From Microalgae to Biofuels: Investigating Valorization Pathways Towards Biorefinery Integration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Experimental Methods
2.3.1. Pretreatment and Saccharification
2.3.2. Bioethanol Production
2.3.3. Biochemical Methane Potential Assay
3. Results and Discussion
3.1. Chemical Composition
3.2. Lab-Scale Pretreatment Method Investigation
3.3. Factorial Design for Bioethanol Production
3.4. Biomethane Potential
3.5. Energy Production Routes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Description |
SOx | Sulfur Oxides |
AD | Anaerobic Digestion |
NOx | Nitrogen Oxides |
BMP test | Biochemical Methane Potential Assay |
NREL | National Renewable Energy Laboratory |
Saccharification Yield | |
Ethanol Yield | |
VOA | Volatile Organic Acids |
SSF | Simultaneous Saccharification and Fermentation |
LHV | Lower Heating Value |
VS | Volatile Solids |
References
- Ritchie, H.; Rodés-Guirao, L.; Mathieu, E.; Gerber, M.; Ortiz-Ospina, E.; Roser, J.H.M. Population Growth. Our World in Data, July 2023. Available online: https://ourworldindata.org/population-growth (accessed on 25 February 2024).
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Jiang, Q. How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels. World Econ. 2020, 43, 1665–1698. [Google Scholar] [CrossRef]
- EU Energy Consumption Plummeted in 2020—Products Eurostat News—Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211221-1 (accessed on 22 November 2024).
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Cherwoo, L.; Gupta, I.; Flora, G.; Verma, R.; Kapil, M.; Arya, S.K.; Ravindran, B.; Khoo, K.S.; Bhatia, S.K.; Chang, S.W.; et al. Biofuels an alternative to traditional fossil fuels: A comprehensive review. Sustain. Energy Technol. Assess. 2023, 60, 103503. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.-H.; Kwon, E.E.; Bach, Q.-V.; Hoang, A.T. Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Convers. Manag. X 2024, 22, 100538. [Google Scholar] [CrossRef]
- Flach, B.; Phillips, S.; Lieberz, S.; Lappin, J.; Bolla, S. EU Biofuels Annual USDA Foreign Agricultural Service; United States Department of Agriculture: Washington, DC, USA, 2018.
- European Commission. Renewable Energy—Recast to 2030 (RED II)—European Commission. Available online: https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewable-energy-recast-2030-red-ii_en (accessed on 27 February 2024).
- Yoro, K.O.; Daramola, M.O. CO2 Emission Sources, Greenhouse Gases, and the Global Warming Effect. In Advances in Carbon Capture: Methods, Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–28. [Google Scholar] [CrossRef]
- UNFCCC. COP 28: What Was Achieved and What Happens Next? UNFCCC. Available online: https://unfccc.int/cop28/5-key-takeaways (accessed on 27 February 2024).
- Jiang, T.; He, X.; Su, B.; Havea, P.H.; Wei, K.; Kundzewicz, Z.W.; Liu, D. COP 28: Challenge of coping with climate crisis. Innov. 2024, 5, 100559. [Google Scholar] [CrossRef]
- Pascon, G.; Messina, M.; Petit, L.; Valente, L.M.P.; Oliveira, B.; Przybyla, C.; Dutto, G.; Tulli, F. Potential application and beneficial effects of a marine microalgal biomass produced in a high-rate algal pond (HRAP) in diets of European sea bass, Dicentrarchus labrax. Environ. Sci. Pollut. Res. 2021, 28, 62185–62199. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Xia, C.; Alqahtani, A.; Sharma, A.; Pugazhendhi, A. A review on optimistic biorefinery products: Biofuel and bioproducts from algae biomass. Fuel 2023, 338, 127378. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef]
- Bora, A.; Rajan, A.S.T.; Ponnuchamy, K.; Muthusamy, G.; Alagarsamy, A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater—A critical review. Sci. Total. Environ. 2024, 946, 174230. [Google Scholar] [CrossRef] [PubMed]
- Benavides, A.M.S.; Ranglová, K.; Malapascua, J.R.; Masojídek, J.; Torzillo, G. Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond. Algal Res. 2017, 28, 48–56. [Google Scholar] [CrossRef]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Huang, S.-W.; Chen, C.-Y.; Hasunuma, T.; Kondo, A.; Chang, J.-S. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol. 2013, 135, 191–198. [Google Scholar] [CrossRef]
- Adeleye, S.A.; Braide, W. Comparative Study of Bioethanol Production from Agricultural Wastes by Zymomonas Mobilis and Saccharomyces Cerevisiae. 2018. Available online: https://www.researchgate.net/publication/334593862 (accessed on 25 January 2024).
- Muthuraman, V.S.; Kasianantham, N. Valorization opportunities and adaptability assessment of algae based biofuels for futuristic sustainability—A review. Process Saf. Environ. Prot. 2023, 174, 694–721. [Google Scholar] [CrossRef]
- Kusmiyati, K.; Hadiyanto, H.; Fudholi, A. Treatment updates of microalgae biomass for bioethanol production: A comparative study. J. Clean. Prod. 2023, 383, 135236. [Google Scholar] [CrossRef]
- Al Abdallah, Q.; Nixon, B.T.; Fortwendel, J.R. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front. Energy Res. 2016, 4, 36. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Jabłońska-Trypuć, A.; Jabłońska-Trypuć, A.; Wołejko, E.; Wołejko, E.; Wołejko, E.; Ernazarovna, M.D.; Ernazarovna, M.D.; Ernazarovna, M.D.; Głowacka, A.; et al. Using Algae for Biofuel Production: A Review. Energies 2023, 16, 1758. [Google Scholar] [CrossRef]
- Sluiter, A.D.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.W.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) (Revised July 2011). 2008. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 15 January 2024).
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.; Wickramasinghe, I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- Nielsen, S.S. Food Analysis Laboratory Manual; Springer Nature: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Kassim, M.A.; Bhattacharya, S. Dilute alkaline pretreatment for reducing sugar production from Tetraselmis suecica and Chlorella sp. biomass. Process Biochem. 2016, 51, 1757–1766. [Google Scholar] [CrossRef]
- Sathish, A.; Sims, R.C. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour. Technol. 2012, 118, 643–647. [Google Scholar] [CrossRef]
- Bals, B.; Wedding, C.; Balan, V.; Sendich, E.; Dale, B. Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresour. Technol. 2011, 102, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Liau, B.-C.; Shen, C.-T.; Liang, F.-P.; Hong, S.-E.; Hsu, S.-L.; Jong, T.-T.; Chang, C.-M.J. Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. J. Supercrit. Fluids 2010, 55, 169–175. [Google Scholar] [CrossRef]
- Tang, S.; Qin, C.; Wang, H.; Li, S.; Tian, S. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Supercrit. Fluids 2011, 57, 44–49. [Google Scholar] [CrossRef]
- Harun, R.; Jason, W.; Cherrington, T.; Danquah, M.K. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl. Energy 2011, 88, 3464–3467. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Félix, R.; Pais, A.C.S.; Rocha, S.M.; Silvestre, A.J.D. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules 2019, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Felekis, V.; Stavraki, C.; Malamis, D.; Mai, S.; Barampouti, E.M. Optimisation of Bioethanol Production in a Potato Processing Industry. Fermentation 2023, 9, 103. [Google Scholar] [CrossRef]
- Nikolaou, M.; Stavraki, C.; Bousoulas, I.; Malamis, D.; Loizidou, M.; Mai, S.; Barampouti, E. Valorisation of bakery waste via the bioethanol pathway. Energy 2023, 280, 128185. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Lage, S.; Gentili, F.G. Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO2 from flue gases. Chemosphere 2023, 313, 137344. [Google Scholar] [CrossRef]
- Ji, T.; Liaqat, F.; Khazi, M.I.; Liaqat, N.; Nawaz, M.Z.; Zhu, D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. Ind. Crop. Prod. 2024, 216, 118759. [Google Scholar] [CrossRef]
- Wei, N.; Xu, W.; Li, S.; Shi, J. Sustainable depolymerization of lignin into aromatic compounds using amphiphilic Anderson-type polyoxometalate catalysts. Int. J. Biol. Macromol. 2024, 277, 133257. [Google Scholar] [CrossRef]
- Kuruti, K.; Rao, A.G.; Gandu, B.; Kiran, G.; Mohammad, S.; Sailaja, S.; Swamy, Y. Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock. Bioresour. Technol. 2015, 192, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.; Lewis, D.; Green, F. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- An Introduction to Biogas and Biomethane—Outlook for Biogas and Biomethane: Prospects for Organic Growth—Analysis—IEA. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane (accessed on 1 August 2024).
- Kim, K.H.; Choi, I.S.; Kim, H.M.; Wi, S.G.; Bae, H.-J. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour. Technol. 2014, 153, 47–54. [Google Scholar] [CrossRef]
- Markou, G.; Angelidaki, I.; Nerantzis, E.; Georgakakis, D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 2013, 6, 3937–3950. [Google Scholar] [CrossRef]
- Miranda, J.; Passarinho, P.; Gouveia, L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol. 2012, 104, 342–348. [Google Scholar] [CrossRef]
- Rahman, Q.M.; Zhang, B.; Wang, L.; Joseph, G.; Shahbazi, A. A combined fermentation and ethanol-assisted liquefaction process to produce biofuel from Nannochloropsis sp. Fuel 2019, 238, 159–165. [Google Scholar] [CrossRef]
- Fillat, Ú.; Ibarra, D.; Eugenio, M.E.; Moreno, A.D.; Tomás-Pejó, E.; Martín-Sampedro, R. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: A review. Fermentation 2017, 3, 17. [Google Scholar] [CrossRef]
- Kumar, R.; Wyman, C.E. Effects of Cellulase and Xylanase Enzymes on the Deconstruction of Solids from Pretreatment of Poplar by Leading Technologies. Biotechnol. Prog. 2009, 25, 302–314. [Google Scholar] [CrossRef]
- Ferdeș, M.; Dincă, M.N.; Moiceanu, G.; Zăbavă, B.Ș.; Paraschiv, G. Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review. Sustainability 2020, 12, 7205. [Google Scholar] [CrossRef]
Experiment | Conditions | Solvent |
---|---|---|
A.1 | Hydrothermal at 121 °C for 30 min | Distilled H2O |
A.2 | NaOH (0.2 M) | |
A.3 | H2SO4 (1% v/v) | |
B.1 | Water bath at 90 °C for 75 min | Distilled H2O |
B.2 | NaOH (0.2 M) | |
B.3 | H2SO4 (1% v/v) | |
C.1 | Ultrasonication at 150 W for 10 min | Distilled H2O |
C.2 | NaOH (0.2 M) | |
C.3 | H2SO4 (1% v/v) |
Parameter (% d.b.) | Feedstock |
---|---|
Total Solids | 91.96 ± 0.78 |
Moisture | 8.04 ± 0.78 |
Volatile Solids | 65.79 ± 0.66 |
Ash | 34.21 ± 0.66 |
Oils | 0.95 ± 0.00 |
Water Soluble Solids | 12.25 ± 0.04 |
Free Glucose | 0.08 ± 0.01 |
Starch | 1.78 ± 0.16 |
Cellulose | 9.21± 0.57 |
Hemicellulose | 17.52 ± 1.21 |
Acid Insoluble Residue | 26.72 ± 4.38 |
Total Nitrogen (Kjeldahl) | 4.18 ± 0.10 |
No. | Conditions | Liquid Phase After Fermentation | Yield | |||
---|---|---|---|---|---|---|
NaOH (M) | CellicTec3 (μL/gcellulose) | Spirizyme Excel XHS (μL/gstarch) | Ethanol Concentration (g/L) | Glucose Concentration (g/L) | Ethanol Yield (%) | |
1 | 0.1 | 250 | 25 | 3.10 ± 0.42 | 0.08 ± 0.01 | 53.63 ± 7.35 |
2 | 0.1 | 750 | 25 | 3.30 ± 0.14 | 0.09 ± 0.01 | 57.09 ± 2.44 |
3 | 0.1 | 250 | 65 | 3.19 ± 1.42 | 0.13 ± 0.04 | 54.65 ± 2.84 |
4 | 0.1 | 750 | 65 | 3.58 ± 1.44 | 0.12 ± 0.03 | 61.26 ± 2.56 |
5 | 0.3 | 250 | 25 | 2.80 + 0.28 | 0.11 ± 0.00 | 48.43 ± 4.88 |
6 | 0.3 | 750 | 25 | 3.90 ± 0.14 | 0.11 ± 0.00 | 67.47 ± 2.45 |
7 | 0.3 | 250 | 65 | 3.70 ± 0.14 | 0.10 ± 0.00 | 64.00 ± 2.44 |
8 | 0.3 | 750 | 65 | 4.40 ± 0.28 | 0.10 ± 0.02 | 76.12 ± 4.90 |
Center | 0.2 | 500 | 45 | 2.95 ± 0.25 | 0.06 ± 0.00 | 50.26 ± 4.96 |
No. | Bioethanol | Biomethane | Total Energy | Bioethanol (%) | Biomethane (%) |
---|---|---|---|---|---|
kWh/tn Algae | |||||
1 | 286.14 | 722.68 | 1008.82 | 28.36 | 71.64 |
2 | 304.60 | 698.54 | 1003.14 | 30.36 | 69.64 |
3 | 280.70 | 604.46 | 885.16 | 31.71 | 68.29 |
4 | 323.22 | 574.20 | 897.42 | 36.02 | 63.98 |
5 | 258.39 | 786.08 | 1044.48 | 24.74 | 75.26 |
6 | 359.98 | 492.43 | 852.41 | 42.23 | 57.77 |
7 | 341.47 | 607.90 | 949.36 | 35.97 | 64.03 |
8 | 406.13 | 585.89 | 992.02 | 40.94 | 59.06 |
Center | 290.94 | 678.70 | 969.64 | 30.01 | 69.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzimaliakas, P.F.; Koutsaftis-Fragkos, E.; Mai, S.; Malamis, D.; Barampouti, E.M. From Microalgae to Biofuels: Investigating Valorization Pathways Towards Biorefinery Integration. Processes 2024, 12, 2936. https://doi.org/10.3390/pr12122936
Chatzimaliakas PF, Koutsaftis-Fragkos E, Mai S, Malamis D, Barampouti EM. From Microalgae to Biofuels: Investigating Valorization Pathways Towards Biorefinery Integration. Processes. 2024; 12(12):2936. https://doi.org/10.3390/pr12122936
Chicago/Turabian StyleChatzimaliakas, Panagiotis Fotios, Ermis Koutsaftis-Fragkos, Sofia Mai, Dimitris Malamis, and Elli Maria Barampouti. 2024. "From Microalgae to Biofuels: Investigating Valorization Pathways Towards Biorefinery Integration" Processes 12, no. 12: 2936. https://doi.org/10.3390/pr12122936
APA StyleChatzimaliakas, P. F., Koutsaftis-Fragkos, E., Mai, S., Malamis, D., & Barampouti, E. M. (2024). From Microalgae to Biofuels: Investigating Valorization Pathways Towards Biorefinery Integration. Processes, 12(12), 2936. https://doi.org/10.3390/pr12122936