Alkali Pretreatment of Lignocellulose Feedstock Improves Morphological Structure and Biomethane Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Collection
2.2. Inoculum Sourcing
2.3. Alkali Pretreatment
2.4. Morphological Analysis
2.5. Theoretical Methane Yield and Biodegradability Rate
2.6. Anaerobic Digestion
3. Results and Discussions
3.1. Physicochemical Characterization
3.2. Impacts of NaOH Pretreatment on Microstructural Arrangement of Xyris capensis
3.3. Influence of NaOH Pretreatment on Crystalline Characteristics of Xyris capensis
3.4. Influence of NaOH Pretreatment on the Functional Groups of Xyris capensis
3.5. Cumulative Biomethane Yield and Biodegradability of Xyris capensis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santika, W.G.; Anisuzzaman, M.; Bahri, P.A.; Shafiullah, G.M.; Rupf, G.V.; Urmee, T. From goals to joules: A quantitative approach of interlinkages between energy and the Sustainable Development Goals. Energy Res. Soc. Sci. 2019, 50, 201–214. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strat. Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Rizzi, F.; van Eck, N.J.; Frey, M. The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management. Renew. Energy 2014, 62, 657–671. [Google Scholar] [CrossRef]
- Mustafa, S.; Long, Y.; Rana, S. Role of domestic renewable energy plants in combating energy deficiency in developing countries. End-user perspective. Energy Rep. 2023, 11, 692–705. [Google Scholar] [CrossRef]
- Sudhakar, M.; Kumar, B.R.; Mathimani, T.; Arunkumar, K. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Bijarchiyan, M.; Sahebi, H.; Mirzamohammadi, S. A sustainable biomass network design model for bioenergy production by anaerobic digestion technology: Using agricultural residues and livestock manure. Energy Sustain. Soc. 2020, 10, 19. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, R.; Li, K.; Ma, R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew. Sustain. Energy Rev. 2019, 107, 51–58. [Google Scholar] [CrossRef]
- Ciotola, R.J.; Lansing, S.; Martin, J.F. Emergy analysis of biogas production and electricity generation from small-scale agricultural digesters. Ecol. Eng. 2011, 37, 1681–1691. [Google Scholar] [CrossRef]
- Eswari, A.P.; Ravi, Y.K.; Kavitha, S.; Banu, J.R. Recent insight into anaerobic digestion of lignocellulosic biomass for cost effective bioenergy generation. e-Prime 2023, 3, 100119. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M. Effect of acidic pretreatment on the microstructural arrangement and anaerobic digestion of Arachis hypogea shells; and process parameters optimization using response surface methodology. Heliyon 2023, 9, e15145. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.; Olabi, A. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2016, 68, 1193–1204. [Google Scholar] [CrossRef]
- Jomnonkhaow, U.; Sittijunda, S.; Reungsang, A. Influences of size reduction, hydration, and thermal-assisted hydration pretreatment to increase the biogas production from Napier grass and Napier silage. Bioresour. Technol. 2021, 331, 125034. [Google Scholar] [CrossRef]
- Dandikas, V.; Heuwinkel, H.; Lichti, F.; Drewes, J.E.; Koch, K. Predicting methane yield by linear regression models: A validation study for grassland biomass. Bioresour. Technol. 2018, 265, 372–379. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M.; Ahmed, N.A.; Ogunkunle, O. Biomethane production from Arachis hypogea shells: Effect of thermal pretreatment on substrate structure and yield. Biomass Convers. Biorefinery 2022, 14, 6925–6938. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Stamatelatou, K.; Antonopoulou, G.; Lyberatos, G. Production of biogas via anaerobic digestion. In Handbook of Biofuels Production: Processes and Technologies, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 266–304. [Google Scholar] [CrossRef]
- A Raja, I.; Wazir, S. Biogas Production: The Fundamental Processes. Univers. J. Eng. Sci. 2017, 5, 29–37. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M. Comparative Analysis of the Effects of Five Pretreatment Methods on Morphological and Methane Yield of Groundnut Shells. Waste Biomass Valorization 2023, 15, 469–486. [Google Scholar] [CrossRef]
- Olugbemide, A.D.; Lajide, L.; Adebayo, A.; Owolabi, B.J. Kinetic Study of Biogas Production from Raw and Solid-State Organosolv Pretreated Rice Husk. J. Biofuels 2016, 7, 110–118. [Google Scholar] [CrossRef]
- Deivayanai, V.; Yaashikaa, P.; Kumar, P.S.; Rangasamy, G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. Bioresour. Technol. 2022, 365, 128166. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: A review. Biotechnol. Biofuels 2021, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, L.; Deng, B.; Huang, C.; Zhu, J.; Liang, L.; He, X.; Wei, Y.; Qin, C.; Liang, C.; et al. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int. J. Biol. Macromol. 2022, 222, 1400–1413. [Google Scholar] [CrossRef] [PubMed]
- Olugbemide, A.D.; Oberlintner, A.; Novak, U.; Likozar, B. Lignocellulosic Corn Stover Biomass Pre-Treatment by Deep Eutectic Solvents (DES) for Biomethane Production Process by Bioresource Anaerobic Digestion. Sustainability 2021, 13, 10504. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Zou, H.; Sun, T.; Li, M.; Zhai, J.; He, Q.; Gu, L.; Tang, W.Z. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge. J. Clean. Prod. 2020, 277, 123998. [Google Scholar] [CrossRef]
- Saravanan, A.; Yaashikaa, P.; Kumar, P.S.; Thamarai, P.; Deivayanai, V.; Rangasamy, G. A comprehensive review on techno-economic analysis of biomass valorization and conversional technologies of lignocellulosic residues. Ind. Crops Prod. 2023, 200, 116822. [Google Scholar] [CrossRef]
- Siddhu, M.A.H.; Li, J.; Zhang, J.; Huang, Y.; Wang, W.; Chen, C.; Liu, G. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste. BioMed Res. Int. 2016, 2016, 2786598. [Google Scholar] [CrossRef]
- Li, C.; Fan, M.; Xie, J.; Zhang, H. Effect of NaOH-catalyzed organosolv pretreatment on the co-production of ethanol and xylose from poplar. Ind. Crops Prod. 2023, 200, 116774. [Google Scholar] [CrossRef]
- Madyira, D.; Olatunji, K. Investigating the influence of different pretreatment methods on the morphological structure of Arachis hypogea shells. Mater. Today Proc. 2023, 105, 72–77. [Google Scholar] [CrossRef]
- Mustikaningrum, M.; Cahyono, R.B.; Yuliansyah, A.T. Effect of NaOH Concentration in Alkaline Treatment Process for Producing Nano Crystal Cellulose-Based Biosorbent for Methylene Blue. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012005. [Google Scholar] [CrossRef]
- Lahboubi, N.; Karouach, F.; Bakraoui, M.; El Gnaoui, Y.; Essamri, A.; El Bari, H. Effect of Alkali-NaOH Pretreatment on Methane Production from Anaerobic Digestion of Date Palm Waste. Ecol. Eng. Environ. Technol. 2022, 23, 78–89. [Google Scholar] [CrossRef]
- He, Y.; Pang, Y.; Liu, Y.; Li, X.; Wang, K. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 2008, 22, 2775–2781. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M.; Ahmed, N.A.; Ogunkunle, O. Influence of alkali pretreatment on morphological structure and methane yield of Arachis hypogea shells. Biomass Convers. Biorefinery 2022, 14, 12143–12154. [Google Scholar] [CrossRef]
- Liang, Y.-G.; Cheng, B.; Si, Y.-B.; Cao, D.-J.; Li, D.-L.; Chen, J.-F. Effect of solid-state NaOH pretreatment on methane production from thermophilic semi-dry anaerobic digestion of rose stalk. Water Sci. Technol. 2016, 73, 2913–2920. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Zhang, Y.; Yu, Q.; Tan, X.; Zhuang, X.; Yuan, Z. Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Ind. Crops Prod. 2020, 145, 112145. [Google Scholar] [CrossRef]
- Quezada-Morales, D.L.; Campos-Guillén, J.; De Moure-Flores, F.J.; Amaro-Reyes, A.; Martínez-Martínez, J.H.; Chaparro-Sánchez, R.; Zavala-Gómez, C.E.; Flores-Macías, A.; Figueroa-Brito, R.; Rodríguez-Morales, J.A.; et al. Effect of Pretreatments on the Production of Biogas from Castor Waste by Anaerobic Digestion. Fermentation 2023, 9, 399. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M. Optimization of Biomethane Yield of Xyris capensis Grass Using Oxidative Pretreatment. Energies 2023, 16, 3977. [Google Scholar] [CrossRef]
- Pooley, E.; Herbarium, N. A Field Guide to Wild Flowers: KwaZulu-Natal and the Eastern Region; Natal Flora Publication Trust: Cape Town, South Africa, 1998; p. 630. [Google Scholar]
- Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019.
- Statnik, E.S.; Ignatyev, S.D.; Stepashkin, A.A.; Salimon, A.I.; Chukov, D.; Kaloshkin, S.D.; Korsunsky, A.M. The Analysis of Micro-Scale Deformation and Fracture of Carbonized Elastomer-Based Composites by In Situ SEM. Molecules 2021, 26, 587. [Google Scholar] [CrossRef]
- Bruker d8 XRD Procedures. Available online: https://xraysrv.wustl.edu/web/xrd/brukerd8.html (accessed on 6 December 2024).
- Atalla, R.H.; VanderHart, D.L. The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl. Magn. Reson. 1999, 15, 1–19. [Google Scholar] [CrossRef]
- Barbes, L.; Radulescu, C.; Stihi, C. ATR-FTIR spectrometry characterisation of polymeric materials. Rom. Rep. Phys. 2014, 66, 765–777. [Google Scholar]
- Dahunsi, S.; Adesulu-Dahunsi, A.; Osueke, C.; Lawal, A.; Olayanju, T.; Ojediran, J.; Izebere, J. Biogas generation from Sorghum bicolor stalk: Effect of pretreatment methods and economic feasibility. Energy Rep. 2019, 5, 584–593. [Google Scholar] [CrossRef]
- Buswell, A.M.; Mueller, H.F. Mechanism of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Nakhla, G.; Hafez, H. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresour. Technol. 2012, 110, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Vergärung Organischer Stoffe Substratcharakterisierung. VEREIN DEUTSCHER INGENIEURE Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests VDI 4630 VDI-RICHTLINIEN. 2016. Available online: www.vdi.de/richtlinien (accessed on 17 June 2023).
- Olatunji, K.O.; Madyira, D.M.; A Ahmed, N.; Ogunkunle, O. Experimental evaluation of the influence of combined particle size pretreatment and Fe3O4 additive on fuel yields of Arachis hypogea shells. Waste Manag. Res. J. Sustain. Circ. Econ. 2022, 41, 467–476. [Google Scholar] [CrossRef]
- Qiao, W.; Yan, X.; Ye, J.; Sun, Y.; Wang, W.; Zhang, Z. Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy 2011, 36, 3313–3318. [Google Scholar] [CrossRef]
- Webster, J. The Biochemistry of Silage (Second Edition). By P. McDonald, A.R. Henderson and S. J. E. Heron. Marlow, Bucks, UK: Chalcombe Publications, (1991), pp. 340, £49.50, ISBN 0-948617-225. Exp. Agric. 1992, 28, 125. [Google Scholar] [CrossRef]
- Ajayi-Banji, A.; Rahman, S.; Sunoj, S.; Igathinathane, C. Impact of corn stover particle size and C/N ratio on reactor performance in solid-state anaerobic co-digestion with dairy manure. J. Air Waste Manag. Assoc. 2020, 70, 436–454. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De la Rubia, M.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Ilhan, Z.E.; Marcus, A.K.; Kang, D.-W.; Rittmann, B.E.; Krajmalnik-Brown, R. pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. mSphere 2017, 2, e00047-17. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renew. Energy 2019, 149, 1352–1359. [Google Scholar] [CrossRef]
- Taherdanak, M.; Zilouei, H. Improving biogas production from wheat plant using alkaline pretreatment. Fuel 2014, 115, 714–719. [Google Scholar] [CrossRef]
- Wang, C.; Shao, Z.; Qiu, L.; Hao, W.; Qu, Q.; Sun, G. The solid-state physicochemical properties and biogas production of the anaerobic digestion of corn straw pretreated by microwave irradiation. RSC Adv. 2021, 11, 3575–3584. [Google Scholar] [CrossRef] [PubMed]
- Pinpatthanapong, K.; Boonnorat, J.; Glanpracha, N.; Rangseesuriyachai, T. Biogas production by co-digestion of sodium hydroxide pretreated Napier grass and food waste for community sustainability. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 1678–1692. [Google Scholar] [CrossRef]
- Loow, Y.-L.; Wu, T.Y.; Jahim, J.M.; Mohammad, A.W.; Teoh, W.H. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 2016, 23, 1491–1520. [Google Scholar] [CrossRef]
- Wunna, K.; Nakasaki, K.; Auresenia, J.L.; Abella, L.C.; Gaspillo, P.D. Effect of Alkali Pretreatment on Removal of Lignin from Sugarcane Bagasse. Chem. Eng. Trans. 2017, 56, 1831–1836. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Zhang, S.; Gao, Q.; Li, J.; Zhang, W. Alkali lignin depolymerization under eco-friendly and cost-effective NaOH/urea aqueous solution for fast curing bio-based phenolic resin. Ind. Crops Prod. 2018, 120, 25–33. [Google Scholar] [CrossRef]
- Kim, S.; Holtzapple, M.T. Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol. 2006, 97, 583–591. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Rout, P.R.; Aslam, M.; Fuwad, A.; Choi, Y.; Park, J.H.; Kumar, G. A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. J. Environ. Manag. 2020, 270, 110909. [Google Scholar] [CrossRef]
- Pereira, S.C.; Maehara, L.; Machado, C.M.; Farinas, C.S. Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew. Energy 2016, 87, 607–617. [Google Scholar] [CrossRef]
- Drygaś, B.; Depciuch, J.; Puchalski, C.; Zaguła, G. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. ECONTECHMOD 2016, 5, 41–50. [Google Scholar]
- Awoyale, A.A.; Lokhat, D. Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Sci. Rep. 2021, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, K.O.; Madyira, D.M. Enhancing the biomethane yield of groundnut shells using deep eutectic solvents for sustainable energy production. Front. Energy Res. 2024, 12, 1346764. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Lee, E.-J.; Ban, S.-E.; Lee, J.-W. Structural characterization of the lignin-carbohydrate complex in biomass pretreated with Fenton oxidation and hydrothermal treatment and consequences on enzymatic hydrolysis efficiency. Carbohydr. Polym. 2021, 270, 118375. [Google Scholar] [CrossRef]
- Suhartini, S.; Lestari, Y.P.; Nurika, I. Estimation of methane and electricity potential from canteen food waste. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012075. [Google Scholar] [CrossRef]
- Dahunsi, S.; Oranusi, S.; Efeovbokhan, V. Optimization of pretreatment, process performance, mass and energy balance in the anaerobic digestion of Arachis hypogaea (Peanut) hull. Energy Convers. Manag. 2017, 139, 260–275. [Google Scholar] [CrossRef]
- Rai, P.S.; Unnikrishnan, S.; Chandrashekar, A. Influence of alkali treatment on physiochemical and morphological properties of palmyra fibers. Ind. Crops Prod. 2024, 224, 120298. [Google Scholar] [CrossRef]
- Xu, J.K.; Sun, R.C. Chapter 19—Recent Advances in Alkaline Pretreatment of Lignocellulosic Biomass. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 431–459. [Google Scholar] [CrossRef]
- Shah, T.A.; Khalid, S.; Nafidi, H.-A.; Salamatullah, A.M.; Bourhia, M. Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane. Sustainability 2023, 15, 8755. [Google Scholar] [CrossRef]
- Moniz, P.; Pereira, H.; Quilhó, T.; Carvalheiro, F. Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Ind. Crops Prod. 2013, 50, 145–153. [Google Scholar] [CrossRef]
- Suryawati, L.; Wilkins, M.R.; Bellmer, D.D.; Huhnke, R.L.; Maness, N.O.; Banat, I.M. Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem. 2009, 44, 540–545. [Google Scholar] [CrossRef]
- Şenol, H. Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environ. Sci. Pollut. Res. 2021, 28, 21661–21673. [Google Scholar] [CrossRef] [PubMed]
- Salehian, P.; Karimi, K.; Zilouei, H.; Jeihanipour, A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 2013, 106, 484–489. [Google Scholar] [CrossRef]
- Şenol, H. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresour. Technol. 2019, 300, 122660. [Google Scholar] [CrossRef] [PubMed]
- Budiyono; Wicaksono, A.; Rahmawan, A.; Matin, H.H.A.; Wardani, L.G.K.; Kusworo, T.D.; Sumardiono, S. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste. MATEC Web Conf. 2017, 101, 02011. [Google Scholar] [CrossRef]
- Aklilu, E.G.; Waday, Y.A. Optimizing the process parameters to maximize biogas yield from anaerobic co-digestion of alkali-treated corn stover and poultry manure using artificial neural network and response surface methodology. Biomass Convers. Biorefinery 2021, 13, 12527–12540. [Google Scholar] [CrossRef]
- Thota, S.P.; Badiya, P.K.; Yerram, S.; Vadlani, P.V.; Pandey, M.; Golakoti, N.R.; Belliraj, S.K.; Dandamudi, R.B.; Ramamurthy, S.S. Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses. Renew. Energy 2017, 103, 766–773. [Google Scholar] [CrossRef]
Treatment Conditions | Concentration (%w/w) | Time (Min) | Temperature (°C) |
---|---|---|---|
P | 1 | 60 | 90 |
Q | 2 | 45 | 90 |
R | 3 | 30 | 90 |
S | 4 | 20 | 90 |
T | 5 | 15 | 90 |
U | Control | Control | Control |
Parameter (%) | Treatments | |||||
---|---|---|---|---|---|---|
P | Q | R | S | T | U | |
Total Solid (TS) | 100.00 | 66.67 | 100.00 | 66.67 | 100.00 | 75.00 |
Volatile Solid (VS) | 98.00 | 98.83 | 99.06 | 95.00 | 97.79 | 92.67 |
Carbon | 42.84 | 42.18 | 41.24 | 42.75 | 42.07 | 41.94 |
Nitrogen | 1.09 | 1.07 | 1.11 | 1.08 | 1.06 | 1.25 |
Hydrogen | 5.88 | 5.95 | 5.62 | 5.91 | 5.67 | 5.53 |
Oxygen | 45.19 | 45.80 | 47.03 | 45.26 | 46.20 | 46.28 |
C/N ratio | 39.30 | 39.42 | 37.15 | 39.58 | 39.69 | 33.55 |
Treatments | Ix | Imax | Ic (%) |
---|---|---|---|
P | 126.19 | 185.89 | 32.12 |
Q | 116.86 | 171.55 | 31.88 |
R | 125.78 | 183.83 | 31.58 |
S | 126.99 | 184.60 | 31.21 |
T | 116.66 | 165.28 | 29.42 |
U | 107.62 | 146.92 | 26.75 |
(a) | |||||||
Wavelength (cm−1) | Functional Groups | Absorbance/Ratio | |||||
P | Q | R | S | T | U | ||
3350 | O-H stretch (hydrogen cellulose connections bond) | 97.18 | 93.44 | 89.95 | 92.64 | 97.90 | 95.87 |
2904 | C-H stretch (methyl/methylene cellulose group) | 93.89 | 98.13 | 94.95 | 96.06 | 96.15 | 96.75 |
1732 | Carbonyl bonds (associated with the removal of the lignin side chain) | 79.32 | 98.64 | 98.50 | 97.10 | 85.99 | 97.86 |
1715 | Carboxylic acid/ester groups | 77.04 | 98.29 | 98.48 | 96.86 | 84.27 | 97.90 |
1635 | Aromatic ring stretch (associated with lignin removal). | 73.65 | 96.73 | 96.83 | 96.14 | 81.84 | 97.17 |
1606 | Aromatic ring stretch (changes in lignin structure) | 75.01 | 97.73 | 97.29 | 97.20 | 82.75 | 97.62 |
1515 | Generic lignin | 81.05 | 95.39 | 96.86 | 94.87 | 87.19 | 96.94 |
1372 | Phenolic O-H stretch (changes in lignin structure) | 87.77 | 93.31 | 93.78 | 94.68 | 91.49 | 96.78 |
1320 | Syringyl ring stretch (changes in lignin monomer) | 90.06 | 93.36 | 93.66 | 94.80 | 92.91 | 97.07 |
1252 | C-O absorption (result of acetyl-lignin groups cleavage) | 90.57 | 95.10 | 95.03 | 96.15 | 93.23 | 96.51 |
1109 | Crystalline cellulose | 89.95 | 86.84 | 87.85 | 90.61 | 92.80 | 91.98 |
1057 | C-O-C stretch (cellulose and hemicellulose) | 88.69 | 80.01 | 81.83 | 85.34 | 91.89 | 88.86 |
897 | Amorphous cellulose | 83.19 | 88.62 | 89.86 | 92.32 | 88.05 | 94.88 |
1109/897 | Crystalline/amorphous cellulose ratio | 1.08 | 0.98 | 0.98 | 0.98 | 1.05 | 0.97 |
834 | C-H flexion of syringyl | 83.14 | 88.46 | 89.69 | 92.22 | 88.05 | 94.81 |
771 | Crystalline cellulose (lα) | 79.14 | 91.61 | 92.68 | 94.12 | 84.97 | 95.54 |
720 | Crystalline cellulose (lβ) | 77.57 | 89.21 | 90.65 | 92.44 | 83.58 | 94.80 |
771/720 | The ratio of crystalline cellulose polymorphs (lα/lβ) | 1.02 | 1.03 | 1.02 | 1.02 | 1.02 | 1.01 |
(b) | |||||||
Wavelength (cm−1) | Functional Groups | Variations (%) | |||||
P | Q | R | S | T | |||
3350 | O-H stretch (hydrogen cellulose connections bond) | −1.3664 | 2.5347 | 6.1750 | 3.3691 | −2.1175 | |
2904 | C-H stretch (methyl/methylene cellulose group) | 2.9561 | −1.4264 | 1.8605 | 0.7132 | 0.6202 | |
1732 | Carbonyl bonds (associated with the removal of the lignin side chain) | 18.9454 | −0.7971 | −0.6540 | 0.7766 | 12.1296 | |
1715 | Carboxylic acid/ester groups | 21.3075 | −0.3984 | −0.5924 | 1.0623 | 13.9224 | |
1635 | Aromatic ring stretch (associated with lignin removal). | 24.2050 | 0.4528 | 0.3499 | 1.0560 | 15.7765 | |
1606 | Aromatic ring stretch (changes in lignin structure) | 23.1612 | −0.1127 | 0.3380 | 0.4302 | 15.2325 | |
1515 | Generic lignin | 16.3916 | 1.5989 | 0.0825 | 2.1353 | 10.0578 | |
1372 | Phenolic O-H stretch (changes in lignin arrangement) | 9.3098 | 3.5855 | 3.0998 | 2.1699 | 5.4660 | |
1320 | Syringyl ring stretch (changes in lignin monomer) | 7.2216 | 3.8220 | 3.5129 | 2.3385 | 4.2856 | |
1252 | C-O absorption (result of acetyl-lignin groups cleavage) | 6.1548 | 1.4610 | 1.5335 | 0.3730 | 3.3986 | |
1109 | Crystalline cellulose | 2.2176 | 5.5984 | 4.5005 | 1.5002 | −0.8805 | |
1057 | C-O-C stretch (cellulose and hemicellulose) | 0.1913 | 9.9595 | 7.9113 | 3.9613 | −3.4097 | |
897 | Amorphous cellulose | 12.2561 | 6.5288 | 5.2210 | 2.6263 | 7.1301 | |
1109/897 | Crystalline/amorphous cellulose ratio | −11.3402 | −1.0309 | −1.0309 | −1.0309 | −8.2474 | |
834 | C-H flexion of syringyl | 13.1244 | 7.5653 | 6.2800 | 3.6364 | 7.9937 | |
771 | Crystalline cellulose (lα) | 17.1656 | 4.1135 | 2.9935 | 1.4863 | 11.0634 | |
720 | Crystalline cellulose (lβ) | 18.1751 | 5.8966 | 4.3776 | 2.4895 | 11.8354 | |
771/720 | The ratio of crystalline cellulose polymorphs (lα/lβ) | −2.00 | −3.00 | −2.00 | −2.00 | −2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madyira, D.M.; Olatunji, K.O. Alkali Pretreatment of Lignocellulose Feedstock Improves Morphological Structure and Biomethane Yield. Sustainability 2025, 17, 534. https://doi.org/10.3390/su17020534
Madyira DM, Olatunji KO. Alkali Pretreatment of Lignocellulose Feedstock Improves Morphological Structure and Biomethane Yield. Sustainability. 2025; 17(2):534. https://doi.org/10.3390/su17020534
Chicago/Turabian StyleMadyira, Daniel M., and Kehinde O. Olatunji. 2025. "Alkali Pretreatment of Lignocellulose Feedstock Improves Morphological Structure and Biomethane Yield" Sustainability 17, no. 2: 534. https://doi.org/10.3390/su17020534
APA StyleMadyira, D. M., & Olatunji, K. O. (2025). Alkali Pretreatment of Lignocellulose Feedstock Improves Morphological Structure and Biomethane Yield. Sustainability, 17(2), 534. https://doi.org/10.3390/su17020534