolysis yield at 89.7%, corresponding to the predicted value of 87.8% after 96 h of incubation. The findings of this study suggest an optimistic solution for textile waste recycling. Full article
(This article belongs to the Special Issue Biopolymers from Renewable Sources and Their Applications II)
Show Figures

Graphical abstract

18 pages, 3025 KiB  
Article
Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects
by Ana Sofia Hozman-Manrique, Andres J. Garcia-Brand, María Hernández-Carrión and Alicia Porras
Polymers 2023, 15(3), 664; https://doi.org/10.3390/polym15030664 - 28 Jan 2023
Cited by 30 | Viewed by 6691
Abstract
One of the current challenges is to add value to agro-industrial wastes, and the cocoa industry generates about 10 tons of cocoa pod husks in Colombia for each ton of cocoa beans, which are incinerated and cause environmental damage. This study characterized the [...] Read more.
One of the current challenges is to add value to agro-industrial wastes, and the cocoa industry generates about 10 tons of cocoa pod husks in Colombia for each ton of cocoa beans, which are incinerated and cause environmental damage. This study characterized the Colombian cocoa pod husk (CPH) and to isolate and characterize cellulose microfibers (tCPH) extracted via chemical treatment and pressure. Chemical and physical analyses of CPH were performed, and a pretreatment method for CPH fibers was developed, which is followed by a hydrolysis method involving high pressure in an autoclave machine with an alkaline medium (6% NaOH), and finally, bleaching of the fiber to obtain tCPH. The tCPH cellulose microfibers were also chemically and physically analyzed and characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). Chemical and physical characterization showed a decrease in lignin content in tCPH. FTIR analysis showed the absence of some peaks in tCPH with respect to the CPH spectrum; XRD results showed an increase in crystallinity for tCPH compared to CPH, due to a higher presence of crystalline cellulose in tCPH. SEM images included a control fiber treated without high pressure (tCPHnpe), and agglomerated fibers were observed, whereas cellulose microfibers with a mean diameter of 10 ± 2.742 μm were observed in tCPH. Finally, with TGA and DTGA it was confirmed that in tCPH, the hemicellulose and lignin were removed more successfully than in the control fiber (tCPHnpe), showing that the treatment with pressure was effective at isolating the cellulose microfibers from cocoa pod husk. Full article
(This article belongs to the Special Issue Natural Polysaccharide: Synthesis, Modification and Application)
Show Figures

Figure 1

18 pages, 2287 KiB  
Article
Production of Polyhydroxyalkanoates through Soybean Hull and Waste Glycerol Valorization: Subsequent Alkaline Pretreatment and Enzymatic Hydrolysis
by Zulma Sarmiento-Vásquez, Luciana Porto de Souza Vandenberghe, Susan Grace Karp and Carlos Ricardo Soccol
Fermentation 2022, 8(9), 433; https://doi.org/10.3390/fermentation8090433 - 1 Sep 2022
Cited by 16 | Viewed by 3363
Abstract
Alkaline pretreatment and sequential enzymatic hydrolysis of soybean hull were investigated to obtain fermentable sugars for polyhydroxyalkanoates production along with residual glycerol as low-cost carbon sources. Soybean hull is composed of approximately 32% cellulose, 12% hemicellulose, 6% lignin, and 11% protein. Alkaline pretreatment [...] Read more.
Alkaline pretreatment and sequential enzymatic hydrolysis of soybean hull were investigated to obtain fermentable sugars for polyhydroxyalkanoates production along with residual glycerol as low-cost carbon sources. Soybean hull is composed of approximately 32% cellulose, 12% hemicellulose, 6% lignin, and 11% protein. Alkaline pretreatment was carried out with 2% NaOH concentration, 10% (w/v) biomass loading, and 60 min incubation time in an autoclave at 120 °C. The response surface methodology (RSM) based on the central composite design (CCD) tool was employed to optimize the enzymatic hydrolysis process, where the variables of biomass loading, enzymes’ concentration, and time were considered. The maximum total reducing sugars concentration obtained was 115.9 g∙L−1 with an enzyme concentration of 11.5 mg protein/g dry substrate for enzyme preparation B1, 2.88 mg protein/g dry substrate for XylA, and 57.6 U/g dry substrate for β-glucosidase, after 42 h at 45 °C, and pH was 4.5. Subsequently, the saccharification step was conducted by increasing the processing scale, using a 1 L tank with stirring with a controlled temperature. Implementing the same enzyme concentrations at pH 4.5, temperature of 45 °C, 260 mL working volume, and incubation time of 42 h, under fed-batch operation with substrate feeding after 14 h and 22 h, a hydrolysate with a concentration of 185.7 g∙L−1 was obtained. Initially, to verify the influence of different carbon sources on Cupriavidus necator DSMz 545 in biomass production, batch fermentations were developed, testing laboratory-grade glucose, soybean hull hydrolysate, and waste glycerol (a by-product of biodiesel processing available in large quantities) as carbon sources in one-factor-at-a-time assays, and the mixture of soybean hull hydrolysate and waste glycerol. Then, the hydrolysate and waste glycerol were consumed by C. necator, producing 12.1 g∙L−1 of biomass and achieving 39% of polyhydroxyalkanoate (PHB) accumulation. To the best of our knowledge, this is the first time that soybean hull hydrolysate has been used as a carbon source to produce polyhydroxyalkanoates, and the results suggest that this agro-industrial by-product is a viable alternative feedstock to produce value-added components. Full article
(This article belongs to the Special Issue Microbial Biotechnology and Agro-Industrial By-Products Fermentation)
Show Figures

Graphical abstract

15 pages, 2014 KiB  
Article
Microbiological-Chemical Sourced Chondroitin Sulfates Protect Neuroblastoma SH-SY5Y Cells against Oxidative Stress and Are Suitable for Hydrogel-Based Controlled Release
by Emiliano Bedini, Alfonso Iadonisi, Chiara Schiraldi, Laura Colombo, Diego Albani, Paola Petrini, Carmen Giordano and Marta Tunesi
Antioxidants 2021, 10(11), 1816; https://doi.org/10.3390/antiox10111816 - 16 Nov 2021
Cited by 4 | Viewed by 2878
Abstract
Chondroitin sulfates (CS) are a class of sulfated glycosaminoglycans involved in many biological processes. Several studies reported their protective effect against neurodegenerative conditions like Alzheimer’s disease. CS are commonly derived from animal sources, but ethical concerns, the risk of contamination with animal proteins, [...] Read more.
Chondroitin sulfates (CS) are a class of sulfated glycosaminoglycans involved in many biological processes. Several studies reported their protective effect against neurodegenerative conditions like Alzheimer’s disease. CS are commonly derived from animal sources, but ethical concerns, the risk of contamination with animal proteins, and the difficulty in controlling the sulfation pattern have prompted research towards non-animal sources. Here we exploited two microbiological-chemical sourced CS (i.e., CS-A,C and CS-A,C,K,L) and Carbopol 974P NF/agarose semi-interpenetrating polymer networks (i.e., P.NaOH.0 and P.Ethanol.0) to set up a release system, and tested the neuroprotective role of released CS against H2O2-induced oxidative stress. After assessing that our CS (1–100 µM) require a 3 h pre-treatment for neuroprotection with SH-SY5Y cells, we evaluated whether the autoclave type (i.e., N- or B-type) affects hydrogel viscoelastic properties. We selected B-type autoclaves and repeated the study after loading CS (1 or 0.1 mg CS/0.5 mL gel). After loading 1 mg CS/0.5 mL gel, we evaluated CS release up to 7 days by 1,9-dimethylmethylene blue (DMMB) assay and verified the neuroprotective role of CS-A,C (1 µM) in the supernatants. We observed that CS-A,C exhibits a broader neuroprotective effect than CS-A,C,K,L. Moreover, sulfation pattern affects not only neuroprotection, but also drug release. Full article
(This article belongs to the Special Issue Oxidative Stress, Neuroinflammation and Neurodegeneration)
Show Figures

Figure 1

13 pages, 2133 KiB  
Article
Combining Autoclaving with Mild Alkaline Solution as a Pretreatment Technique to Enhance Glucose Recovery from the Invasive Weed Chloris barbata
by Abraham Kusi Obeng, Duangporn Premjet and Siripong Premjet
Biomolecules 2019, 9(4), 120; https://doi.org/10.3390/biom9040120 - 28 Mar 2019
Cited by 23 | Viewed by 4244
Abstract
Developing an optimum pretreatment condition to enhance glucose recovery assessed the potential of Chloris barbata, which is a common invasive weed in Thailand, as a feedstock for bioethanol production. Chloris barbata was exposed to autoclave-assisted alkaline pretreatment by using different sodium hydroxide [...] Read more.
Developing an optimum pretreatment condition to enhance glucose recovery assessed the potential of Chloris barbata, which is a common invasive weed in Thailand, as a feedstock for bioethanol production. Chloris barbata was exposed to autoclave-assisted alkaline pretreatment by using different sodium hydroxide (NaOH) concentrations (1% to 4%) and heat intensities (110 °C to 130 °C) that were dissipated from autoclaving. The optimum condition for pretreatment was determined to be 2% NaOH at 110 °C for 60 min. At this condition, maximum hydrolysis efficiency (90.0%) and glucose recovery (30.7%), as compared to those of raw C. barbata (15.15% and 6.20%, respectively), were observed. Evaluation of glucose production from 1000 g of C. barbata based on material balance analysis revealed an estimated yield of 304 g after pretreatment at the optimum condition when compared to that of raw C. barbata (61 g), an increase of five-fold. Structural analysis by the scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed the disruption of the intact structure of C. barbata and an increase in the cellulose crystallinity index (CrI), respectively. The results from this study demonstrate the efficiency of using C. barbata as a potential feedstock for bioethanol production. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Catalysis)
Show Figures

Figure 1

Back to TopTop