Research Progress of Nonthermal Plasma for Ammonia Synthesis
Abstract
:1. Introduction
2. Basic Research on Plasma-Assisted Ammonia Synthesis
2.1. Plasma for Assisting Ammonia Synthesis
2.2. Applications of Plasma-Assisted Ammonia Synthesis
3. Nonthermal-Plasma-Assisted Ammonia Synthesis
3.1. Direct Ammonia Synthesis
3.2. Catalytic Ammonia Synthesis
3.2.1. Photocatalysis
3.2.2. Electrocatalysis
3.2.3. Plasma Catalysis
4. Influencing Factors of Nonthermal-Plasma-Catalytic Ammonia Synthesis
4.1. Reactor Structure
4.2. Reaction Mechanisms
- Plasma phase: In this pathway, nitrogen radicals (N•) and hydrogen radicals (H•) generated in the plasma environment directly combine to form ammonia (NH3) without the involvement of a catalyst. In this process, the plasma is highly active, and the concentration of radicals is abundant. The reaction rate is primarily determined by the concentration of radicals and their collision frequency.
- Surface-enhanced plasma-driven reaction: Nitrogen radicals (N•) and hydrogen radicals (H•) first adsorb onto the catalyst surface, which has a high electron density and active sites (such as metal active sites). This adsorption enhances the reactivity of the radicals and facilitates ammonia formation.
- Plasma-enhanced semicatalytic reaction: When the catalyst has high activity for hydrogen dissociation but insufficient activity for nitrogen dissociation, nitrogen radicals (N•) adsorb onto the catalyst surface (including both the support and active metal). These radicals then combine with hydrogen atoms (H) dissociated from the catalyst surface to form ammonia (NH3). In this reaction, only the dissociation of hydrogen is catalyzed, while the dissociation of nitrogen is not.
- Plasma-enhanced catalytic reaction: This is the ideal synergistic reaction between plasma and catalyst. In this scenario, the catalyst has high activity for both nitrogen and hydrogen dissociation. The plasma excites the nitrogen molecules to a vibrational state (N2(v)), which then dissociates on the active sites of the catalyst surface. Hydrogen also dissociates on the catalyst surface, and the subsequently adsorbed intermediates combine to form ammonia (NH3).
4.3. Parameter Optimization
4.4. Feedstock Sources
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Bañares-Alcántara, R. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Appl. Energy 2021, 282, 116009. [Google Scholar] [CrossRef]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global potential of green ammonia based on hybrid PV-wind power plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Wang, S.; Cheng, J. Study on coal water slurries prepared from coal chemical wastewater and their industrial application. Appl. Energy 2020, 268, 114976. [Google Scholar] [CrossRef]
- Chisalita, D.-A.; Petrescu, L.; Cormos, C.-C. Environmental evaluation of european ammonia production considering various hydrogen supply chains. Renew. Sustain. Energy Rev. 2020, 130, 109964. [Google Scholar] [CrossRef]
- Carreon, M.L. Plasma catalytic ammonia synthesis: State of the art and future directions. J. Phys. D Appl. Phys. 2019, 52, 483001. [Google Scholar] [CrossRef]
- Osorio-Tejada, J.; Tran, N.N.; Hessel, V. Techno-environmental assessment of small-scale Haber-Bosch and plasma-assisted ammonia supply chains. Sci. Total Env. 2022, 826, 154162. [Google Scholar] [CrossRef]
- Sugiyama, K.; Akazawa, K.; Oshima, M.; Miura, H.; Matsuda, T.; Nomura, O. Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem. Plasma Process. 1986, 6, 179–193. [Google Scholar] [CrossRef]
- Li, S.-J.; Lai, L.; Mei, P.; Li, Y.; Cheng, L.; Ren, Z.-H.; Liu, Y. Equilibrium and dynamic surface properties of cationic/anionic surfactant mixtures based on bisquaternary ammonium salt. J. Mol. Liq. 2018, 254, 248–254. [Google Scholar] [CrossRef]
- Pfromm, P.H. Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustain. Energy 2017, 9, 034702. [Google Scholar] [CrossRef]
- Mehta, P.; Barboun, P.; Herrera, F.A.; Kim, J.; Rumbach, P.; Go, D.B.; Hicks, J.C.; Schneider, W.F. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 2018, 1, 269–275. [Google Scholar] [CrossRef]
- Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940. [Google Scholar] [CrossRef]
- Marnellos, G.; Stoukides, M. Ammonia synthesis at atmospheric pressure. Science 1998, 282, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Gomez, E.; Rani, D.A.; Cheeseman, C.R.; Deegan, D.; Wise, M.; Boccaccini, A.R. Thermal plasma technology for the treatment of wastes: A critical review. J. Hazard. Mater. 2009, 161, 614–626. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Dong, F. Activation and characterization of environmental catalysts in plasma-catalysis: Status and challenges. J. Hazard. Mater. 2022, 427, 128150. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, S.; Hu, X.; Zhang, C.; Ostrikov, K.K.; Shao, T. Recent advances in plasma-enabled ammonia synthesis: State-of-the-art, challenges, and outlook. Faraday Discuss. 2023, 243, 473–491. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, R.; Zhou, R.; Liu, B.; Zhang, T.; Xian, Y.; Cullen, P.J.; Lu, X.; Ostrikov, K. Sustainable ammonia production by non-thermal plasmas: Status, mechanisms, and opportunities. Chem. Eng. J. 2021, 421, 129544. [Google Scholar] [CrossRef]
- Liu, W.; Xia, M.; Zhao, C.; Chong, B.; Chen, J.; Li, H.; Ou, H.; Yang, G. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nat. Commun. 2024, 15, 3524. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; et al. Enhanced NH(3) Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS(2). JACS Au 2023, 3, 1328–1336. [Google Scholar] [CrossRef]
- Shah, J.; Wang, W.; Bogaerts, A.; Carreon, M.L. Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms. ACS Appl. Energy Mater. 2018, 1, 4824–4839. [Google Scholar] [CrossRef]
- Mindong, B.; Zhitao, Z.; Xiyao, B.; Mindi, B.; Wang, N. Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans. Plasma Sci. 2003, 31, 1285–1291. [Google Scholar] [CrossRef]
- Tzaguy, A.; Masip-Sanchez, A.; Avram, L.; Sole-Daura, A.; Lopez, X.; Poblet, J.M.; Neumann, R. Electrocatalytic Reduction of Dinitrogen to Ammonia with Water as Proton and Electron Donor Catalyzed by a Combination of a Tri-ironoxotungstate and an Alkali Metal Cation. J. Am. Chem. Soc. 2023, 145, 19912–19924. [Google Scholar] [CrossRef] [PubMed]
- Uyama, H.; Matsumoto, O. Synthesis of ammonia in high-frequency discharges. II. Synthesis of ammonia in a microwave discharge under various conditions. Plasma Chem. Plasma Process. 1989, 9, 421–432. [Google Scholar] [CrossRef]
- Nakajima, J.; Sekiguchi, H. Synthesis of ammonia using microwave discharge at atmospheric pressure. Thin Solid Films 2008, 516, 4446–4451. [Google Scholar] [CrossRef]
- Takahashi, J.; Sasaki, K. Production rates and destruction frequencies of ammonia in inductively coupled H2O/N2 and H2/N2 plasmas. Contrib. Plasma Phys. 2023, 64, e202300167. [Google Scholar] [CrossRef]
- Anastasopoulou, A.; Keijzer, R.; Patil, B.; Lang, J.; van Rooij, G.; Hessel, V. Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes. J. Ind. Ecol. 2020, 24, 1171–1185. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Li, Q.; Yang, G.; Liu, L.; Li, M.; Li, K.; Wang, F. Technical and economic analysis of renewable energy systems with hydrogen-ammonia energy storage: A comparison of different ammonia synthesis methods. J. Energy Storage 2025, 113, 115549. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L. Plasma-driven catalysis: Green ammonia synthesis with intermittent electricity. Green. Chem. 2020, 22, 6258–6287. [Google Scholar] [CrossRef]
- Shah, J.R.; Gorky, F.; Lucero, J.; Carreon, M.A.; Carreon, M.L. Ammonia synthesis via atmospheric plasma catalysis: Zeolite 5A, a case of study. Ind. Eng. Chem. Res. 2020, 59, 5167–5176. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Mani, S.; Lefferts, L. Improving the Energy Yield of Plasma-Based Ammonia Synthesis with In Situ Adsorption. ACS Sustain. Chem. Eng. 2022, 10, 1994–2000. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl. 2013, 52, 7372–7408. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, N.; Wu, Z.; Xie, X. Artificial nitrogen fixation over bismuth-based photocatalysts: Fundamentals and future perspectives. J. Mater. Chem. A 2020, 8, 4978–4995. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Shi, R.; Waterhouse, G.I.N.; Zhang, T. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem 2019, 1, 100013. [Google Scholar] [CrossRef]
- Vu, M.-H.; Sakar, M.; Do, T.-O. Insights into the Recent Progress and Advanced Materials for Photocatalytic Nitrogen Fixation for Ammonia (NH3) Production. Catalysts 2018, 8, 621. [Google Scholar] [CrossRef]
- Schrauzer, G.; Guth, T. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 2002, 99, 7189–7193. [Google Scholar] [CrossRef]
- Lashgari, M.; Zeinalkhani, P. Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon. Appl. Catal. A Gen. 2017, 529, 91–97. [Google Scholar] [CrossRef]
- Endoh, E.; Leland, J.K.; Bard, A.J. Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide. J. Phys. Chem. 1986, 90, 6223–6226. [Google Scholar] [CrossRef]
- Miyama, H.; Fujii, N.; Nagae, Y. Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen. Chem. Phys. Lett. 1980, 74, 523–524. [Google Scholar] [CrossRef]
- Lamichhane, P.; Adhikari, B.C.; Nguyen, L.N.; Paneru, R.; Ghimire, B.; Mumtaz, S.; Lim, J.S.; Hong, Y.J.; Choi, E.H. Sustainable nitrogen fixation from synergistic effect of photo-electrochemical water splitting and atmospheric pressure N2 plasma. Plasma Sources Sci. Technol. 2020, 29, 045026. [Google Scholar] [CrossRef]
- Sakakura, T.; Uemura, S.; Hino, M.; Kiyomatsu, S.; Takatsuji, Y.; Yamasaki, R.; Morimoto, M.; Haruyama, T. Excitation of H2O at the plasma/water interface by UV irradiation for the elevation of ammonia production. Green. Chem. 2018, 20, 627–633. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, L.; Xiong, L.; Wang, X.; Yu, Y.; Yang, M. Synergistic Cu/Cu2O/Co3O4 catalyst with crystalline-amorphous interfaces for efficient electrochemical nitrate reduction to ammonia. Chem. Eng. J. 2025, 507, 160393. [Google Scholar] [CrossRef]
- Chen, A.; Xia, B.Y. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. J. Mater. Chem. A 2019, 7, 23416–23431. [Google Scholar] [CrossRef]
- Wu, A.; Yang, J.; Xu, B.; Wu, X.-Y.; Wang, Y.; Lv, X.; Ma, Y.; Xu, A.; Zheng, J.; Tan, Q.; et al. Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B Environ. 2021, 299, 120667. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, C.; Wang, L.; Tan, X.; Wang, Z.; Wei, Q.; Zhang, Y.; Qiu, J. Microscopic-Level Insights into the Mechanism of Enhanced NH(3) Synthesis in Plasma-Enabled Cascade N(2) Oxidation-Electroreduction System. J. Am. Chem. Soc. 2022, 144, 10193–10200. [Google Scholar] [CrossRef]
- Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A. Towards Green Ammonia Synthesis through Plasma-Driven Nitrogen Oxidation and Catalytic Reduction. Angew. Chem. Int. Ed. Engl. 2020, 59, 23825–23829. [Google Scholar] [CrossRef]
- Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A. Plasma Catalysis: Synergistic Effects at the Nanoscale. Chem. Rev. 2015, 115, 13408–13446. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Craven, M.; Yu, X.; Ding, J.; Bryant, P.; Huang, J.; Tu, X. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al(2)O(3) Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism. ACS Catal. 2019, 9, 10780–10793. [Google Scholar] [CrossRef]
- Gao, B.; Cao, G.; Hu, D.; Guo, L.; Ba, Z.; Li, C.; Zhao, J.; Fang, Y. Insight into the effect of support properties on DBD plasma-catalytic NH3 synthesis over Ru-Co bimetallic catalysts. Fuel 2025, 38, 1338022. [Google Scholar] [CrossRef]
- Kamarinopoulou, N.S.; Wittreich, G.R.; Vlachos, D.G. Direct HCN synthesis via plasma-assisted conversion of methane and nitrogen. Sci. Adv. 2024, 10, eadl4246. [Google Scholar] [CrossRef]
- Shao, K.; Mesbah, A. A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling. JACS Au 2024, 4, 525–544. [Google Scholar] [CrossRef]
- Navascues, P.; Garrido-Garcia, J.; Cotrino, J.; Gonzalez-Elipe, A.R.; Gomez-Ramirez, A. Incorporation of a Metal Catalyst for the Ammonia Synthesis in a Ferroelectric Packed-Bed Plasma Reactor: Does It Really Matter? ACS Sustain. Chem. Eng. 2023, 11, 3621–3632. [Google Scholar] [CrossRef]
- Hua, Z.; Song, H.; Zhou, C.; Xin, Q.; Zhou, F.; Fan, W.; Liu, S.; Zhang, X.; Zheng, C.; Yang, Y.; et al. A promising catalyst for catalytic oxidation of chlorobenzene and slipped ammonia in SCR exhaust gas: Investigating the simultaneous removal mechanism. Chem. Eng. J. 2023, 473, 145106. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Xu, S.; Zhao, S.; Chen, G.; Weidenkaff, A.; Hardacre, C.; Fan, X.; Huang, J.; Tu, X. Shielding Protection by Mesoporous Catalysts for Improving Plasma-Catalytic Ambient Ammonia Synthesis. J. Am. Chem. Soc. 2022, 144, 12020–12031. [Google Scholar] [CrossRef]
- Gorky, F.; Lucero, J.M.; Crawford, J.M.; Blake, B.; Carreon, M.A.; Carreon, M.L. Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67. ACS Appl. Mater. Interfaces 2021, 13, 21338–21348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, H.; Long, Y.; Cao, A.; Wang, K.; Gao, L.; Zhao, Z.; Zhang, H.; Zhang, H.; Yan, J. Efficient ammonia synthesis from N2 and H2O over γ-Al2O3 at mild temperatures via atmospheric plasma-assisted chemical looping. Appl. Catal. B Environ. Energy 2025, 371, 125206. [Google Scholar] [CrossRef]
- Brown, S.; Ahmat Ibrahim, S.; Robinson, B.R.; Caiola, A.; Tiwari, S.; Wang, Y.; Bhattacharyya, D.; Che, F.; Hu, J. Ambient Carbon-Neutral Ammonia Generation via a Cyclic Microwave Plasma Process. ACS Appl. Mater. Interfaces 2023, 15, 23255–23264. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zheng, J.; Du, M.; Wu, X.; Song, J.; Cheng, C.; Li, T.; Yang, W. Non-thermal plasma-assisted ammonia production: A review. Energy Convers. Manag. 2023, 293, 117482. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Lefferts, L. Feasibility Study of Plasma-Catalytic Ammonia Synthesis for Energy Storage Applications. Catalysts 2020, 10, 999. [Google Scholar] [CrossRef]
- Hong, J.; Prawer, S.; Murphy, A.B. Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustain. Chem. Eng. 2018, 6, 15–31. [Google Scholar] [CrossRef]
- Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A. Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Curr. Opin. Green. Sustain. Chem. 2024, 47, 100916. [Google Scholar] [CrossRef]
- Peng, P.; Chen, P.; Addy, M.; Cheng, Y.; Anderson, E.; Zhou, N.; Schiappacasse, C.; Zhang, Y.; Chen, D.; Hatzenbeller, R.; et al. Atmospheric Plasma-Assisted Ammonia Synthesis Enhanced via Synergistic Catalytic Absorption. ACS Sustain. Chem. Eng. 2018, 7, 100–104. [Google Scholar] [CrossRef]
- Kim, H.H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Process. Polym. 2016, 14, 1600157. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, N.; Lin, Y.; Mao, X.; Zhong, H.; Chang, Z.; Shneider, M.N.; Ju, Y. Enhancements of electric field and afterglow of non-equilibrium plasma by Pb(Zr(x)Ti(1-x))O(3) ferroelectric electrode. Nat. Commun. 2024, 15, 3092. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, Q.; Zhao, X.; Lin, H.; Qin, W. Kinetic investigation of plasma catalytic synthesis of ammonia: Insights into the role of excited states and plasma-enhanced surface chemistry. Plasma Sources Sci. Technol. 2022, 31, 094009. [Google Scholar] [CrossRef]
- Barboun, P.M.; Otor, H.O.; Ma, H.; Goswami, A.; Schneider, W.F.; Hicks, J.C. Plasma-Catalyst Reactivity Control of Surface Nitrogen Species through Plasma-Temperature-Programmed Hydrogenation to Ammonia. ACS Sustain. Chem. Eng. 2022, 10, 15741–15748. [Google Scholar] [CrossRef]
- Barboun, P.; Mehta, P.; Herrera, F.A.; Go, D.B.; Schneider, W.F.; Hicks, J.C. Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis. ACS Sustain. Chem. Eng. 2019, 7, 8621–8630. [Google Scholar] [CrossRef]
- Herrera, F.A.; Brown, G.H.; Barboun, P.; Turan, N.; Mehta, P.; Schneider, W.F.; Hicks, J.C.; Go, D.B. The impact of transition metal catalysts on macroscopic dielectric barrier discharge (DBD) characteristics in an ammonia synthesis plasma catalysis reactor. J. Phys. D Appl. Phys. 2019, 52, 224002. [Google Scholar] [CrossRef]
- Rouwenhorstm, K.H.R.; Lefferts, L. Plasma-catalytic Ammonia Synthesis via Eley-Rideal Reactions: A Kinetic Analysis. ChemCatChem 2023, 15, e202300078. [Google Scholar] [CrossRef]
- Lim, K.H.; Yue, Y.; Bella; Gao, X.; Zhang, T.; Hu, F.; Das, S.; Kawi, S. Sustainable hydrogen and ammonia technologies with nonthermal plasma catalysis: Mechanistic insights and technoeconomic analysis. ACS Sustain. Chem. Eng. 2023, 11, 4903–4933. [Google Scholar] [CrossRef]
- Ben Yaala, M.; Saeedi, A.; Scherrer, D.F.; Moser, L.; Steiner, R.; Zutter, M.; Oberkofler, M.; De Temmerman, G.; Marot, L.; Meyer, E. Plasma-assisted catalytic formation of ammonia in N(2)-H(2) plasma on a tungsten surface. Phys. Chem. Chem. Phys. 2019, 21, 16623–16633. [Google Scholar] [CrossRef]
- Carreon, M.; Shah, J.; Gorky, F.; Psarras, P.; Seong, B. Ammonia yield enhancement by hydrogen sink effect during plasma catalysis. ChemCatChem 2019, 12, 1200–1211. [Google Scholar]
- Gómez-Ramírez, A.; Montoro-Damas, A.M.; Cotrino, J.; Lambert, R.M.; González-Elipe, A.R. About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor. Plasma Process. Polym. 2017, 14, 1600081. [Google Scholar] [CrossRef]
- Gómez-Ramírez, A.; Cotrino, J.; Lambert, R.; González-Elipe, A. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor. Plasma Sources Sci. Technol. 2015, 24, 065011. [Google Scholar] [CrossRef]
- Hargreaves, J.S.J. Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents. Appl. Petrochem. Res. 2014, 4, 3–10. [Google Scholar] [CrossRef]
- Sadiek, I.; Fleisher, A.J.; Hayden, J.; Huang, X.; Hugi, A.; Engeln, R.; Lang, N.; van Helden, J.H. Dual-comb spectroscopy of ammonia formation in non-thermal plasmas. Commun. Chem. 2024, 7, 110. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, J.; Chen, S.; Chen, Y.; Chen, H.; Fan, X. Ammonia synthesis by nonthermal plasma catalysis: A review on recent research progress. J. Phys. D Appl. Phys. 2024, 57, 323001. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, H.; Wang, H.; Lu, K.; Yang, D. Effectiveness of Noble Gas Addition for Plasma Synthesis of Ammonia in a Dielectric Barrier Discharge Reactor. Appl. Sci. 2024, 14, 3001. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, W.; Zhou, W.; Lu, W.; Chu, D.; Fang, S. Experimental Investigation of DBD Parameters and Ru/γ-Al2O3 Catalyst on Plasma-Assisted Ammonia Synthesis. IEEE Trans. Plasma Sci. 2023, 51, 3538–3545. [Google Scholar] [CrossRef]
- Li, S.; van Raak, T.; Gallucci, F. Investigating the operation parameters for ammonia synthesis in dielectric barrier discharge reactors. J. Phys. D Appl. Phys. 2020, 53, 014008. [Google Scholar] [CrossRef]
- Hosseini, H. Dielectric barrier discharge plasma catalysis as an alternative approach for the synthesis of ammonia: A review. RSC Adv. 2023, 13, 28211–28223. [Google Scholar] [CrossRef]
- Peng, P.; Li, Y.; Cheng, Y.; Deng, S.; Chen, P.; Ruan, R. Atmospheric Pressure Ammonia Synthesis Using Non-thermal Plasma Assisted Catalysis. Plasma Chem. Plasma Process. 2016, 36, 1201–1210. [Google Scholar] [CrossRef]
- Xie, Q.; Zhuge, S.; Song, X.; Lu, M.; Yu, F.; Ruan, R.; Nie, Y. Non-thermal atmospheric plasma synthesis of ammonia in a DBD reactor packed with various catalysts. J. Phys. D Appl. Phys. 2020, 53, 064002. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Zhou, C.; Du, J.; Gan, Y.; Chen, G.; Tu, X. Plasma-catalytic ammonia synthesis over BaTiO3 supported metal catalysts: Process optimization using response surface methodology. Vacuum 2022, 203, 111205. [Google Scholar] [CrossRef]
- Ma, Y.; Tian, Y.; Zeng, Y.; Tu, X. Plasma synthesis of ammonia in a tangled wire dielectric barrier discharge reactor: Effect of electrode materials. J. Energy Inst. 2021, 99, 137–144. [Google Scholar] [CrossRef]
- Li, K.; Chen, S.; Li, M.; Liu, L.; Li, Y.; Yang, G.; Wang, F. Plasma Assisted Ammonia Synthesis in a Fluidized-Bed DBD reactor: Effect of Catalyst Particle Movement. In Proceedings of the 2024 IEEE International Conference on Plasma Science (ICOPS), Beijing, China, 16–20 June 2024; p. 1. [Google Scholar]
- Wang, S.; Shen, Z.; Osatiashtiani, A.; Nabavi, S.A.; Clough, P.T. Ni-based bimetallic catalysts for hydrogen production via (sorption-enhanced) steam methane reforming. Chem. Eng. J. 2024, 486, 150170. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Guo, X.; Ma, S. Calcium-based pellets for continuous hydrogen production by sorption-enhanced steam methane reforming. Int. J. Hydrogen Energy 2024, 49, 897–909. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, X.; Lian, H.-Y.; Liu, J.-L.; Li, X.-S. Plasma catalytic steam methane reforming for distributed hydrogen production. Catal. Today 2019, 337, 69–75. [Google Scholar] [CrossRef]
- Gomez, J.R.; Baca, J.; Garzon, F. Techno-economic analysis and life cycle assessment for electrochemical ammonia production using proton conducting membrane. Int. J. Hydrogen Energy 2020, 45, 721–737. [Google Scholar] [CrossRef]
Method Category | Application Area | Advantages | Disadvantages |
---|---|---|---|
Haber–Bosch Process | High temperature and pressure, large-scale production | Mature technology, large-scale production capacity | High energy consumption, requires high temperatures and pressures, environmental impact |
Plasma Direct Ammonia Synthesis | Ambient temperature and pressure | Low energy consumption, catalyst stability needs improvement | Catalyst stability and efficiency need further optimization |
Photocatalytic Ammonia Synthesis | Low temperature and pressure, small-scale production | Low energy consumption, efficiency needs improvement | Low efficiency, limited scalability |
Electrocatalytic Ammonia Synthesis | Low temperature, driven by renewable energy | Sustainable, stability needs enhancement | Catalyst stability and efficiency need improvement |
Plasma-Catalytic Ammonia Synthesis | Ambient temperature and pressure, high energy efficiency | High efficiency, suitable for renewable energy integration | Requires optimization of plasma conditions, catalyst stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wang, D.; Wang, L.; Yuan, D.; Ling, Z.; Han, X.; Zeng, X. Research Progress of Nonthermal Plasma for Ammonia Synthesis. Processes 2025, 13, 1354. https://doi.org/10.3390/pr13051354
Yan X, Wang D, Wang L, Yuan D, Ling Z, Han X, Zeng X. Research Progress of Nonthermal Plasma for Ammonia Synthesis. Processes. 2025; 13(5):1354. https://doi.org/10.3390/pr13051354
Chicago/Turabian StyleYan, Xiaowang, Dengyun Wang, Lijian Wang, Dingkun Yuan, Zhongqian Ling, Xinlu Han, and Xianyang Zeng. 2025. "Research Progress of Nonthermal Plasma for Ammonia Synthesis" Processes 13, no. 5: 1354. https://doi.org/10.3390/pr13051354
APA StyleYan, X., Wang, D., Wang, L., Yuan, D., Ling, Z., Han, X., & Zeng, X. (2025). Research Progress of Nonthermal Plasma for Ammonia Synthesis. Processes, 13(5), 1354. https://doi.org/10.3390/pr13051354