Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = NSUN2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6543 KiB  
Article
Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum (Nibea albiflora)
by Yu Cui, Shuai Luo, Baolan Wu, Qiaoying Li, Fang Han and Zhiyong Wang
Int. J. Mol. Sci. 2024, 25(24), 13641; https://doi.org/10.3390/ijms252413641 - 20 Dec 2024
Cited by 1 | Viewed by 955
Abstract
Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the Ydsphk1 gene as closely associated with the resistance of [...] Read more.
Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the Ydsphk1 gene as closely associated with the resistance of yellow drum (Nibea albiflora) to Vibrio harveyi. Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154–291 aa). By constructing and transfecting Ydsphk1 expression plasmids into yellow drum kidney cells, we found that YDSPHK1 is localized in the cytoplasm. Subsequent RNA-Seq analysis of an overexpression plasmid identified 25 differentially expressed genes (DEGs), including 13 upregulated and 12 downregulated. Notably, nsun5 and hsp90aa1 were significantly upregulated, while Nfkbia and hmox1 were downregulated. Promoter analysis indicated that the core regulatory regions of Ydsphk1 are located between −1931~−1679 bp and −419~+92 bp, with two predicted TFAP2A binding sites in the −419~+92 bp region. Further studies demonstrated that varying concentrations of TFAP2A significantly reduced Ydsphk1 promoter activity. These findings underscore the pivotal role of Ydsphk1 in regulating immune responses in yellow drum, particularly through its impact on key immune-related genes and pathways such as NF-κB signaling and ferroptosis. The identification of Ydsphk1 as a mediator of immune regulation provides valuable insights into the molecular mechanisms of immune defense and highlights its potential as a target for enhancing pathogen resistance in aquaculture practices. This study lays a strong foundation for future research aimed at developing innovative strategies for disease management in aquaculture species. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 4248 KiB  
Article
The In Vitro Enhancement of Retinal Cell Viability via m6A and m5C RNA Methylation-Mediated Changes in the Levels of Heme Oxygenase (HO-1) and DNA Damage Repair Molecules Using a 50 Hz Sinusoidal Electromagnetic Field (EMF)
by Gabriela Betlej, Ewelina Bator, Anna Koziorowska, Marek Koziorowski and Iwona Rzeszutek
Int. J. Mol. Sci. 2024, 25(24), 13606; https://doi.org/10.3390/ijms252413606 - 19 Dec 2024
Viewed by 1116
Abstract
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients’ life standards are urgently needed. The present study [...] Read more.
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients’ life standards are urgently needed. The present study aimed to assess the effect of sinusoidal electromagnetic field (EMF) (50 Hz, 1.3 mT) treatment for 15 and 30 min on spontaneously arising retinal pigment epithelial cells (ARPE-19) and retinal ganglion cells (RGC-5) and its short-term post-treatment significance. Our study indicated the beneficial impact of EMF treatment on the proliferative and migratory capacity of the tested cells. ARPE-19 and RGC-5 cells exposed to an EMF exhibited elevated levels of HO-1, increased N6-methyladenosine (m6A) and N5-methylcytosine (m5C) status mediated by METTL3 and NSUN2, respectively, and changes in levels of DNA damage repair factors, which may contribute to the regenerative properties of ARPE-19 and RGC-5 cells. Overall, this analysis showed that EMF (sinusoidal, 50 Hz, 1.3 mT) treatment may serve as a potential therapeutic strategy for retinal diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 21812 KiB  
Article
NSUN2 Promotes Head and Neck Squamous Cell Carcinoma Progression by Targeting EMT-Related Gene LAMC2 in an m5C-YBX1-Dependent Manner
by Shuojin Huang, Congyuan Cao, Dongxiao Tang, Yiwen Liu, Wanhang Zhou, Lianlian Liu, Xin Zheng, Qianting He and Anxun Wang
Biomedicines 2024, 12(11), 2533; https://doi.org/10.3390/biomedicines12112533 - 6 Nov 2024
Cited by 1 | Viewed by 1427
Abstract
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is a prevalent and aggressive cancer with high rates of metastasis and poor prognosis. Recent research highlights the role of 5-methylcytosine (m5C) in cancer progression. NSUN2, an m5C methyltransferase, has been [...] Read more.
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is a prevalent and aggressive cancer with high rates of metastasis and poor prognosis. Recent research highlights the role of 5-methylcytosine (m5C) in cancer progression. NSUN2, an m5C methyltransferase, has been implicated in various cancers, but its role in HNSCC remains elusive. Methods: NSUN2 expression and its impact on HNSCC were analyzed by using clinical samples and bioinformatic analysis. m5C-Bis-Seq was used to assess changes in mRNA m5C modification and identify downstream targets. Both in vitro and vivo studies were performed to evaluate the impact of NSUN2 manipulation on tumor growth and metastasis. Results: Results indicated that NSUN2 was significantly upregulated in HNSCC tissues compared to normal tissues and was associated with poor prognosis. NSUN2 knockdown led to decreased cell proliferation, migration, and invasion in vitro and reduced tumorigenicity and lymph node metastasis in vivo. m5C-Bis-Seq revealed altered m5C-modification patterns upon NSUN2 knockdown, with LAMC2 identified as a key downstream target. Conclusions: NSUN2-mediated m5C-modification enhanced LAMC2 stability, promoting epithelial–mesenchymal transition (EMT) signaling pathways. These findings demonstrate that NSUN2 promotes the initiation and progression of HNSCC by stabilizing the LAMC2 transcript through m5C-dependent mechanisms, offering a promising epitranscriptomic-targeted therapeutic approach for HNSCC. Full article
(This article belongs to the Special Issue Head and Neck Tumors, 3rd Edition)
Show Figures

Figure 1

8 pages, 1483 KiB  
Case Report
Mutations in NSUN3, a Mitochondrial Methyl Transferase Gene, Cause Inherited Optic Neuropathy
by Cansu de Muijnck, Jacoline B. ten Brink, Hugoline G. de Haan, Richard J. Rodenburg, Nicole I. Wolf, Arthur A. Bergen, Camiel J. F. Boon and Maria M. van Genderen
Genes 2024, 15(5), 530; https://doi.org/10.3390/genes15050530 - 24 Apr 2024
Cited by 4 | Viewed by 1965
Abstract
Inherited optic neuropathies (IONs) are rare genetic diseases characterized by progressive visual loss due the atrophy of optic nerves. The standard diagnostic workup involving next-generation sequencing panels has a diagnostic yield of about forty percent. In the other 60% of the patients with [...] Read more.
Inherited optic neuropathies (IONs) are rare genetic diseases characterized by progressive visual loss due the atrophy of optic nerves. The standard diagnostic workup involving next-generation sequencing panels has a diagnostic yield of about forty percent. In the other 60% of the patients with a clinical diagnosis of ION, the underlying genetic variants remain unknown. In this case study, we describe a potentially new disease-associated gene, NSUN3, for IONs. The proband was a young woman with consanguineous parents. She presented with bilateral optic atrophy and nystagmus at the age of seven years. Genetic testing revealed the homozygous variant c.349_352dup p.(Ala118Glufs*45) in NSUN3, with a segregation in the family compatible with autosomal recessive inheritance. Additional functional analysis showed decreased NSUN3 mRNA levels, slightly diminished mitochondrial complex IV levels, and decreased cell respiration rates in patient fibroblasts compared to healthy controls. In conclusion, pathogenic variants in NSUN3 can cause optic neuropathy. Trio whole-exome sequencing should be considered as a diagnostic strategy in ION cases where standard diagnostic analysis does not reveal disease-causing variants. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

29 pages, 7537 KiB  
Article
Mutation Status and Glucose Availability Affect the Response to Mitochondria-Targeted Quercetin Derivative in Breast Cancer Cells
by Paweł Przybylski, Anna Lewińska, Iwona Rzeszutek, Dominika Błoniarz, Aleksandra Moskal, Gabriela Betlej, Anna Deręgowska, Martyna Cybularczyk-Cecotka, Tomasz Szmatoła, Grzegorz Litwinienko and Maciej Wnuk
Cancers 2023, 15(23), 5614; https://doi.org/10.3390/cancers15235614 - 28 Nov 2023
Cited by 6 | Viewed by 2397
Abstract
Mitochondria, the main cellular power stations, are important modulators of redox-sensitive signaling pathways that may determine cell survival and cell death decisions. As mitochondrial function is essential for tumorigenesis and cancer progression, mitochondrial targeting has been proposed as an attractive anticancer strategy. In [...] Read more.
Mitochondria, the main cellular power stations, are important modulators of redox-sensitive signaling pathways that may determine cell survival and cell death decisions. As mitochondrial function is essential for tumorigenesis and cancer progression, mitochondrial targeting has been proposed as an attractive anticancer strategy. In the present study, three mitochondria-targeted quercetin derivatives (mitQ3, 5, and 7) were synthesized and tested against six breast cancer cell lines with different mutation and receptor status, namely ER-positive MCF-7, HER2-positive SK-BR-3, and four triple-negative (TNBC) cells, i.e., MDA-MB-231, MDA-MB-468, BT-20, and Hs 578T cells. In general, the mito-quercetin response was modulated by the mutation status. In contrast to unmodified quercetin, 1 µM mitQ7 induced apoptosis in breast cancer cells. In MCF-7 cells, mitQ7-mediated apoptosis was potentiated under glucose-depleted conditions and was accompanied by elevated mitochondrial superoxide production, while AMPK activation-based energetic stress was associated with the alkalization of intracellular milieu and increased levels of NSUN4. Mito-quercetin also eliminated doxorubicin-induced senescent breast cancer cells, which was accompanied by the depolarization of mitochondrial transmembrane potential. Limited glucose availability also sensitized doxorubicin-induced senescent breast cancer cells to apoptosis. In conclusion, we show an increased cytotoxicity of mitochondria-targeted quercetin derivatives compared to unmodified quercetin against breast cancer cells with different mutation status that can be potentiated by modulating glucose availability. Full article
(This article belongs to the Special Issue Cancer Cell Metabolism and Drug Targets)
Show Figures

Figure 1

15 pages, 11273 KiB  
Article
Integrated Metabolomic and Transcriptomic Analysis of Modified Nucleosides for Biomarker Discovery in Clear Cell Renal Cell Carcinoma
by Daniel A. Mohl, Simon Lagies, Kyra Zodel, Matthias Zumkeller, Asin Peighambari, Athina Ganner, Dietmar A. Plattner, Elke Neumann-Haefelin, Mojca Adlesic, Ian J. Frew and Bernd Kammerer
Cells 2023, 12(8), 1102; https://doi.org/10.3390/cells12081102 - 7 Apr 2023
Cited by 7 | Viewed by 3297
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ~75% of kidney cancers. The biallelic inactivation of the von Hippel–Lindau tumor suppressor gene (VHL) is the truncal driver mutation of most cases of ccRCC. Cancer cells are metabolically reprogrammed and excrete modified [...] Read more.
Clear cell renal cell carcinoma (ccRCC) accounts for ~75% of kidney cancers. The biallelic inactivation of the von Hippel–Lindau tumor suppressor gene (VHL) is the truncal driver mutation of most cases of ccRCC. Cancer cells are metabolically reprogrammed and excrete modified nucleosides in larger amounts due to their increased RNA turnover. Modified nucleosides occur in RNAs and cannot be recycled by salvage pathways. Their potential as biomarkers has been demonstrated for breast or pancreatic cancer. To assess their suitability as biomarkers in ccRCC, we used an established murine ccRCC model, harboring Vhl, Trp53 and Rb1 (VPR) knockouts. Cell culture media of this ccRCC model and primary murine proximal tubular epithelial cells (PECs) were investigated by HPLC coupled to triple-quadrupole mass spectrometry using multiple-reaction monitoring. VPR cell lines were significantly distinguishable from PEC cell lines and excreted higher amounts of modified nucleosides such as pseudouridine, 5-methylcytidine or 2′-O-methylcytidine. The method’s reliability was confirmed in serum-starved VPR cells. RNA-sequencing revealed the upregulation of specific enzymes responsible for the formation of those modified nucleosides in the ccRCC model. These enzymes included Nsun2, Nsun5, Pus1, Pus7, Naf1 and Fbl. In this study, we identified potential biomarkers for ccRCC for validation in clinical trials. Full article
Show Figures

Figure 1

19 pages, 8846 KiB  
Article
Prognostic Value and Genome Signature of m6A/m5C Regulated Genes in Early-Stage Lung Adenocarcinoma
by Long Tian, Yan Wang, Jie Tian, Wenpeng Song, Lu Li and Guowei Che
Int. J. Mol. Sci. 2023, 24(7), 6520; https://doi.org/10.3390/ijms24076520 - 30 Mar 2023
Cited by 16 | Viewed by 3747
Abstract
RNA modifications implicate pathological and prognosis significance in cancer development and progression, of which, m6A and m5C are representative regulators. These RNA modifications could produce effects on the function of other RNA by regulating gene expression. Thus, in this study, we aimed to [...] Read more.
RNA modifications implicate pathological and prognosis significance in cancer development and progression, of which, m6A and m5C are representative regulators. These RNA modifications could produce effects on the function of other RNA by regulating gene expression. Thus, in this study, we aimed to explore the correlation between m6A/m5C regulators and early-stage lung adenocarcinoma (LUAD). Only the early-stage LUAD samples were included in this investigation, and the RNA-seq dataset of The Cancer Genome Atlas (TCGA) cohort was utilized to evaluate the expression of 37 m6A/m5C regulated genes. Based on the expression level of these 37 genes, early-stage LUAD patients were divided into 2 clusters, which were performed by consensus clustering, and the m6A/m5C subtypes had significantly different prognostic outcomes (p < 0.001). Cluster1, which has a better prognosis, was characterized by the C3 (inflammatory) immune subtype, low immune infiltration, chemokine expression, major histocompatibility complex (MHC) expression, and immune checkpoint molecule expression. Furthermore, compared with cluster1, cluster2 showed a T cell exhaustion state, characterized by a high expression of immune checkpoint genes, and immune cells, such as T cells, CD8+ T cells, cytotoxic lymphocytes, NK cells, and so on. In addition, patients in cluster2 were with high tumor mutational burden (TMB) and numerous significant mutated oncogene and tumor suppressor genes, such as WNT10B, ERBB4, SMARCA4, TP53, and CDKN2A (p < 0.001). A total of 19 genes were mostly related to the prognosis of LUAD and were upregulated in cluster2 (p < 0.05), showing a positive correlation with the mRNA expression of 37 m6A/m5C regulated genes. The predictive risk model was constructed using Cox and LASSO (least absolute shrinkage and selection operator) regression analysis. Finally, a seven-gene m6A/m5C risk model, comprising of METTL3, NPLOC4, RBM15, YTHDF1, IGF2BP1, NSUN3, and NSUN7, was constructed to stratify the prognosis of early-stage LUAD (p = 0.0049, AUC = 0.791). The high-risk score was associated with a poorer prognosis. This model was also validated using two additional GEO datasets: GSE72094 (p = 0.011, AUC = 0.736) and GSE50081 (p = 0.012, AUC = 0.628). In summary, it was established that the m6A/m5C-regulated genes performed a crosstalk function in the mRNA expression of early-stage LUAD. By interacting with other mRNA genes, m6A/m5C modification disturbs DNA replication and the tumor immune microenvironment (TIME). The seven-gene risk model may be a critical tool for the prognostic assessment of early-stage LUAD. Full article
Show Figures

Figure 1

18 pages, 13696 KiB  
Article
Chemical Space Virtual Screening against Hard-to-Drug RNA Methyltransferases DNMT2 and NSUN6
by Robert A. Zimmermann, Tim R. Fischer, Marvin Schwickert, Zarina Nidoieva, Tanja Schirmeister and Christian Kersten
Int. J. Mol. Sci. 2023, 24(7), 6109; https://doi.org/10.3390/ijms24076109 - 24 Mar 2023
Cited by 13 | Viewed by 2936
Abstract
Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs, namely DNMT2 and NSUN6, an [...] Read more.
Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs, namely DNMT2 and NSUN6, an ultra-large commercially available chemical space was virtually screened by physicochemical property filtering, molecular docking, and clustering to identify new ligands for those enzymes. Novel chemotypes binding to DNMT2 and NSUN6 with affinities down to KD,app = 37 µM and KD,app = 12 µM, respectively, were identified using a microscale thermophoresis (MST) binding assay. These compounds represent the first molecules with a distinct structure from the cofactor SAM and have the potential to be developed into activity-based probes for these enzymes. Additionally, the challenges and strategies of chemical space docking screens with special emphasis on library focusing and diversification are discussed. Full article
(This article belongs to the Special Issue New Avenues in Molecular Docking for Drug Design 2022)
Show Figures

Figure 1

13 pages, 1004 KiB  
Article
Candidate Modifier Genes for the Penetrance of Leber’s Hereditary Optic Neuropathy
by Hui-Chen Cheng, Sheng-Chu Chi, Chiao-Ying Liang, Jenn-Yah Yu and An-Guor Wang
Int. J. Mol. Sci. 2022, 23(19), 11891; https://doi.org/10.3390/ijms231911891 - 6 Oct 2022
Cited by 8 | Viewed by 2848
Abstract
Leber’s hereditary optic neuropathy (LHON) is a maternally transmitted disease caused by mitochondria DNA (mtDNA) mutation. It is characterized by acute and subacute visual loss predominantly affecting young men. The mtDNA mutation is transmitted to all maternal lineages. However, only approximately 50% of [...] Read more.
Leber’s hereditary optic neuropathy (LHON) is a maternally transmitted disease caused by mitochondria DNA (mtDNA) mutation. It is characterized by acute and subacute visual loss predominantly affecting young men. The mtDNA mutation is transmitted to all maternal lineages. However, only approximately 50% of men and 10% of women harboring a pathogenic mtDNA mutation develop optic neuropathy, reflecting both the incomplete penetrance and its unexplained male prevalence, where over 80% of patients are male. Nuclear modifier genes have been presumed to affect the penetrance of LHON. With conventional genetic methods, prior studies have failed to solve the underlying pathogenesis. Whole exome sequencing (WES) is a new molecular technique for sequencing the protein-coding region of all genes in a whole genome. We performed WES from five families with 17 members. These samples were divided into the proband group (probands with acute onset of LHON, n = 7) and control group (carriers including mother and relative carriers with mtDNSA 11778 mutation, without clinical manifestation of LHON, n = 10). Through whole exome analysis, we found that many mitochondria related (MT-related) nuclear genes have high percentage of variants in either the proband group or control group. The MT genes with a difference over 0.3 of mutation percentage between the proband and control groups include AK4, NSUN4, RDH13, COQ3, and FAHD1. In addition, the pathway analysis revealed that these genes were associated with cofactor metabolism pathways. Family-based analysis showed that several candidate MT genes including METAP1D (c.41G > T), ACACB (c.1029del), ME3 (c.972G > C), NIPSNAP3B (c.280G > C, c.476C > G), and NSUN4 (c.4A > G) were involved in the penetrance of LHON. A GWAS (genome wide association study) was performed, which found that ADGRG5 (Chr16:575620A:G), POLE4 (Chr2:7495872T:G), ERMAP (Chr1:4283044A:G), PIGR (Chr1:2069357C:T;2069358G:A), CDC42BPB (Chr14:102949A:G), PROK1 (Chr1:1104562A:G), BCAN (Chr 1:1566582C:T), and NES (Chr1:1566698A:G,1566705T:C, 1566707T:C) may be involved. The incomplete penetrance and male prevalence are still the major unexplained issues in LHON. Through whole exome analysis, we found several MT genes with a high percentage of variants were involved in a family-based analysis. Pathway analysis suggested a difference in the mutation burden of MT genes underlining the biosynthesis and metabolism pathways. In addition, the GWAS analysis also revealed several candidate nuclear modifier genes. The new technology of WES contributes to provide a highly efficient candidate gene screening function in molecular genetics. Full article
Show Figures

Figure 1

18 pages, 2259 KiB  
Article
Reorganization of the Landscape of Translated mRNAs in NSUN2-Deficient Cells and Specific Features of NSUN2 Target mRNAs
by Olga A. Kossinova, Alexander V. Gopanenko, Elena S. Babaylova, Alexey E. Tupikin, Marsel R. Kabilov, Alexey A. Malygin and Galina G. Karpova
Int. J. Mol. Sci. 2022, 23(17), 9740; https://doi.org/10.3390/ijms23179740 - 28 Aug 2022
Cited by 2 | Viewed by 2673
Abstract
The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the [...] Read more.
The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the photoactivatable.4-thiouridine-enhanced cross-linking and immunoprecipitation assay involving high-throughput RNA sequencing (RNA-seq) to HEK293T cells to determine NSUN2 mRNA targets. NSUN2 cross-linking sites were found in more than one hundred relatively abundant mRNAs with a high GC content and a pronounced secondary structure. Then, utilizing RNA-seq for the total and polysome-associated mRNA from HEK293T cells with and without the knockdown of NSUN2, we identified differentially expressed genes, as well as genes with altered translational efficiency (GATEs). It turned out that the up-regulated GATE mRNAs were much shorter on average than the down-regulated ones, and their GC content was higher; moreover, they contained motifs with C residues located in GC-rich environments. Our findings reveal the specific features of mRNAs that make them potential targets for NSUN2 and expand our understanding of the role of NSUN2 in controlling translation and, possibly, in mRNA sorting into exosomes implemented through the methylation of cytosine residues. Full article
(This article belongs to the Special Issue Selected Papers from the HSG-2022 Conference)
Show Figures

Figure 1

15 pages, 2964 KiB  
Article
A Cross-Tissue Investigation of Molecular Targets and Physiological Functions of Nsun6 Using Knockout Mice
by Wen Wang, Hengjun Huang, Hao Jiang, Chi Tian, Yisen Tang, Diwen Gan, Xiaozhen Wen, Zhenyu Song, Yuhao He, Xijun Ou and Liang Fang
Int. J. Mol. Sci. 2022, 23(12), 6584; https://doi.org/10.3390/ijms23126584 - 13 Jun 2022
Cited by 13 | Viewed by 3147
Abstract
The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated [...] Read more.
The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated an Nsun6-KO mouse strain, which exhibited no apparent phenotype in both the development and adult stages as compared to wild-type mice. Taking advantage of this mouse strain, we identified 80 high-confident Nsun6-dependent m5C sites by mRNA bisulfite sequencing in five different tissues and systematically analyzed the transcriptomic phenotypes of Nsun6-KO tissues by mRNA sequencing. Our data indicated that Nsun6 is not required for the homeostasis of these organs under laboratory housing conditions, but its loss may affect immune response in the spleen and oxidoreductive reaction in the liver under certain conditions. Additionally, we further investigated T-cell-dependent B cell activation in KO mice and found that Nsun6 is not essential for the germinal center B cell formation but is associated with the formation of antibody-secreting plasma cells. Finally, we found that Nsun6-mediated m5C modification does not have any evident influence on the stability of Nsun6 target mRNAs, suggesting that Nsun6-KO-induced phenotypes may be associated with other functions of the m5C modification or Nsun6 protein. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 1019 KiB  
Article
m5CRegpred: Epitranscriptome Target Prediction of 5-Methylcytosine (m5C) Regulators Based on Sequencing Features
by Zhizhou He, Jing Xu, Haoran Shi and Shuxiang Wu
Genes 2022, 13(4), 677; https://doi.org/10.3390/genes13040677 - 12 Apr 2022
Cited by 14 | Viewed by 3628
Abstract
5-methylcytosine (m5C) is a common post-transcriptional modification observed in a variety of RNAs. m5C has been demonstrated to be important in a variety of biological processes, including RNA structural stability and metabolism. Driven by the importance of m5C modification, many projects focused on [...] Read more.
5-methylcytosine (m5C) is a common post-transcriptional modification observed in a variety of RNAs. m5C has been demonstrated to be important in a variety of biological processes, including RNA structural stability and metabolism. Driven by the importance of m5C modification, many projects focused on the m5C sites prediction were reported before. To better understand the upstream and downstream regulation of m5C, we present a bioinformatics framework, m5CRegpred, to predict the substrate of m5C writer NSUN2 and m5C readers YBX1 and ALYREF for the first time. After features comparison, window lengths selection and algorism comparison on the mature mRNA model, our model achieved AUROC scores 0.869, 0.724 and 0.889 for NSUN2, YBX1 and ALYREF, respectively in an independent test. Our work suggests the substrate of m5C regulators can be distinguished and may help the research of m5C regulators in a special condition, such as substrates prediction of hyper- or hypo-expressed m5C regulators in human disease. Full article
(This article belongs to the Special Issue RNA Epigenetics: RNA Modification and Epitranscriptome Analysis)
Show Figures

Figure 1

11 pages, 2006 KiB  
Communication
Regulation and Site-Specific Covalent Labeling of NSUN2 via Genetic Encoding Expansion
by Jizhong Zhao, Hongmei Hu, Sheng Wang, Li Wang and Rui Wang
Genes 2021, 12(10), 1488; https://doi.org/10.3390/genes12101488 - 24 Sep 2021
Cited by 4 | Viewed by 3361
Abstract
In living organisms, RNA regulates gene expression, cell migration, differentiation, and cell death. 5-Methylcytosine is a post-transcriptional RNA modification in a wide range of RNA species, including messenger RNAs. The addition of m5C to RNA cytosines is enabled by the NSUN [...] Read more.
In living organisms, RNA regulates gene expression, cell migration, differentiation, and cell death. 5-Methylcytosine is a post-transcriptional RNA modification in a wide range of RNA species, including messenger RNAs. The addition of m5C to RNA cytosines is enabled by the NSUN enzyme family, a critical RNA methyltransferase. In this study, natural lysines modified with special groups were synthesized. Through two rounds of positive screening and one round of negative screening, we evaluated and identified the MbPylRS-tRNACUA unnatural lysine substitution system, which specifically recognizes lysine with a defined group. Moreover, non-natural lysine substitution at C271 of NSUN2 active site and the subsequent fluorescent labeling was realized through the click reaction. Then, the function of the NSUN2 mutant and its upregulated CDK1 gene as well as its effect on cell proliferation were evaluated. Efficient labeling and regulation of NSUN2 was achieved, laying the basis for further studies on the function and regulatory mechanism of upregulated genes. Full article
(This article belongs to the Special Issue RNA Chemical Biology)
Show Figures

Graphical abstract

15 pages, 4212 KiB  
Article
Identification of an RNA-Binding-Protein-Based Prognostic Model for Ewing Sarcoma
by Yi Chen, Huafang Su, Yanhong Su, Yifan Zhang, Yingbo Lin and Felix Haglund
Cancers 2021, 13(15), 3736; https://doi.org/10.3390/cancers13153736 - 25 Jul 2021
Cited by 11 | Viewed by 3028
Abstract
RNA-binding proteins (RBPs) are important transcriptomic regulators and may be important in tumorigenesis. Here, we sought to investigate the clinical impact of RBPs for patients with Ewing sarcoma (ES). ES transcriptome signatures were characterized from four previously published cohorts and grouped into new [...] Read more.
RNA-binding proteins (RBPs) are important transcriptomic regulators and may be important in tumorigenesis. Here, we sought to investigate the clinical impact of RBPs for patients with Ewing sarcoma (ES). ES transcriptome signatures were characterized from four previously published cohorts and grouped into new training and validation cohorts. A total of three distinct subtypes were identified and compared for differences in patient prognosis and RBP signatures. Next, univariate Cox and Lasso regression models were used to identify hub prognosis-related RBPs and construct a prognostic risk model, and prediction capacity was assessed through time-dependent receiver operating characteristics (ROCs), Kaplan–Meier curves, and nomograms. Across the three RBP subtypes, 29 significant prognostic-associated RBP genes were identified, of which 10 were used to build and validate an RBP-associated prognostic risk model (RPRM) that had a stable predictive value and could be considered valuable for clinical risk-stratification of ES. A comparison with immunohistochemistry validation showed a significant association between overall survival and NSUN7 immunoreactivity, which was an independent favorable prognostic marker. The association of RBP signatures with ES clinical prognosis provides a strong rationale for further investigation into RBPs molecular mechanisms. Full article
(This article belongs to the Special Issue Pediatric Cancers)
Show Figures

Figure 1

41 pages, 3092 KiB  
Review
RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
by Amber Willbanks, Shaun Wood and Jason X. Cheng
Genes 2021, 12(5), 627; https://doi.org/10.3390/genes12050627 - 22 Apr 2021
Cited by 19 | Viewed by 6389
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating [...] Read more.
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Full article
(This article belongs to the Special Issue Epigenetic Control of Chromatin Organization and Plasticity)
Show Figures

Figure 1

Back to TopTop