Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = NTPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1090 KiB  
Article
Non-Thermal Plasma and Hydropriming Combined Treatment of Cucumber and Broccoli Seeds and the Effects on Germination and Seedling Characteristics After Short-Term Storage
by Pratik Doshi, Vladimír Scholtz, Josef Khun, Laura Thonová, Xiang Cai and Božena Šerá
Appl. Sci. 2025, 15(15), 8404; https://doi.org/10.3390/app15158404 - 29 Jul 2025
Viewed by 105
Abstract
The combined effect of non-thermal plasma (NTP) and hydropriming on the germination performance and seedling characteristics of specific varieties of cucumber (Cucumis sativus L.) and broccoli (Brassica oleracea var. italica Plenck.) seeds after short-term storage is reported. Seeds were treated with [...] Read more.
The combined effect of non-thermal plasma (NTP) and hydropriming on the germination performance and seedling characteristics of specific varieties of cucumber (Cucumis sativus L.) and broccoli (Brassica oleracea var. italica Plenck.) seeds after short-term storage is reported. Seeds were treated with NTP for 10 and 15 min, followed by hydropriming in distilled water for 24 h, and then stored for six months in the dark before evaluation. The treated cucumber seeds demonstrated a statistically significant enhancement in seed germination and seedling vitality indices. In contrast, broccoli seeds showed no significant improvement. The stimulatory effects observed in cucumber may be attributed to reactive oxygen and nitrogen species, which act as signaling molecules to promote stress tolerance and early growth. This study also highlights the potential of combined NTP treatment and hydropriming as a pre-sowing treatment for select crops, underscoring the need for species-specific optimization. The used, portable, and relatively inexpensive NTP device offers practical advantages for agricultural applications. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

12 pages, 2555 KiB  
Article
Genogroup-Specific Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay for Point-of-Care Detection of Norovirus
by Wahedul Karim Ansari, Mi-Ran Seo and Yeun-Jun Chung
Diagnostics 2025, 15(15), 1868; https://doi.org/10.3390/diagnostics15151868 - 25 Jul 2025
Viewed by 209
Abstract
Background/Objectives: Norovirus is a major cause of acute gastroenteritis worldwide. Considering its highly infectious and transmissible nature, rapid and accurate diagnostic tools are of utmost importance for the effective control of outbreaks in the context of point-of-care testing (POCT). In this study, we [...] Read more.
Background/Objectives: Norovirus is a major cause of acute gastroenteritis worldwide. Considering its highly infectious and transmissible nature, rapid and accurate diagnostic tools are of utmost importance for the effective control of outbreaks in the context of point-of-care testing (POCT). In this study, we developed a genogroup-specific multiplex reverse transcriptase loop-mediated isothermal amplification assay to detect the human norovirus genogroups I and II (GI and GII, respectively). Methods: For the comprehensive detection of clinically relevant genotypes, two sets of primers were incorporated into the assays targeting the RdRp-VP1 junction: one against GI.1 and GI.3, and the other for GII.2 and GII.4. Following optimization of the reaction variables, we standardized the reaction conditions at 65 °C with 6 mM MgSO4, 1.4 mM dNTPs, 7.5 U WarmStart RTx Reverse Transcriptase, and Bst DNA polymerase at 8 U and 10 U for GI and GII, respectively. Amplification was monitored in real-time using a thermocycler platform to ensure precise quantification and detection. Finally, the assay was evaluated through portable isothermal detection device to test its feasibility in on-site settings. Results: Both assays detected the template down to 102–103 copies per reaction and showed high target selectivity, yielding no non-specific amplification across 39 enteric pathogens. These assays enabled prompt detection of GI within 10–12 min and of GII within 12–17 min after the reaction was initiated. Onsite validation reveals all template detection below 15 min, demonstrating its potential feasibility in point-of-care applications. Including the sample preparation time, test results were obtained in less than 1 h. Conclusions: This method is a rapid, reliable, and scalable solution for detecting human norovirus in POCT settings for both clinical diagnosis and public health surveillance. Full article
Show Figures

Graphical abstract

16 pages, 3023 KiB  
Article
Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
by Dheerawan Boonyawan, Hans Jørgen Lyngs Jørgensen and Salit Supakitthanakorn
Horticulturae 2025, 11(7), 818; https://doi.org/10.3390/horticulturae11070818 - 9 Jul 2025
Viewed by 317
Abstract
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge [...] Read more.
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge (DBD) for controlling R. stolonifer infection. Fungal mycelial discs were exposed to these plasmas for 10, 15 or 20 min, whereas conidial suspensions were treated for 1, 3, 5 or 7 min. Morphological alterations following non-thermal plasma exposure were studied using scanning electron microscopy (SEM). Exposure to GA and DBD plasmas for 20 min completely inhibited mycelial growth. SEM analysis revealed significant structural damage to the mycelium, sporangia and sporangiospores of treated samples compared to untreated controls. Complete inhibition of sporangiospore germination was achieved with treatments for at least 3 min for all NTPs. Pathogenicity assays on strawberry fruit showed that 15 min exposure to any of the tested NTPs completely prevented the development of soft rot disease. Importantly, NTP treatments did not adversely affect the external or internal characteristics of treated strawberries. These findings suggest that atmospheric non-thermal plasmas offer an effective approach for controlling R. stolonifer infection in strawberries, potentially providing a non-chemical alternative for post-harvest disease management. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Graphical abstract

15 pages, 1685 KiB  
Article
Accelerating Effects of Poloxamer and Its Structural Analogs on the Crystallization of Nitrendipine Polymorphs
by Jie Zhang, Qiusheng Yang, Meixia Xu, Xinqiang Tan, Xucong Peng, Ziqing Yang, Kang Li, Jia Yang, Jie Chen, Xuan Xun, Saijun Xiao, Lingjie Zhou, Minzhuo Liu and Zhihong Zeng
Pharmaceuticals 2025, 18(7), 1000; https://doi.org/10.3390/ph18071000 - 3 Jul 2025
Viewed by 556
Abstract
Background: Surfactants can be added into polymer–amorphous drug systems to further enhance solubility. However, this may cause amorphous drugs to become physically unstable, and the inherent mechanism at play here is not fully understood. Methods: We explored the effects of poloxamer, a poly [...] Read more.
Background: Surfactants can be added into polymer–amorphous drug systems to further enhance solubility. However, this may cause amorphous drugs to become physically unstable, and the inherent mechanism at play here is not fully understood. Methods: We explored the effects of poloxamer, a poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO) triblock copolymer surfactant, and its segments on the nucleation and growth kinetics of amorphous nitrendipine (NTP) from the melt through polarized light microscopy. The effects of poloxamer and structural analogs on the melting point and glass transition temperature were also investigated using differential scanning calorimetry. Results: The poloxamer and its structural analogs enhanced nucleation and growth kinetics in supercooled liquid. Poloxamer and its structural analogs exhibited similar effects on the nucleation and growth kinetics of amorphous NTP, suggesting minimal dependence on structural variation. The overall crystallization rate of the NTP increased when increasing the poloxamer content and ultimately reached a maximum value; after that, the crystallization rates of NTP decreased when increasing the poloxamer content. Conclusions: Poloxamer and its structural analogs achieve similar effects on crystallization due to their comparable plasticizing effects. The nucleation and growth rates show different trends as a function of the poloxamer content. This effect is a result of both kinetic and thermodynamic factors. This study is relevant to understanding the impacts of the surfactant on the physical instability of amorphous drugs. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 4367 KiB  
Article
Non-Thermal Plasma-Assisted Synthesis of ZnO for Enhanced Photocatalytic Performance
by Harshini Mohan, Subash Mohandoss, Natarajan Balasubramaniyan and Sivachandiran Loganathan
Plasma 2025, 8(2), 25; https://doi.org/10.3390/plasma8020025 - 18 Jun 2025
Viewed by 499
Abstract
Non-thermal plasma (NTP)-assisted material synthesis and surface modification provide a promising approach in various applications, particularly in wastewater treatment. In this study, we reported the synthesis of photocatalytic zinc oxide (ZnO) from zinc hydroxide (Zn(OH)2) utilizing NTP discharge generated by dielectric [...] Read more.
Non-thermal plasma (NTP)-assisted material synthesis and surface modification provide a promising approach in various applications, particularly in wastewater treatment. In this study, we reported the synthesis of photocatalytic zinc oxide (ZnO) from zinc hydroxide (Zn(OH)2) utilizing NTP discharge generated by dielectric barrier discharge (DBD). The results demonstrated that the 40 min plasma treatment at 200 °C (ZnO-P) with a voltage of 20 kV significantly improved the material’s physicochemical properties compared to conventional calcination at 600 °C (ZnO-600). ZnO-P exhibited better crystallinity, a significantly reduced particle size of 41 nm, and a narrower band gap of 3.1 eV compared to ZnO-600. Photocatalytic performance was evaluated through crystal violet degradation, where ZnO-P achieved an 60% degradation rate after 90 min of UV exposure, whereas ZnO-600 exhibited only a 50% degradation rate under identical conditions. These findings underscore the effectiveness of NTP synthesis in enhancing the surface properties of ZnO, leading to superior photocatalytic performance. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

19 pages, 1546 KiB  
Article
Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner
by Justinas Masionis, Darius Čiužas, Edvinas Krugly, Martynas Tichonovas, Tadas Prasauskas and Dainius Martuzevičius
Plasma 2025, 8(2), 22; https://doi.org/10.3390/plasma8020022 - 31 May 2025
Viewed by 1041
Abstract
Bioaerosol particles contribute to the reduced indoor air quality and cause various health issues, thus their concentration must be managed. Air cleaning is one of the most viable technological options for reducing quantities of indoor air contaminants. This study assesses the effectiveness of [...] Read more.
Bioaerosol particles contribute to the reduced indoor air quality and cause various health issues, thus their concentration must be managed. Air cleaning is one of the most viable technological options for reducing quantities of indoor air contaminants. This study assesses the effectiveness of a prototype multi-stage air cleaner in reducing bioaerosol particle viability and concentrations. The single-pass type unit consisted of non-thermal plasma (NTP), ultraviolet-C (UV-C) irradiation, bipolar ionization (BI), and electrostatic precipitation (ESP) stages. The device was tested under controlled laboratory conditions using Escherichia coli (Gram-negative) and Lactobacillus casei (Gram-positive) bacteria aerosol at varying airflow rates (50–600 m3/h). The device achieved over 99% inactivation efficiency for both bacterial strains at the lowest airflow rate (50 m3/h). Efficiency declined with increasing airflow rates but remained above 94% at the highest flow rate (600 m3/h). Among the individual stages, NTP demonstrated the highest standalone inactivation efficiency, followed by UV-C and BI. The ESP stage effectively captured inactivated bioaerosol particles, preventing re-emission, while an integrated ozone decomposition unit maintained ozone concentrations below safety thresholds. These findings show the potential of multi-stage air cleaning technology for reducing bioaerosol contamination in indoor environments, with applications in healthcare, public spaces, and residential settings. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

24 pages, 1468 KiB  
Review
Clinical Significance of NUDT1 (MTH1) Across Cancer Types
by Radosław Misiak, Karol Białkowski and Ewelina Dondajewska
Int. J. Mol. Sci. 2025, 26(11), 5137; https://doi.org/10.3390/ijms26115137 - 27 May 2025
Viewed by 604
Abstract
MTH1 (MutT Homolog 1) protein is one of the enzymes that protect cells from mutagenetic actions of reactive oxygen species. It sanitizes the pool of free nucleotides, making sure that oxidized dNTPs are not incorporated into the DNA. Any misfunction of it would [...] Read more.
MTH1 (MutT Homolog 1) protein is one of the enzymes that protect cells from mutagenetic actions of reactive oxygen species. It sanitizes the pool of free nucleotides, making sure that oxidized dNTPs are not incorporated into the DNA. Any misfunction of it would lead to mutations. As such, it has attracted interest of cancer researchers, and multiple studies have been conducted over the years to determine its role in tumor cells. It has been found that MTH1 is not downregulated in most tumor tissues but, to the contrary, often overexpressed. This suggests that MTH1 is used by cancer as an adaptation to increased oxidative stress caused by metabolic reprogramming to support excessive proliferation. Based on this premise, many recent studies have evaluated MTH1 as either prognostic factor, general biomarker or therapeutic target in cancer. Here, we summarize all available research on MTH1 mRNA, protein and its enzymatic activity in clinical samples across various cancer types, identifying a subset of cancers where MTH1 plays an important role. This is particularly evident in cancers characterized by high metabolic activity and oxygen-rich environments, such as hepatocellular carcinoma, renal cell carcinoma, or non-small cell lung adenocarcinoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 4642 KiB  
Article
Structure-Based Identification of Natural MTH1 Inhibitors for Breast Cancer Therapy via Molecular Docking and Dynamics Simulations
by Abdullah S. Alawam and Mubarak A. Alamri
Crystals 2025, 15(6), 507; https://doi.org/10.3390/cryst15060507 - 26 May 2025
Viewed by 619
Abstract
Breast cancer is a prevalent malignancy worldwide. Human MutT homolog 1 (MTH1) is over expressed in breast tumors, and cancer cells rely on MTH1 for survival. This protein ensures the integrity of the nucleotide pool by preventing the integration of oxidized 2′-deoxynucleoside triphosphates [...] Read more.
Breast cancer is a prevalent malignancy worldwide. Human MutT homolog 1 (MTH1) is over expressed in breast tumors, and cancer cells rely on MTH1 for survival. This protein ensures the integrity of the nucleotide pool by preventing the integration of oxidized 2′-deoxynucleoside triphosphates (dNTPs) during DNA replication. Therefore, inhibiting MTH1 pharmacologically emerged as a valid target in treating breast cancer. In the present study, we screened biologically active phytochemicals from the NPACT database to discover potential inhibitors of MTH1. Molecular docking analysis was employed to identify the binding conformation and the interaction pattern. The top five compounds were selected for detailed analysis based on their superior binding affinity and interactions with crucial residues (Asn33, Gly36, Tyr7, Phe72, Trp117, Lys23, and Phe27, Glu100) of MTH1. Additionally, the ADMET profile of selected compounds highlighted the high intestinal absorption, low toxicity, and acceptable metabolic stability, exhibiting their potential as drug candidates. Furthermore, in silico validation of selected compounds was performed through molecular dynamics (MD) simulation, which revealed that the resultant complexes are appreciably stable. Compounds revealed RMSD values ranging between 1.0 and 1.5 Å, indicating strong and stable binding conformations. PCA analysis revealed restricted conformational sampling, highlighting stabilization, particularly with ZINC14727630, ZINC14819291, ZINC14781695, and ZINC95099417. MM-GBSA confirmed the stability of the ligand–protein complexes, with ZINC14819291, ZINC14727630, and ZINC95099417 demonstrating the most stable interactions with MTH1, with total binding free energies of −32.46, −45.06, and −33.44 kcal/mol, respectively. Our results support that these natural compounds could act as potential anti-MTH1 for ameliorating the breast cancer. However, experimental validation is required to validate the efficacy of these molecules and robustness of this anticancer approach. Full article
Show Figures

Figure 1

15 pages, 2620 KiB  
Article
Hemolysin-like Protein of ‘Candidatus Phytoplasma Mali’ Is an NTPase and Binds Arabidopsis thaliana Toc33
by Kajohn Boonrod, Alisa Konnerth, Mario Braun and Gabi Krczal
Microorganisms 2025, 13(5), 1150; https://doi.org/10.3390/microorganisms13051150 - 17 May 2025
Viewed by 574
Abstract
Candidatus Phytoplasma mali’ is associated with apple proliferation, a devastating disease in fruit production. Using genome analysis, a gene encoding a hemolysin-like protein was identified. It was postulated that this protein could be an effector. However, the function of this protein is [...] Read more.
Candidatus Phytoplasma mali’ is associated with apple proliferation, a devastating disease in fruit production. Using genome analysis, a gene encoding a hemolysin-like protein was identified. It was postulated that this protein could be an effector. However, the function of this protein is unknown. It is shown that the hemolysin-like protein binds to a GTP binding protein, Toc33, of Arabidopsis thaliana in yeast two-hybrid analysis and that the Toc33-binding domain is located in the C-terminus of the domain of unknown function (DUF21) of the protein. The biochemical studies reveal that the protein can hydrolyze phosphate of purine and pyrimidine nucleotides. Transgenic Nicotiana benthamiana plants expressing the protein show no discernible change in phenotype. Phytoplasma have a much-reduced genome, lacking important genes for catabolic pathways or nucleotide production; therefore, the hemolysin-like protein plays a role in the uptake of plant nucleotides from their host and hydrolyzes these nucleotides for energy and their own biosynthesis. Full article
Show Figures

Figure 1

26 pages, 8292 KiB  
Article
Low-Carbon Hybrid Constructed Wetland System for Rural Domestic Sewage: Substrate–Plant–Microbe Synergy and Annual Performance
by Jiawei Wang, Gang Zhang, Dejian Wang, Yuting Zhao, Lingyu Wu, Yunwen Zheng and Qin Liu
Water 2025, 17(10), 1421; https://doi.org/10.3390/w17101421 - 9 May 2025
Viewed by 691
Abstract
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen [...] Read more.
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen and phosphorus removal, the potential of six readily accessible industrial and agricultural waste byproducts—including plastic fiber (PF), hollow brick crumbs (BC), blast furnace steel slag (BFS), a zeolite–blast furnace steel slag composite (ZBFS), zeolite (Zeo), and soil—was systematically evaluated individually as substrates in vertical subsurface flow constructed wetlands (VSSFCWs) under varying hydraulic retention times (HRTs, 0–120 h). The synergy among substrates, plants, and microbes, coupled with the effects of hydraulic retention time (HRT) on pollutant degradation performance, was clarified. Results showed BFS achieved optimal comprehensive pollutant removal efficiencies (97.1% NH4+-N, 76.6% TN, 89.7% TP, 71.0% COD) at HRT = 12 h, while zeolite excelled in NH4+-N/TP removal (99.5%/94.5%) and zeolite–BFS specializing in COD reduction (80.6%). System-wide microbial analysis revealed organic load (sludges from the sedimentation tank [ST] and anaerobic tanks [ATs]), substrate type, and rhizosphere effects critically shaped community structure, driving specialized pathways like sulfur autotrophic denitrification (Nitrospira) and iron-mediated phosphorus removal. Annual engineering validation demonstrated that the optimized strategy of “pretreatment unit for phosphorus control—vertical wetland for enhanced nitrogen removal” achieved stable effluent quality compliance with Grade 1-A standard for rural domestic sewage discharge after treatment facilities, without the addition of external carbon sources or exogenous microbial inoculants. This low-carbon operation and long-term stability position it as an alternative to energy-intensive activated sludge or membrane-based systems in resource-limited settings. Full article
(This article belongs to the Special Issue Constructed Wetlands: Enhancing Contaminant Removal and Remediation)
Show Figures

Figure 1

13 pages, 1501 KiB  
Article
Non-Thermal Plasma Attenuates TNF-α-Induced Endothelial Inflammation via ROS Modulation and NF-κB Inhibition
by Joo-Hak Kim, Seonhee Kim, Shuyu Piao, Minsoo Kim, Dae-Woong Kim, Byeong Hwa Jeon, Sang-Ha Oh and Cuk-Seong Kim
Int. J. Mol. Sci. 2025, 26(9), 4449; https://doi.org/10.3390/ijms26094449 - 7 May 2025
Cited by 1 | Viewed by 535
Abstract
Non-thermal plasma (NTP) has emerged as a promising therapeutic tool due to its anti-inflammatory properties; however, its molecular effects on vascular endothelial inflammation remain unclear. This study investigated the effects of NTP on tumor necrosis factor-alpha (TNF-α)-induced inflammation in human umbilical vein endothelial [...] Read more.
Non-thermal plasma (NTP) has emerged as a promising therapeutic tool due to its anti-inflammatory properties; however, its molecular effects on vascular endothelial inflammation remain unclear. This study investigated the effects of NTP on tumor necrosis factor-alpha (TNF-α)-induced inflammation in human umbilical vein endothelial cells (HUVECs). NTP treatment significantly reduced intracellular reactive oxygen species (ROS) levels and downregulated the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which are key markers of endothelial activation. In addition, NTP suppressed mRNA expression of pro-inflammatory cytokines, including TNF-α, interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Mechanistically, NTP inhibited the nuclear translocation of phosphorylated NF-κB p65, indicating attenuation of NF-κB signaling. These results demonstrate that NTP modulates inflammatory responses in endothelial cells by attenuating ROS generation and suppressing NF-κB-mediated signaling. Our findings suggest that NTP may serve as a potential therapeutic strategy for treating vascular inflammation and related pathologies. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 5180 KiB  
Review
Research Progress of Nonthermal Plasma for Ammonia Synthesis
by Xiaowang Yan, Dengyun Wang, Lijian Wang, Dingkun Yuan, Zhongqian Ling, Xinlu Han and Xianyang Zeng
Processes 2025, 13(5), 1354; https://doi.org/10.3390/pr13051354 - 28 Apr 2025
Viewed by 1145
Abstract
Ammonia (NH3) plays a vital role in both the agriculture and energy sectors, serving as a precursor for nitrogen fertilizers and as a promising carbon-free fuel and hydrogen carrier. However, the conventional Haber–Bosch process is highly energy-intensive, operating under elevated temperatures [...] Read more.
Ammonia (NH3) plays a vital role in both the agriculture and energy sectors, serving as a precursor for nitrogen fertilizers and as a promising carbon-free fuel and hydrogen carrier. However, the conventional Haber–Bosch process is highly energy-intensive, operating under elevated temperatures and pressures, and contributes significantly to global CO2 emissions. In recent years, nonthermal plasma (NTP)-assisted ammonia synthesis has emerged as a promising alternative that enables ammonia production under mild conditions. With its ability to activate inert N2 molecules through energetic electrons and reactive species, NTP offers a sustainable route with potential integration into renewable energy systems. This review systematically summarizes recent advances in NTP-assisted ammonia synthesis, covering reactor design, catalyst development, plasma–catalyst synergistic mechanisms, and representative reaction pathways. Particular attention is given to the influence of key plasma parameters, such as discharge power, pulse voltage, frequency, gas flow rate, and N2/H2 ratio, on reaction performance and energy efficiency. Additionally, comparative studies on plasma reactor configurations and materials are presented. The integration of NTP systems with green hydrogen sources and strategies to mitigate ammonia decomposition are also discussed. This review provides comprehensive insights and guidance for advancing efficient, low-carbon, and distributed ammonia production technologies. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

33 pages, 1847 KiB  
Review
Immunological Control of Herpes Simplex Virus Type 1 Infection: A Non-Thermal Plasma-Based Approach
by Julia Sutter, Jennifer L. Hope, Brian Wigdahl, Vandana Miller and Fred C. Krebs
Viruses 2025, 17(5), 600; https://doi.org/10.3390/v17050600 - 23 Apr 2025
Viewed by 1402
Abstract
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful [...] Read more.
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful vaccine development, and the inability of the host immune system to clear HSV-1. Despite the inefficiencies of the immune system, the course of HSV-1 infection remains under strict immunological control. Specifically, HSV-1 is controlled by a CD8+ T cell response that is cytotoxic to HSV-1-infected cells, restricts acute infection, and uses noncytolytic mechanisms to suppress reactivation in the TG. When this CD8+ T cell response is disrupted, reactivation of latent HSV-1 occurs. With antiviral therapies unable to cure HSV-1 and prophylactic vaccine strategies failing to stimulate a protective response, we propose non-thermal plasma (NTP) as a potential therapy effective against recurrent HSV-1 infection. We have demonstrated that NTP, when applied directly to HSV-1-infected cells, has antiviral effects and stimulates cellular stress and immunomodulatory responses. We further propose that the direct effects of NTP will lead to long-lasting indirect effects such as reduced viral seeding into the TG and enhanced HSV-1-specific CD8+ T cell responses that exert greater immune control over HSV-1 infection. Full article
(This article belongs to the Special Issue Herpesviruses and Associated Diseases)
Show Figures

Figure 1

15 pages, 1528 KiB  
Article
Non-Thermal Plasma-Catalytic Conversion of Biogas to Value-Added Liquid Chemicals via Ni-Fe/Al2O3 Catalyst
by Milad Zehtab Salmasi, Razieh Es’haghian, Ali Omidkar and Hua Song
Appl. Sci. 2025, 15(8), 4248; https://doi.org/10.3390/app15084248 - 11 Apr 2025
Viewed by 508
Abstract
This study investigates the transformation of biogas (methane and carbon dioxide) into high-value liquid products using Ni/Al2O3, Fe/Al2O3, and Ni-Fe/Al2O3 catalysts in a non-thermal plasma (NTP)-assisted process within a dielectric barrier discharge [...] Read more.
This study investigates the transformation of biogas (methane and carbon dioxide) into high-value liquid products using Ni/Al2O3, Fe/Al2O3, and Ni-Fe/Al2O3 catalysts in a non-thermal plasma (NTP)-assisted process within a dielectric barrier discharge (DBD) reactor, operating at room temperature and atmospheric pressure. We compared the effectiveness of these three catalysts, with the Ni-Fe/Al2O3 catalyst showing the highest enhancement in conversion rates, achieving 34.8% for CH4 and 19.7% for CO2. This catalyst also promoted the highest liquid yield observed at 38.6% and facilitated a significant reduction in coke formation to 10.4%, minimizing deactivation and loss of efficiency. These improvements underscore the catalyst’s pivotal role in enhancing the overall process efficiency, leading to the production of key gas products such as hydrogen (H2) and carbon monoxide (CO), alongside valuable liquid oxygenates including methanol, ethanol, formaldehyde, acetic acid, and propanoic acid. The findings from this study highlight the efficacy of combining NTP with the Ni-Fe/Al2O3 catalyst as a promising approach for boosting the production of valuable chemicals from biogas, offering a sustainable pathway for energy and chemical manufacturing. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

13 pages, 1211 KiB  
Review
Prime Editing in Dividing and Quiescent Cells
by Irina O. Petrova and Svetlana A. Smirnikhina
Int. J. Mol. Sci. 2025, 26(8), 3596; https://doi.org/10.3390/ijms26083596 - 11 Apr 2025
Viewed by 917
Abstract
Prime editing is a method of genome editing based on reverse transcription. Recent results have shown its elevated efficiency in dividing cells, which raises some questions regarding the mechanism of this effect, because prime editing does not employ homology-driven repair. This mini review [...] Read more.
Prime editing is a method of genome editing based on reverse transcription. Recent results have shown its elevated efficiency in dividing cells, which raises some questions regarding the mechanism of this effect, because prime editing does not employ homology-driven repair. This mini review aims to identify the reason for this phenomenon and find a possible solution to the problems that it poses. In dividing cells, prime editing takes advantage of high levels of dNTPs and active endonuclease and ligase machinery, such as FEN1 endonuclease and LIG1 ligase, but DNA mismatch repair, which is closely associated with replication, works against prime editing. Prime editing is a method which relies on retroviral reverse transcription, so mechanisms of intrinsic anti-retroviral defense should also work against editing. One of the factors which drastically reduce the efficiency of reverse translation is SAMHD1, which maintains low levels of dNTPs in non-dividing cells. Recent works aimed at the mitigation of SAMHD1 function demonstrated a significant increase in prime editing efficiency. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop