Optimization of Alkali Treatment for Production of Fermentable Sugars and Phenolic Compounds from Potato Peel Waste Using Topographical Characterization and FTIR Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. RSM Optimization and Validation
2.1.1. Significance by ANOVA
2.1.2. Contour Plots
2.2. FTIR Analysis
2.3. Morphological Changes in Untreated and Alkali plus Steam Treated PPW
2.4. Degradation Index of Raw and Treated PPW
2.5. Alkali Saccharification of PPW
3. Materials and Methods
3.1. Substrate
3.2. Pretreatment
3.3. Experimental Design
3.4. Analytical Methods
3.4.1. Determinations of TS and RS
3.4.2. Determination of TPC
3.5. Infrared Spectroscopy Analysis
3.6. Scanning Electron Microscopy (SEM)
3.7. Alkali Saccharification of PPW
3.8. Mass Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sawicka, B.; Skiba, D.; Barbaś, P. Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals, 1st ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 19–37. [Google Scholar]
- Mushtaq, Q.; Irfan, M.; Tabssum, F.; Iqbal Qazi, J. Potato peels: A potential food waste for amylase production. J. Food Process Eng. 2017, 40, e12512–e12519. [Google Scholar] [CrossRef]
- Irfan, M.; Mushtaq, Q.; Tabssum, F.; Shakir, H.A.; Qazi, J.I. Carboxymethylcellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- FAO. Save Food: Global Initiative on Food Loss and Waste Reduction. 2016. Available online: http://www.fao.org/3/i4068e/i4068e.pdf (accessed on 19 October 2023).
- Food Wastage Footprint (Project). Food Wastage Footprint: Impacts on Natural Resources. Summary Report; Food & Agriculture Organization of the UN (FAO): Paris, France, 2013. [Google Scholar]
- FAO. Agriculture Organization of the United Nations Statistics Division. Economic and Social Development Department. 2016. Available online: https://www.fao.org/faostat/en/#home (accessed on 19 October 2023).
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Arapoglou, D.; Varzakas, T.; Vlyssides, A.; Israilides, C. Ethanol production from potato peel waste (PPW). Waste Manag. 2010, 30, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Freidmen, M. Chemistry biochemistry and dietary role of potato polyphenols. J. Agric. Food Chem. 1997, 45, 1523–1540. [Google Scholar] [CrossRef]
- Al-Weshahy, A.; Rao, A.V. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 2009, 43, 1062–1068. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant-and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Ramaswamy, U.R.; Kabel, M.A.; Schols, H.A.; Gruppen, H. Structural features and water holding capacities of pressed potato fibre polysaccharides. Carbohydr. Polym. 2013, 93, 589–596. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Bouaziz, F.; Zouari-Ellouzi, S.; Chaari, F.; Ellouz-Chaabouni, S.; EllouzGhorbel, R.; Nouri-Ellouz, O. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 2017, 217, 668–677. [Google Scholar] [CrossRef]
- Nazir, A.; Itrat, N.; Ahmad, U.; Yar, S.A.; Fatima, K.; Naeem, M.; Zafar, N. Development and sensory evaluation of potato (Solanum tuberosum) peel powder incorporated muffins for health. Pure Appl. Biol. 2021, 11, 129–134. [Google Scholar] [CrossRef]
- Haleem, N.; Osabutey, A.; Albert, K.; Zhang, C.; Min, K.; Anderson, G.; Yang, X. Flocculation of livestock wastewater using cationic starch prepared from potato peels. Environ. Sci. Water Res. Technol. 2023, 9, 1690–1700. [Google Scholar] [CrossRef]
- Vázquez, M.; Puertas, G.; Cazón, P. Processing of Grape Bagasse and Potato Wastes for the Co-Production of Bacterial Cellulose and Gluconic Acid in an Airlift Bioreactor. Polymers 2023, 15, 3944. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Lee, S.; Kumar, P.; Kim, K.H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Pujara, Y.; Pathak, P.; Sharma, A.; Govani, J. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. J. Environ. Manag. 2019, 248, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, Y.; Lin, K.Y.A.; Hong, E.; Kwon, E.E.; Lee, J. The valorization of food waste via pyrolysis. J. Clean. Prod. 2020, 259, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Z.; Fang, Z.; Qian, Y.; Zhong, P.; Yan, J. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Dispos. Sustain. Energy 2020, 2, 1–25. [Google Scholar] [CrossRef]
- Aracil, C.; Haro, P.; Fuentes-Cano, D.; Gómez-Barea, A. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Waste Manag. 2018, 76, 443–456. [Google Scholar] [CrossRef]
- Souza, W.D.; Rodrigues, W.S.; Lima Filho, M.M.; Alves, J.J.; Oliveira, T.M. Heavy metals uptake on Malpighiaemarginata DC seed fiber microparticles: Physicochemical characterization, modeling and application in landfill leachate. Waste Manag. 2018, 78, 356–365. [Google Scholar] [CrossRef]
- Liu, S.J.; Xi, B.D.; Qiu, Z.P.; He, X.S.; Zhang, H.; Dang, Q.L.; Zhao, X.Y.; Li, D. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals. Sci. Total Environ. 2019, 651, 909–916. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Kumar, R.; Malyan, S.K.; Bishnoi, N.R. Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from landfill leachate. Energy 2019, 176, 570–581. [Google Scholar] [CrossRef]
- Fei, J.C.; Min, X.B.; Wang, Z.X.; Pang, Z.H.; Liang, Y.J.; Ke, Y. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: A case study from South China. Environ. Sci. Pollut. Res. 2017, 24, 27573–27586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J. Hazard. Mater. 2021, 411, 125132. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A. Concentration and speciation of heavy metals in six different sewage sludge-composts. J. Hazard. Mater. 2007, 147, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Shen, H.; Dong, S. Study on eco-utilization and treatments of highway greening waste. Proc. Environ. Sci. 2010, 2, 25–31. [Google Scholar] [CrossRef]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Colletti, A.; Grillo, G.; Tabasso, S.; Cravotto, G. Emerging processing technologies for the recovery of valuable bioactive compounds from potato peels. Foods 2020, 9, 1598. [Google Scholar] [CrossRef]
- Sujeeta, K.M.; Mehta, S.; Sihag, K. Optimization of conditions for bioethanol production from potato peel waste. Int. J. Chem. Stud. 2018, 6, 2021–2024. [Google Scholar]
- Chohan, N.A.; Aruwajoye, G.S.; Sewsynker-Sukai, Y.; Kana, E.G. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharificationand fermentation: Process optimization and kinetic assessment. Renew. Energ. 2020, 146, 1031–1040. [Google Scholar] [CrossRef]
- Soltaninejad, A.; Jazini, M.; Karimi, K. Sustainable bioconversion of potato peel wastes into ethanol and biogas using organosolv pretreatment. Chemosphere 2022, 291, 133003. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Coelho, E.; Gullón, B.; Yáñez, R.; Domingues, L. Potato peels waste as a sustainable source for biotechnological production of biofuels: Process optimization. Waste Manag. 2023, 155, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Saldana, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Chen, M.S.; Zhao, Y.; Yu, S.J. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, V.H.; Cahyadi, J.; Xu, D.Y.; Saldana, M.D.A. Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. J. Supercrit. Fluids 2014, 90, 8–17. [Google Scholar] [CrossRef]
- Maldonado, A.F.S.; Mudge, E.; Ganzle, M.G.; Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Suryanto, H.; Wijaya, H.W.; Yanuhar, U. FTIR analysis of alkali treatment on bacterial cellulose films obtained from pineapple peel juice. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012145. [Google Scholar] [CrossRef]
- Mishra, S.; Prabhakar, B.; Kharkar, P.S.; Pethe, A.M. Banana peel waste: An emerging cellulosic material to extract nanocrystalline cellulose. ACS Omega 2022, 8, 1140–1145. [Google Scholar] [CrossRef]
- Srivastava, N.; Mohammad, A.; Pal, D.B.; Srivastava, M.; Alshahrani, M.Y.; Ahmad, I.; Singh, R.; Mishra, P.K.; Yoon, T.; Gupta, V.K. Enhancement of fungal cellulase production using pretreated orange peel waste and its application in improved bioconversion of rice husk under the influence of nickel cobaltite nanoparticles. Biomass Convers. Biorefin. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Esmer, Ö.K.; Koçak, E.; Cevrem, A.E.; Kıcıkoğlu, O. Alkali extraction of phenolic compounds from tomato peel: Optimization of extraction conditions and investigation of phenolic profile by LC-MS/MS. TURJAF 2022, 10, 2966–2976. [Google Scholar]
- Cao, C.; Yi, B.; Zhang, J.; Hou, C.; Wang, Z.; Lu, G.; Huang, X.; Yao, X. Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature. Chem. Eng. J. 2020, 392, 124834. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Cell disintegration of apple peels induced by pulsed electric field and efficiency of bio-compound extraction. Food Biop. Process. 2020, 122, 13–21. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangiferaindica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.K.; Sharma, B.; Sharma, A.; Thakur, B.; Soni, R. Exploring the Potential of Potato Peels for Bioethanol Production through Various Pretreatment Strategies and an In-House-Produced Multi-Enzyme System. Sustainability 2023, 15, 9137. [Google Scholar] [CrossRef]
- Mazaheri, D.; Pirouzi, A. Valorization of Zymomonasmobilis for bioethanol production from potato peel: Fermentation process optimization. Biomass Convers. Biorefin. 2022, 12, 3389–3398. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, Y.; Chen, P.; Peng, P.; Liu, S.; Li, D.; Ruan, R. Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innov. Food Sci. Emerg. Technol. 2016, 37, 91–97. [Google Scholar] [CrossRef]
- Xu, G.Y.; Liao, A.M.; Huang, J.H.; Zhang, J.G.; Thakur, K.; Wei, Z.J. Evaluation of structural, functional, and anti-oxidant potential of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol. 2019, 129, 778–785. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Q.; Wang, X.; Zhou, X.; Zhu, J. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Bioresour. Technol. 2020, 316, 123851. [Google Scholar] [CrossRef]
- Nemadziva, B.; Ngubane, S.; Matiza Ruzengwe, F.; Kasumbwe, K.; Kudanga, T. Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A. Biomass Convers. Biorefin. 2023, 13, 13871–13882. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Issa, A.A.; Al-Sulaiti, M.; Al-Yafie, J.; Shomar, B.; Al-Saad, K. Potato peels as an adsorbent for heavy metals from aqueous solutions: Eco-structuring of a green adsorbent operating Plackett–Burman design. J. Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Bodirlau, R.; Teaca, C.A.; Spiridon, I. Chemical modification of beech wood: Effect on thermal stability. Bioresources 2008, 3, 789–800. [Google Scholar] [CrossRef]
- Bouhadjra, K.; Lemlikchi, W.; Ferhati, A.; Mignard, S. Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Sci. Rep. 2021, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, I.; Aruwajoye, G.; Revaprasadu, N.; Sewsynker-Sukai, Y.; Meyer, E.L.; Kana, E.B.G. A novel autoclave-assisted nanoparticle pre-treatment for improved sugar recovery from potato peel waste: Process optimisation, nanoparticle recyclability and bioethanol production. Biomass Convers. Biorefin. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Daimary, N.; Eldiehy, K.S.; Boruah, P.; Deka, D.; Bora, U.; Kakati, B.K. Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J. Environ. Chem. Eng. 2022, 10, 107108. [Google Scholar] [CrossRef]
- Ghazanfar, M.; Nadeem, M.; Shakir, H.A.; Khan, M.; Ahmad, I.; Franco, M.; Chen, L.; Irfan, M. Valorization of Bombaxceiba waste into bioethanol production through separate hydrolysis and fermentation and simultaneous saccharification and fermentation. Ferment 2022, 8, 386. [Google Scholar] [CrossRef]
- Goyi, A.A.; Sher Mohammad, N.M.; Omer, K.M. Preparation and characterization of potato peel derived hydrochar and its application for removal of Congo red: A comparative study with potato peel powder. Int. J. Environ. Sci. Technol. 2023, 20, 1–12. [Google Scholar] [CrossRef]
- Abdelraof, M.; Hasanin, M.S.; El-Saied, H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr. Polym. 2019, 211, 75–83. [Google Scholar] [CrossRef]
- Vunain, E.; Njewa, J.B.; Biswick, T.T.; Ipadeola, A.K. Adsorption of chromium ions from tannery effluents onto activated carbon prepared from rice husk and potato peel by H3PO4 activation. Appl. Water Sci. 2021, 11, 150–164. [Google Scholar] [CrossRef]
- Ben Taher, I.; Fickers, P.; Chniti, S.; Hassouna, M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 2017, 33, 397–406. [Google Scholar] [CrossRef]
- Ali, S.W.; Nawaz, A.; Irshad, S.; Khan, A.A. Potato waste management in Pakistan’s perspective. J. Hyg. Eng. Des. 2015, 13, 100–107. [Google Scholar]
- Wu, D. Recycle technology for potato peel waste processing: A review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar] [CrossRef]
- Abro, N.Q.; Memon, N.; Samejo, B.A.; Halepoto, M.R.; Hakro, A.A. Characterization and capacitive performance assessment of potato peels derived salt-induced porous carbons. Biomass Convers. Biorefin. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Sanz, V.C.; Mena, M.L.; González-Cortés, A.; Yanez-Sedeno, P.; Pingarrón, J.M. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal. Chim. Acta 2005, 528, 1–8. [Google Scholar] [CrossRef]
- Irfan, M.; Asghar, U.; Nadeem, M.; Nelofer, R.; Syed, Q.; Shakir, H.A.; Qazi, J.I. Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste Biomass Valori. 2016, 7, 1389–1396. [Google Scholar] [CrossRef]
Level | ||||
---|---|---|---|---|
Factor | Code | −1 | 0 | 1 |
Substrate conc. (%) | X1 | 5 | 10 | 15 |
NaOH conc.(%) | X2 | 0.6 | 0.8 | 1.0 |
Time (h) | X3 | 4 | 6 | 8 |
Reducing Sugars | Total Sugars | Total Phenol | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Run No. | X1 | X2 | X3 | Observed | Predicted | Residual | Observed | Predicted | Residual | Observed | Predicted | Residual |
1 | 5 | 0.6 | 6 | 4.061 | 4.151 | −0.09 | 6.481 | 8.391 | −1.91 | 1.535 | 1.751 | −0.216 |
2 | 5 | 0.6 | 6 | 2.911 | 3.041 | −0.13 | 2.181 | 1.817 | 0.364 | 1.723 | 1.756 | −0.024 |
3 | 15 | 1.0 | 6 | 4.675 | 4.544 | 0.13 | 6.116 | 6.480 | −0.364 | 2.762 | 2.728 | 0.034 |
4 | 15 | 1.0 | 6 | 3.831 | 3.740 | 0.091 | 4.852 | 2.941 | 1.911 | 2.563 | 2.346 | 0.217 |
5 | 10 | 0.8 | 4 | 4.196 | 4.196 | 0.00 | 14.432 | 12.143 | 2.289 | 2.676 | 2.611 | 0.065 |
6 | 10 | 0.8 | 4 | 3.014 | 2.974 | 0.04 | 7.320 | 7.305 | 0.015 | 2.957 | 3.075 | −0.118 |
7 | 10 | 0.8 | 8 | 3.148 | 3.187 | −0.039 | 17.432 | 17.446 | −0.014 | 2.993 | 2.874 | 0.119 |
8 | 10 | 0.8 | 8 | 2.496 | 2.495 | 0.000 | 9.883 | 12.171 | −2.288 | 1.969 | 2.033 | −0.064 |
9 | 5 | 0.6 | 4 | 3.253 | 3.162 | 0.091 | 1.944 | 2.322 | −0.378 | 2.008 | 1.856 | 0.152 |
10 | 15 | 1.0 | 4 | 3.625 | 3.755 | −0.13 | 4.341 | 6.265 | −1.924 | 2.889 | 2.987 | −0.098 |
11 | 5 | 0.6 | 8 | 2.596 | 2.465 | 0.131 | 13.667 | 11.742 | 1.925 | 1.912 | 1.814 | 0.098 |
12 | 15 | 1.0 | 8 | 2.873 | 2.964 | −0.091 | 7.391 | 7.012 | 0.379 | 2.101 | 2.252 | −0.151 |
13 | 10 | 0.8 | 6 | 3.483 | 3.368 | 0.115 | 4.421 | 4.244 | 0.177 | 2.112 | 2.114 | −0.002 |
14 | 10 | 0.8 | 6 | 3.264 | 3.368 | 0.256 | 5.206 | 4.244 | 0.962 | 2.101 | 2.114 | −0.013 |
15 | 10 | 0.8 | 6 | 3.359 | 3.368 | −0.009 | 3.107 | 4.244 | −1.137 | 2.131 | 2.114 | 0.017 |
Reducing Sugars | Total Sugars | Total Phenol | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Run No. | X1 | X2 | X3 | Observed | Predicted | Residual | Observed | Predicted | Residual | Observed | Predicted | Residual |
1 | 5 | 0.6 | 6 | 5.212 | 5.267 | −0.055 | 25.612 | 25.685 | −0.073 | 2.710 | 2.691 | 0.019 |
2 | 5 | 0.6 | 6 | 5.851 | 5.900 | −0.049 | 22.072 | 21.645 | 0.427 | 3.626 | 3.659 | −0.033 |
3 | 15 | 1.0 | 6 | 5.462 | 5.412 | 0.05 | 18.371 | 18.797 | −0.426 | 2.439 | 2.405 | 0.034 |
4 | 15 | 1.0 | 6 | 7.097 | 7.041 | 0.056 | 16.405 | 16.331 | 0.074 | 4.054 | 4.072 | −0.018 |
5 | 10 | 0.8 | 4 | 4.993 | 5.012 | −0.019 | 14.134 | 13.458 | 0.676 | 1.963 | 1.895 | 0.06 |
6 | 10 | 0.8 | 4 | 5.723 | 5.748 | −0.025 | 16.873 | 16.697 | 0.176 | 3.364 | 3.243 | 0.21 |
7 | 10 | 0.8 | 8 | 3.842 | 3.816 | 0.026 | 28.971 | 29.146 | −0.175 | 2.332 | 2.452 | −0.12 |
8 | 10 | 0.8 | 8 | 5.362 | 5.342 | 0.02 | 18.726 | 19.401 | −0.675 | 3.673 | 3.741 | −0.068 |
9 | 5 | 0.6 | 4 | 7.163 | 7.088 | 0.075 | 15.936 | 16.538 | −0.602 | 3.024 | 3.110 | −0.086 |
10 | 15 | 1.0 | 4 | 4.913 | 4.942 | −0.029 | 12.496 | 12.745 | −0.249 | 1.529 | 1.630 | −0.101 |
11 | 5 | 0.6 | 8 | 3.528 | 3.498 | 0.03 | 28.292 | 28.042 | 0.25 | 2.197 | 2.095 | 0.102 |
12 | 15 | 1.0 | 8 | 6.855 | 6.930 | −0.075 | 20.235 | 19.633 | 0.62 | 3.789 | 3.702 | 0.087 |
13 | 10 | 0.8 | 6 | 5.483 | 5.467 | 0.016 | 16.712 | 18.061 | −1.349 | 3.577 | 3.597 | −0.02 |
14 | 10 | 0.8 | 6 | 6.492 | 5.467 | 1.025 | 21.781 | 18.061 | 3.72 | 4.064 | 3.597 | 0.467 |
15 | 10 | 0.8 | 6 | 4.426 | 5.467 | −1.041 | 15.691 | 18.061 | −2.73 | 3.151 | 3.597 | −0.446 |
RS (mg/mL) | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Regression | 9 | 5.04282 | 0.560313 | 21.84 | 0.002 | |
Linear | 3 | 1.16342 | 0.387806 | 15.11 | 0.006 | |
X1 (%) | 1 | 0.55469 | 0.554688 | 21.62 | 0.006 | |
X2 (%) | 1 | 0.08226 | 0.082265 | 3.21 | 0.133 | |
X3 (h) | 1 | 0.34699 | 0.346986 | 13.52 | 0.014 | |
Square | 3 | 1.41322 | 0.471072 | 18.36 | 0.004 | |
X1 × X1 (%) | 1 | 0.36356 | 0.363564 | 14.17 | 0.013 | |
X2 × X2 (%) | 1 | 0.12917 | 0.129174 | 5.03 | 0.075 | |
X3 × X3 (h) | 1 | 0.81202 | 0.812019 | 31.64 | 0.002 | |
Interaction | 3 | 0.09589 | 0.031963 | 1.25 | 0.386 | |
X1 × X2 (%) | 1 | 0.02341 | 0.023409 | 0.91 | 0.383 | |
X1 × X3 (h) | 1 | 0.07023 | 0.070225 | 2.74 | 0.159 | |
X2 × X3 (h) | 1 | 0.00226 | 0.002256 | 0.09 | 0.779 | |
Residual Error | 5 | 0.12830 | 0.025661 | |||
Lack-of-Fit | 3 | 0.10418 | 0.034728 | 2.88 | 0.268 | |
Pure Error | 2 | 0.02412 | 0.012060 | |||
Total | 14 | 5.17112 | ||||
TS (mg/mL) | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Regression | 9 | 274.695 | 30.5216 | 5.45 | 0.038 | |
Linear | 3 | 97.090 | 32.3634 | 5.78 | 0.044 | |
X1 (%) | 1 | 28.351 | 28.3515 | 5.07 | 0.074 | |
X2 (%) | 1 | 27.498 | 27.4978 | 4.91 | 0.077 | |
X3 (h) | 1 | 22.804 | 22.8037 | 4.08 | 0.100 | |
Square | 3 | 150.403 | 50.1343 | 8.96 | 0.019 | |
X1 × X1 (%) | 1 | 34.278 | 34.2783 | 6.13 | 0.056 | |
X2 × X2 (%) | 1 | 20.987 | 20.9865 | 3.75 | 0.111 | |
X3 (h) | 1 | 91.393 | 91.3930 | 16.33 | 0.010 | |
Interaction | 3 | 21.157 | 7.0524 | 1.26 | 0.382 | |
X1 × X2 | 1 | 2.304 | 2.3043 | 0.41 | 0.549 | |
X1 × X3 | 1 | 0.048 | 0.0477 | 0.01 | 0.930 | |
X2 × X3 | 1 | 18.805 | 18.8052 | 3.36 | 0.126 | |
Residual Error | 5 | 27.979 | 5.5958 | |||
Lack-of-Fit | 3 | 25.729 | 8.5764 | 7.63 | 0.118 | |
Pure Error | 2 | 2.250 | 1.1248 | |||
Total | 14 | 302.67 | ||||
TP (mg/mL) | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Regression | 9 | 2.89177 | 0.321308 | 8.14 | 0.016 | |
Linear | 3 | 0.44948 | 0.149826 | 3.80 | 0.093 | |
X1 (%) | 1 | 0.01257 | 0.012567 | 0.32 | 0.597 | |
X2 (%) | 1 | 0.34304 | 0.343040 | 8.69 | 0.032 | |
X3 (h) | 1 | 0.03269 | 0.032695 | 0.83 | 0.405 | |
Square | 3 | 0.70544 | 0.235147 | 5.96 | 0.042 | |
X1 × X1 (%) | 1 | 0.18887 | 0.188867 | 4.78 | 0.080 | |
X2 × X2 (%) | 1 | 0.14052 | 0.140520 | 3.56 | 0.118 | |
X3 × X3 (h) | 1 | 0.35008 | 0.350078 | 8.87 | 0.031 | |
Interaction | 3 | 0.58291 | 0.194305 | 4.92 | 0.059 | |
X1 × X2 | 1 | 0.03744 | 0.037442 | 0.95 | 0.375 | |
X1 × X3 | 1 | 0.42576 | 0.425756 | 10.79 | 0.022 | |
X2 × X3 | 1 | 0.11972 | 0.119716 | 3.03 | 0.142 | |
Residual Error | 5 | 0.19736 | 0.039472 | |||
Lack-of-Fit | 3 | 0.19690 | 0.065633 | 284.95 | 0.003 | |
Pure Error | 2 | 0.00046 | 0.000230 | |||
Total | 14 | 3.08913 |
RS (mg/mL) | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Regression | 9 | 14.6442 | 1.62714 | 3.77 | 0.079 | |
Linear | 3 | 4.0652 | 1.35508 | 3.14 | 0.125 | |
X1 (%) | 1 | 0.0371 | 0.03712 | 0.09 | 0.781 | |
X2 (%) | 1 | 3.6149 | 3.61493 | 8.37 | 0.034 | |
X3 (h) | 1 | 1.0969 | 1.09691 | 2.54 | 0.172 | |
Square | 3 | 1.7946 | 0.59821 | 1.38 | 0.349 | |
X1 × X1 (%) | 1 | 0.0356 | 0.03555 | 0.08 | 0.786 | |
X2 × X2 (%) | 1 | 1.0633 | 1.06326 | 2.46 | 0.178 | |
X3 × X3 (h) | 1 | 0.5584 | 0.55836 | 1.29 | 0.307 | |
Interaction | 3 | 8.1798 | 2.72659 | 6.31 | 0.037 | |
X1 × X2 (%) | 1 | 0.2480 | 0.24800 | 0.57 | 0.483 | |
X1 × X3 (h) | 1 | 0.1560 | 0.15602 | 0.36 | 0.574 | |
X2 × X3 (h) | 1 | 7.7757 | 7.77573 | 17.99 | 0.008 | |
Residual Error | 5 | 2.1607 | 0.43213 | |||
Lack-of-Fit | 3 | 0.0261 | 0.00870 | 0.01 | 0.999 | |
Pure Error | 2 | 2.1346 | 1.06728 | |||
Total | 14 | 16.8049 | ||||
TS (mg/mL) | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Regression | 9 | 324.426 | 36.0473 | 7.68 | 0.019 | |
Linear | 3 | 23.548 | 7.8492 | 1.67 | 0.287 | |
X1 (%) | 1 | 0.029 | 0.0290 | 0.01 | 0.940 | |
X2 (%) | 1 | 3.778 | 3.7775 | 0.80 | 0.411 | |
X3 (h) | 1 | 15.104 | 15.1036 | 3.22 | 0.133 | |
Square | 3 | 11.575 | 3.8582 | 0.82 | 0.535 | |
X1 × X1 (%) | 1 | 8.252 | 8.2519 | 1.76 | 0.242 | |
X2 × X2 (%) | 1 | 4.139 | 4.1386 | 0.88 | 0.391 | |
X3 × X3 | 1 | 0.053 | 0.0529 | 0.01 | 0.920 | |
Interaction | 3 | 48.095 | 16.0315 | 3.41 | 0.110 | |
X1 × X2 | 1 | 0.619 | 0.6194 | 0.13 | 0.731 | |
X1 × X3 | 1 | 42.146 | 42.1461 | 8.98 | 0.030 | |
X2 × X3 | 1 | 5.329 | 5.3292 | 1.14 | 0.335 | |
ResidualError | 5 | 23.473 | 4.6946 | |||
Lack-of-Fit | 3 | 2.198 | 0.7327 | 0.07 | 0.971 | |
Pure Error | 2 | 21.275 | 10.6376 | |||
Total | 14 | 347.899 | ||||
TP (mg/mL) | Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Regression | 9 | 8.41739 | 0.93527 | 9.45 | 0.012 | |
Linear | 3 | 0.12669 | 0.04223 | 0.43 | 0.743 | |
X1 (%) | 1 | 0.01412 | 0.01412 | 0.14 | 0.721 | |
X2 (%) | 1 | 0.00378 | 0.00378 | 0.04 | 0.853 | |
X3 (h) | 1 | 0.09963 | 0.09963 | 1.01 | 0.362 | |
Square | 3 | 1.87128 | 0.62376 | 6.30 | 0.038 | |
X1 × X1 (%) | 1 | 0.03397 | 0.03397 | 0.34 | 0.583 | |
X2 × X2 (%) | 1 | 0.31951 | 0.31951 | 3.23 | 0.132 | |
X3 × X3 (h) | 1 | 1.64965 | 1.64965 | 16.67 | 0.010 | |
Interaction | 3 | 2.50544 | 0.83515 | 8.44 | 0.021 | |
X1 × X2 (%) | 1 | 0.12215 | 0.12215 | 1.23 | 0.317 | |
X1 × X3 (h) | 1 | 0.00090 | 0.00090 | 0.01 | 0.928 | |
X2 × X3 (h) | 1 | 2.38239 | 2.38239 | 24.08 | 0.004 | |
Residual Error | 5 | 0.49467 | 0.09893 | |||
Lack-of-Fit | 3 | 0.07727 | 0.02576 | 0.12 | 0.938 | |
Pure Error | 2 | 0.41740 | 0.20870 | |||
Total | 14 | 8.91207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, Q.; Joly, N.; Martin, P.; Qazi, J.I. Optimization of Alkali Treatment for Production of Fermentable Sugars and Phenolic Compounds from Potato Peel Waste Using Topographical Characterization and FTIR Spectroscopy. Molecules 2023, 28, 7250. https://doi.org/10.3390/molecules28217250
Mushtaq Q, Joly N, Martin P, Qazi JI. Optimization of Alkali Treatment for Production of Fermentable Sugars and Phenolic Compounds from Potato Peel Waste Using Topographical Characterization and FTIR Spectroscopy. Molecules. 2023; 28(21):7250. https://doi.org/10.3390/molecules28217250
Chicago/Turabian StyleMushtaq, Qudsia, Nicolas Joly, Patrick Martin, and Javed Iqbal Qazi. 2023. "Optimization of Alkali Treatment for Production of Fermentable Sugars and Phenolic Compounds from Potato Peel Waste Using Topographical Characterization and FTIR Spectroscopy" Molecules 28, no. 21: 7250. https://doi.org/10.3390/molecules28217250
APA StyleMushtaq, Q., Joly, N., Martin, P., & Qazi, J. I. (2023). Optimization of Alkali Treatment for Production of Fermentable Sugars and Phenolic Compounds from Potato Peel Waste Using Topographical Characterization and FTIR Spectroscopy. Molecules, 28(21), 7250. https://doi.org/10.3390/molecules28217250