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Simple Summary: Ewing sarcoma (ES) is an aggressive childhood tumor for which response to
chemotherapy is central to long-term prognosis, but few prognostic markers have been identified.
RNA-binding proteins (RBPs) are strong regulators of cell behavior, working, for example, through
post-translational modifications of mRNA. In this study, we investigated whether patterns in the RBP
levels were related to outcomes in ES patients. A total of three distinct patterns were recognized, and
additional modelling suggested that 10 RPBs had predictive value, suggesting that this model could
be used in a clinical setting to identify patients with a higher risk of mortality.

Abstract: RNA-binding proteins (RBPs) are important transcriptomic regulators and may be im-
portant in tumorigenesis. Here, we sought to investigate the clinical impact of RBPs for patients
with Ewing sarcoma (ES). ES transcriptome signatures were characterized from four previously
published cohorts and grouped into new training and validation cohorts. A total of three distinct
subtypes were identified and compared for differences in patient prognosis and RBP signatures.
Next, univariate Cox and Lasso regression models were used to identify hub prognosis-related RBPs
and construct a prognostic risk model, and prediction capacity was assessed through time-dependent
receiver operating characteristics (ROCs), Kaplan–Meier curves, and nomograms. Across the three
RBP subtypes, 29 significant prognostic-associated RBP genes were identified, of which 10 were used
to build and validate an RBP-associated prognostic risk model (RPRM) that had a stable predictive
value and could be considered valuable for clinical risk-stratification of ES. A comparison with
immunohistochemistry validation showed a significant association between overall survival and
NSUN7 immunoreactivity, which was an independent favorable prognostic marker. The association
of RBP signatures with ES clinical prognosis provides a strong rationale for further investigation into
RBPs molecular mechanisms.

Keywords: Ewing sarcoma; RNA-binding proteins; regulation network; prognosis prediction;
risk model

1. Introduction

Ewing sarcoma (ES) represents the second-most common primary bone malignancy
affecting children and adolescents, with an incidence of 2.9 per million/year [1–3]. It is
an aggressive tumor typically characterized by a fusion of the Ewing sarcoma breakpoint
region 1 (EWSR1) with an erythroblast transformation specific (ETS) transcription factor
gene, most frequently (>95%) the friend leukemia virus integration 1 (FLI1) gene [4,5].
Most types of ES harbors the t (11;22) (q24;q12) chromosomal translocation leading to
the EWS–FLI1 fusion transcript. Genome-wide association studies identifying molecular
features and genetic profiles suggest a generally low mutational burden for ES [6–8]. The
STAG2 gene is the most frequently mutated (17%) compared to normal paired cases,

Cancers 2021, 13, 3736. https://doi.org/10.3390/cancers13153736 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-4891-8289
https://doi.org/10.3390/cancers13153736
https://doi.org/10.3390/cancers13153736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13153736
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13153736?type=check_update&version=2


Cancers 2021, 13, 3736 2 of 15

followed by CDKN2A (12%), TP53 (7%), and EZH2 (2.7%). Genetic lesions of STAG2 and
TP53 and deletions of CDKN2A are mutually exclusive and associated with the worst ES
prognosis [6,9,10]. Recently, the Euro-Ewing 99 clinical trial revealed 3-year and 8-year
overall survival (OS) rates of 72–78% and 56–65%, respectively [11]. Patients with relapsed
and advanced ES have a dismal prognosis, especially when the disease has metastasized,
and a short survival time is expected [12]. Therefore, prognostic biomarkers and novel
intervention targets are urgently needed.

RNA-binding proteins (RBPs) are a class of proteins that interact with a series of
RNAs: messenger (mRNAs), ribosomal (rRNAs), non-coding (ncRNAs), micro (miRNAs),
transfer (tRNAs), small nuclear (snRNAs), and small nucleolar (snoRNAs). They exert
their functions by associating with their RNA targets and generating ribonucleoprotein
complexes that regulate transcription, RNA maturation, translation, and metabolism and
maintain post-transcriptional genome integrity [13–17]. Currently, more than 1500 RBPs
have been identified by large-scale quantitative methods accounting for about 7.5% of all
protein-coding genes in the human genome [18,19]. EWS is a multifaceted RBP that has been
implicated in modulating transcription, pre-mRNA splicing, and, importantly, in causing
epigenetic remodeling in the tumorigenesis of ES [20,21]. Another example is IGF2BP3, a
novel post-transcriptional regulator responsible for poor survival probability [22,23]. Our
group previously reported that a higher expression of RBPs related to rRNA metabolism and
mRNA splicing were significantly overrepresented in ES patients who had first-line treatment
failure [22]. Thus, we hypothesized that a systematic study to explore prognosis-related RBPs
would increase our knowledge of treatment resistance and facilitate risk-stratification.

In this study, we obtained ES gene expression data from previously published GEO
datasets and investigated the RBP landscape in ES associated with patient outcomes. Next,
the prognostic value of a 10-RBP expression signature was validated in an independent
cohort. We also identified NSUN7 as a novel independent prognostic factor that could be a
diagnostic and therapeutic target.

2. Material and Methods
2.1. ES Data Processing

Both the ES gene expression microarray data and clinical data were derived from
the NCBI Gene Expression Omnibus (GEO) database: GSE63155 (46 ES cases, follow-up
time: median 1876 days, range 155–3987 days) [24], GSE63166 (39 ES cases, follow-up
time: median 2085 days, range 286–4500 days) [24], GSE17679 (32 ES cases, follow-up time:
median 1159 days, range 138–5766 days) [25], and GSE34620 (38 ES cases, follow-up time:
median 1549 days, range 270–4017 days) [26]. The patient characteristics involved in this
study are shown in Table 1. In these four datasets, Affymetrix HuEx1.0 (GPL5175) and
Affymetrix HG-U133 Plus 2.0 (GPL570) platform data were merged into one integrated
dataset. Batch effects were removed using the ComBat function of the R package surrogate
variable analysis (sva) [27], and expression values were quantile-normalized across different
samples. A total of 85patients from GSE63155 and GSE63166 were involved in the training
cohort, while 70 from GSE17679 and GSE34620 were included in the validation cohort. We
obtained a comprehensive RBP catalog consisting of 1542 genes and 318 transcriptional
factors (TFs) for further analysis [19,28]. Unsupervised clustering was performed using
the R package ConsesusClusterPlus to classify patients into distinct subtypes according to
RBP expression.
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Table 1. GEO datasets and patient characteristics of ES.

GEO ID No. of ES Cases Included Platform
Age Sex Outcomes

<18 ≥18 Male Female Dead Alive

GSE63155 46 HuEx1.0 (GPL5175) 41 5 27 19 14 32
GSE63166 39 HuEx1.0 (GPL5175) 31 8 19 20 11 28
GSE17679 32 U133Plus2.0 (GPL570) 16 16 22 10 20 12
GSE34620 38 U133Plus2.0 (GPL570) 27 11 20 18 21 17

2.2. Identification of Differentially Expressed RBPs

The R package linear models for microarray data (LIMMA) [29] was used to perform
differentially expressed RBP (DERBP) analysis in the training cohort by comparing clus-
ters of patient subtypes that were significantly associated with overall survival. A false
discovery rate (FDR) of <0.05 or p-value of <0.05 was set as the cut-off criterion. A Venn
diagram was used to determine the overlapping DERBPs between two sets of comparisons.
Additionally, the DETFs and DEHallmarks were generated based on the same criteria.

2.3. Protein–Protein Interaction (PPI) Network Construction and Functional Enrichment Analyses

To further explore the potential molecular functions, the DERBPs were submitted
into the Search Tool for the Retrieval of Interacting Genes (STRING) database for building
the protein–protein interaction (PPI) network [30]. The PPIs with combined scores ≥ 0.7
were selected, after which the network was constructed and visualized using Cytoscape
software (version 3.8.2) (National Institute of General Medical Sciences, Bethesda, MD,
USA) [31]. Any genes with a connectivity of ≥1 (node/edge) were screened as hub
genes for downstream analyses. The top 50 central nodes were ranked by The MCC
(maximum clique centrality) algorithm of the CytoHubba plug-in [32] in Cytoscape. The
functional enrichment analyses were performed using the ClueGO and CluePedia plug-ins
in Cytoscape [33,34]. The main parameters of the constructing network with ClueGO
were as follows: marker list, homo sapiens; ontologies/pathways, GO (biological process)
and REACTOME pathways; GO tree interval, level = 6; GO term/pathway selection, min
# genes = 6 and % genes = 6.000; and GO term/pathway network connectivity (kappa
score) = 0.45. Only GO terms/pathways with p < 0.01 were selected.

2.4. Prognosis-Related RBPs and the Interaction with TFs

After combining the expression levels of the hub genes with the survival status and
follow-up time, a univariate Cox proportional regression analysis was used to determine
the hub genes related to overall survival in the training cohort. The association between the
expression level of significant survival-related genes and DETFs was assessed by Pearson
correlation analysis. A correlation coefficient of ≥0.4 and p-value of ≤0.05 were set as the
cut-off criteria. The Cytoscape ClusterViz plug-in [35] was employed to identify biological
network modules between RBPs and TFs.

2.5. Establishment and Validation of an RBP-Associated Prognostic Risk Model (RPRM)

The survival-related genes were subjected to penalized multivariate Cox proportional
hazard survival modeling by an algorithm for variable selection based on L1-penalized
Least Absolute Shrinkage and Selection Operator (LASSO) regression [36]. The process
of prognostic model construction was repeated for the combination of parameter values
for 1000 iterations. Subsequently, the resulting models were combined through cross-
validation. The risk score formula for each sample was calculated as follows:

Risk score = β1 ∗ Exp1 + β2 ∗ Exp2 + βi ∗ Expi

where β represents the coefficient value, and Exp represents the gene expression level.
Subsequently, A time-dependent receiver operating characteristic (ROC) curve was per-



Cancers 2021, 13, 3736 4 of 15

formed to evaluate the model performance by calculating the area under the curve (AUC).
As a result, patients were classified into high- or low-risk groups according to the median
risk score. The RBP-associated prognostic risk model (RPRM) was externally validated by
the validation cohort (GSE17679 and GSE34620) to access its generalizability. Afterwards,
we developed a nomogram-combing gene expression to improve risk stratification and
quantify the risk assessment for survival probability at one year, three years, and five years
in individual patients.

2.6. Assessment of Gene Expression Level and Prognostic Significance in RPRM

Our group had previously identified several pathways that were significantly associ-
ated with first-line treatment failure in ES [22]. Here, a single sample gene set enrichment
analysis (ssGSEA) was used to define the estimated enrichment score of the gene signature
for each sample using gene set variation analysis (GSVA) in R package [37]. Hallmark
gene sets were downloaded from the Molecular Signatures Database v7.4. Gene expression
levels in RPRM were assessed between dead and live patients. Significant genes were
cross-validated by the validation cohort and our ES RNA-seq data.

2.7. Immunohistochemistry

We investigated the expression of NSUN7 in ES tumor tissue from patients (n = 24)
who underwent standard treatment protocols (ISG/SSG III or EuroEwing99/2012 pro-
tocols) [38]. These were therapy-naive preoperative biopsies (n = 9), but if these were
unavailable for analysis, viable tumor cells from a resection specimen (n = 11) or metastatic
specimen (n = 4) were used.

Immunohistochemical staining for NSUN7 was done using a manual protocol with
a polyclonal antibody (anti-NSUN7, Product #PA5-54257 from ThermoFisher Scientific,
Waltham, MA, USA) at 1:50 dilution. Formalin-fixed paraffin embedded (FFPE) tissue
was sectioned in 4 um thick sections and deparaffinized. Antigen retrieval was performed
for 10 min in low pH (citrate). Slides were incubated with the primary antibody at 4 ◦C
overnight, followed by incubation with a biotinylated secondary antibody and signal
generation using the VECTASTAIN® Elite ABC-HRP Kit (Vector Laboratories, Burlingame,
CA, USA).

Two clinical pathologists evaluated the staining, and after agreeing on a scoring
method, the slides were scored independently in a blinded fashion. The agreement was
substantial (82.6%, Cohen’s K 0.620). There was disagreement in four cases, but consensus
was reached after a second review. The slides fit into three scoring categories:

• Negative (“Most of the tumor cells were completely negative”): >75% completely
negative, <25% with very weak cytoplasmic staining);

• Weak (“Cases exhibited a diffuse weak staining with small areas with negative or
stronger immunoreactivity”): >75% of tumor cells exhibited weak immunoreactiv-
ity); and

• Moderate (“Cases showed stronger cytoplasmic immunoreactivity in most of the tumor
cells, but smaller areas with either weaker or negative immunoreactivity were some-
times observed”): >75% of the tumor cells showed moderate cytoplasmic reactivity.

Since the number of patients was limited, the staining groups were compared in two
different fashions: all groups (negative vs. weak vs. moderate) or simplified (negative vs.
positive).

2.8. Statistical Analysis

Normally distributed variables were analyzed with an unpaired two-tailed Student’s
t-test, whereas a Mann–Whitney U test or a Wilcoxon rank-sum test was used for non-
normally distributed variables. The relationship between the parameters was evaluated
using the Spearman rank correlation coefficient. A log-rank test Kaplan–Meier curve and a
Cox proportional hazard regression were performed for survival analysis using the R pack-
age “survminer” and “survival”. Additionally, L1-penalized LASSO regression and ROC
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curves were conducted using the R package “glmnet” and “pROC”, respectively [39–41]. R
version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria) was used to execute
all statistical tests and plots.

3. Results
3.1. Data Preprocessing of the ES Dataset

Data from 155 ES patients with complete follow-up and expression data from GSE61355,
GSE63156, GSE34620, and GSE17679 were bioinformatically pretreated to remove batch
effects. The 15,016 overlapping genes across the four GEO datasets are depicted in the Venn
diagrams in Figure S1A. Data before and after normalization were carefully inspected by
principal component analysis (PCA), suggesting the batch effect was successfully removed
using ComBat (Figure S1B,C). In addition, the gene expression profiles were visualized in
box plots to show the impact on batch effect removal (Figure S1D,E).

3.2. Identification of DERBPs in ES Patients and Transcriptional Subtypes

To investigate how RBPs affect the prognostic significance in ES, we compared the gene
expression between dead and alive patients using the Wilcoxon rank-sum test (p < 0.05)
in the training cohort. This analysis identified 22 DERBPs, and the consensus k-mean
clustering on the 22 RBP signatures clearly divided ES patients into three main subtypes
with clustering stability decreasing for k = 2 to 6 (Figures 1A and S2). They were clustered
into RS1 (n = 32), RS2 (n = 42), and RS3 (n = 11) with distinct prognostic differences.
Interestingly, patients in Cluster 1 had the best clinical prognosis, whereas patients in
Cluster 3 had the poorest (log-ranktest, p < 0.05) (Figure 1B). Following this, a heatmap
visualized the expression levels of 22 RBPs in three RBP subtypes with survival status,
where most were RS3s dominated by down-regulated transcripts (Figure 1C). Among
1542 RBPs quantified in 85 ES patients with two comparisons (RS1 vs. RS2, RS1 vs. RS3),
377 (24.4%) were significantly down-regulated, and 374 (24.3%) were significantly up-
regulated in RS3 compared to RS1; 150 (9.7%) were significantly down-regulated, and
137 (8.9%) were significantly up-regulated in RS2 compared to RS1 (Wilcoxon rank-sum
test, FDR < 0.05; Figure 1D). A total of 90 overlapping up-regulated and 125 overlapping
down-regulated DERBPs were identified by the two comparisons and selected for further
analysis (Figure 1E).

3.3. Functional Enrichment Analysis and PPI Network of DERBPs

Among the DERBPs, we wanted to identify the key components using co-variation
analysis. Functional enrichment analysis was performed for the 218 overlapping DERBPs:
90 up-regulated, 125 down-regulated, and 3 with distinct expression profiles. Gene ontol-
ogy (GO) biological process and REACTOME pathway analyses were applied to clarify the
DERBP gene function. As shown in Table S1, most of the DERBPs were enriched in the GO
categories of RNA metabolism (i.e., RNA processing, RNA metabolic process, and RNA
catabolic process) and protein metabolism (i.e., translation, ribonucleoprotein complex
assembly). In addition, enrichment analysis of the REACTOME pathways revealed that
RNA metabolism and mRNA splicing and translation were mostly enriched for DERBPs
(Table S2). The GO term/pathway network is shown in Figure 2A,B (p < 0.01). Next, we
built a high-confidence PPI network that contained 171 nodes (genes) and 1234 edges,
which were selected for further analysis. To identify the top 50 hub nodes, the cytoHubba
plug-in was applied, and key genes were selected from the PPI network according to the
MCC score (Figure 2C). Detailed gene descriptions and connectivity degrees of the top
15 hub genes are shown in Table S3. EIF4A3 was identified as having the largest number of
edges interacting with 54 other genes, followed by POLR2F and SRSF1.
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3.4. Prognosis-Related RPBs and the Regulatory Network

To investigate the prognostic significance of these 171 RBPs involved in the PPI
network, a univariate Cox regression analysis was performed from which 29 prognostic-
associated hub RBP genes were obtained: 12 having favorable factors with a hazard ratio
(HR) of <1, and 17 having risk factors (HR > 1) (Figure 3A).

Next, we identified DETFs across the three RSs to explore the regulatory mechanisms
of these RPBs. We found 144 TFs significantly expressed in RS3 compared to RS1, and 28 TFs
significantly expressed in RS2 compared to RS1 (FDR < 0.05). The overlapping 18 DETFs in
the two comparisons were then selected (Figure 3B). A heatmap was constructed to indicate
their expression levels in three subtypes with survival status (Figure 3C). We consequently
created a regulatory network based on these 18 TFs and our 29 prognosis-related RPBs.
A correlation score of more than 0.4 and p < 0.01 were set as the cut-off values. The TF-
based regulatory network topology was grouped into three clusters through the ClusterViz
plug-in in Cytoscape. Notably, the schematic clearly illustrated the regulatory relationships
among these TFs and RBPs (Figure 3D, Table S4).



Cancers 2021, 13, 3736 7 of 15Cancers 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 2. Functional enrichment analysis of DERBPs and PPI Network (A). GO terms (biological process) grouped network 
(kappa score levels ≥ 0.45, p < 0.01). Ellipse represents the GO terms. The node size represents the significance of the term 
enrichment (p-value), and the colors represent different functional groups. (B). The REACTOME pathway grouped net-
work (kappa score levels ≥ 0.45, p < 0.01). Ellipse represents the GO terms. The node size represents the significance of the 
term enrichment (p-value), and the colors represent different functional groups. (C). The MCC score of top 50 genes in the 
PPI network of DERBPs (combined score ≥ 0.7) is represented by a red to yellow gradient. 

3.4. Prognosis-Related RPBs and the Regulatory Network 
To investigate the prognostic significance of these 171 RBPs involved in the PPI net-

work, a univariate Cox regression analysis was performed from which 29 prognostic-as-
sociated hub RBP genes were obtained: 12 having favorable factors with a hazard ratio 
(HR) of <1, and 17 having risk factors (HR > 1) (Figure 3A). 

Next, we identified DETFs across the three RSs to explore the regulatory mechanisms 
of these RPBs. We found 144 TFs significantly expressed in RS3 compared to RS1, and 28 
TFs significantly expressed in RS2 compared to RS1 (FDR < 0.05). The overlapping 18 
DETFs in the two comparisons were then selected (Figure 3B). A heatmap was constructed 
to indicate their expression levels in three subtypes with survival status (Figure 3C). We 
consequently created a regulatory network based on these 18 TFs and our 29 prognosis-
related RPBs. A correlation score of more than 0.4 and p < 0.01 were set as the cut-off 
values. The TF-based regulatory network topology was grouped into three clusters 
through the ClusterViz plug-in in Cytoscape. Notably, the schematic clearly illustrated 
the regulatory relationships among these TFs and RBPs (Figure 3D, Table S4).  

Figure 2. Functional enrichment analysis of DERBPs and PPI Network (A). GO terms (biological process) grouped network
(kappa score levels ≥ 0.45, p < 0.01). Ellipse represents the GO terms. The node size represents the significance of the term
enrichment (p-value), and the colors represent different functional groups. (B). The REACTOME pathway grouped network
(kappa score levels ≥ 0.45, p < 0.01). Ellipse represents the GO terms. The node size represents the significance of the term
enrichment (p-value), and the colors represent different functional groups. (C). The MCC score of top 50 genes in the PPI
network of DERBPs (combined score ≥ 0.7) is represented by a red to yellow gradient.

3.5. Construction and Validation of the RPBs-Associated Prognostic Risk Model (RPRM)

After identifying the 29 prognosis-related RBPs, 1000 iterations of LASSO-penalized
multivariate modeling were constructed, which led to 10 features with a non-zero, coefficient-
based-risk model called RPRM (Figure 3E,F). We then computed the RPRM for each patient
based on the risk score formula. The ROC curve exhibited significant prognostic perfor-
mances for the AUC (1-year, 3-year, and 5-year OS predictions were 0.960, 0.915, and 0.817
in the training cohort and 0.745, 0.700, and 0.792 in the validation cohort, respectively
(Figures 3G and 4D). The samples in both the training and validation cohorts were sub-
sequently separated into high- and low-risk groups according to the median risk score.
Assessments of the survival of the two groups by Kaplan–Meier estimates showed that
high-risk patients had a significantly worse overall survival than the low-risk patients in
both cohorts (p < 0.001) (Figure 4A,E). Moreover, the distribution of risk score, survival
time, and survival status of each patient is illustrated in Figure 4B. Among the 10 significant
genes in the risk model, NSUN7, RPL15, ZCCHC6, DCP1B, and GPATCH8 were associated
with a favorable prognosis, while DDX23, STRAP, PRDX1, RPL6, and DCAF13 were con-
sidered to be risk factors (Figure 4C). Subsequently, a nomogram combining these genes
was generated, and each patient was assigned a series of scores corresponding to all of the
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involved genes. Then the 1-, 3-, and 5-year survival probabilities were projected to the final
sum of the scores (Figure 4E).
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Since our group previously revealed that a series of pathways (e.g., apoptotic process,
PI3K pathway, RNA splicing, rRNA metabolic process, glycolysis) were significantly
associated with first-line treatment failure in ES patients, we performed an ssGSEA analysis
in 50 hallmark gene sets to determine the relationship between pathway-enrichment and
risk scores (Table S5). As shown in Figure 4G, 23 hallmark gene sets were significantly
enriched between high- and low-risk patients, in which only protein secretion and bile-acid
metabolism was positively associated with better prognosis. A total of ten overrepresenting
gene sets are illustrated in Figure S3A (−log10(FDR) > 3). Notably, positive correlations
between the risk and ssGSEA scores in high-risk patients were shown in 16 gene sets
(p < 0.05) (Figure 4H, Table S6), where the reactive oxygen species pathway, increased UV



Cancers 2021, 13, 3736 9 of 15

response, and glycolysis represent the top three highest correlation coefficients (p < 0.001;
r = 0.67, 0.61, and 0.60, respectively) (Figure S3B–D).
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low-risk patients in the training group (p < 0.001). (B). Distribution of risk score and survival time of patients in the training
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live patients, respectively. (C). Abundances of 10 significant RBPs (involved in RPRM) in the training group. (D). ROC
curve of the prognostic values of RPRM risk model in 1-, 3- and 5-year validation groups. (E). Kaplan–Meier curves show
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and 5-year survival probability of ES patients in the training group. The total score of these genes for each patient is on
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of 23 DEHallmarks between high- and low-risk patients in the three RSs. (H). The correlation between LDA score and
enrichment scores of 23 DEHallmarks. * p < 0.05; ** p < 0.01, *** p < 0.001.

3.6. Validation of the Prognostic Value and Expression of the RBPs Involved in RPRM

To further assess the independent prognostic value of each key RBPs in ES, the Kaplan–
Meier estimates were used to evaluate the relationship between these key RBPs and OS. As
a result, six gene expressions (DCP18, DDX23, GRATCH8, NSUN7, RPL6, and ZCCHC6)
were identified as being significantly associated with OS in the training cohort: high
(≥median) and low (<median). A total of four of these were beneficial to prognosis, and
two were associated with poor outcomes (p < 0.05) (Figures 5A and S5). The Kaplan–Meier
plots of the other remaining four genes are shown in Figure S4 (p > 0.05). Additionally, we
found that the expression level of DDX23, RPL6, and NSUN7 were significantly correlated
with survival status (Wilcoxon rank-sum test, p < 0.05, Figure 5B), but only NSUN7 could
be verified (log-rank test, Wilcoxon rank-sum test, p < 0.05, Figure 5C,D).
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Figure 5. Validation of the prognostic and expression value of the RBPs involved in RPRM in
training cohort (A). Kaplan–Meier curves show the overall survival in training group with high-
risk and low-risk subgroups by DDX23, NSUN7, and RPL6, based on the median value of these
genes, respectively. (p < 0.05). (B). The expression levels of three significant genes in the training
group by survival status. The Wilcoxon rank sum test was used to compare the differences between
groups. * p < 0.05. (C). Kaplan–Meier curves show overall survival in validation group with high-risk
and low-risk subgroups by DDX23, NSUN7, and RPL6 based on the median value of these genes,
respectively. (D). The expression levels of DDX23, RPL6, NSUN7 in validation group by survival
status. The Wilcoxon rank sum test was used to compare the differences between groups. ** p < 0.01,
ns: no significant.

The immunoreactivity of NSUN7 was scored as negative (n = 8), weak (n = 6) or
moderate (n = 10) in 24 patients (Table S7). The proportion of negative cases was higher
in pre-treated tissue (7/15) than in therapy-naïve (1/9) biopsies, which may indicate
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that NSUN7-negative cells are more resistant to treatment. In the therapy-naive biopsies,
5/9 cases were classified as good responders according to the treatment protocol (<10%
viable tumor cells after treatment), and in the post-therapy specimens, only 2/11 were
good responders. We found a significant association between NSUN7 immunoreactivity
and overall survival (Fisher’s exact test, p = 0.0069, Figure 6A) and that NSUN7 negative
cases had a shorter overall survival compared to positive ones (log-rank test, p = 0.044,
Figure 6B). From the preoperative biopsies, only a single patient died (scored as negative
for NSUN7). The prognostic association across three comparisons (negative vs. weak vs.
moderate) are shown in Figure S6 and Figure 6C (chi-square test, p = 0.0084; log-rank test,
p = 0.101).
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Figure 6. Examples of histology imaging and follow-up in patients with ES. (A). Comparison of the
survival status and the NSUN7 IHC scores in 24 ES patients (Fisher’s exact test). (B). Kaplan–Meier
curve shows the overall survival of NSUN7 positive and negative in the subgroup of IHC staining.
(C). Comparison between NSUN7 immunoreactivity in negative, weak, and moderate scoring at
100× and 400× magnification.

These results strongly suggest that NSUN7 may be an important biomarker for ES
therapy resistance and that the absence of immunoreactivity may be a prognostic marker.

4. Discussion

Our group had previously reported an association between RBP expression and
treatment resistance in Ewing sarcoma [22]. Here, we sought to evaluate the putative
relationship between RBPs and patient outcome in four previously published transcriptome
datasets. We identified three RBP-related transcriptional subtypes that were significantly
associated with overall patient survival. We constructed and validated a 10-gene prognostic
risk model that showed good clinical applicability as a prognostic marker for ES patients.
Finally, one individual transcript in the model (NSUN7) was validated on a protein level in
a separate cohort.
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It is well known that RBPs are critical for various biological processes. Perhaps not
surprisingly, we identified 171 prognostic-associated RBPs that were mostly enriched in
RNA (mRNA, ncRNA, rRNA) metabolism, splicing, and translation, and these were similar
to our previous findings from the RNA-sequencing of a single Ewing sarcoma cohort. Dif-
ferential expression between the three RBP-related subtypes also identified 18 transcription
factors that significantly co-varied with the 171 RBPs, potentially identifying the regulatory
network that define the three RBP subtypes. While many of the identified transcription
factors were described as central to cancer development (including SMARCB1, MAZ,
EZH1 and H2AFX), none had an established role in ES, likely due to the limited number of
functional studies of this tumor type.

Current chemotherapy protocols can cure a significant proportion of ES patients, but
progression under chemotherapy is likely to drive resistance mechanisms. It may therefore
be valuable to identify patients with a high likelihood of limited treatment response to
offer alternative therapies in clinical trials. Since our 10-gene prognostic model was based
on patients with current treatment regimes, our model could be used to identify patients
who are at a high risk of death and who derive little benefit from current chemotherapy
protocols.

When considering each gene in the model, only six were significantly associated with
patient outcomes in the training cohort. The expression levels of three (DDX23, RPL6, and
NSUN7) were related to survival status, but only NSUN7 was validated as an individual
marker, which may be related to the semi-quantitative nature of immunohistochemistry
protocols. While this may sound disheartening, it should be interpreted as meaning
that multiple gene analyses are required to create a functional prognostic panel for ES.
For comparison, validated and implemented prognostic panels for breast cancer contain
~50 genes [42].

Consistent with our previous findings, we also found that cancer-related pathways
were mostly activated in the ES samples with high-risk scores. Of these, high expression
of hypoxia-inducible factor 1 α (HIF1α) emerged as an novel hallmark pathway, which
was described to be correlated with a hypoxic tumor microenvironment in ES [43]. These
findings are in line with the well-known prognostic value of serum lactate dehydrogenase
(LDH) in ES patients [44].

5. Conclusions

In summary, this study identified three distinct RBPs signatures in ES. Through DERBP
stratification, an RPRM risk model was constructed and validated to be a potential prog-
nostic factor for ES patients. Major limitations of this study should be noted, including a
relatively small sample size (155 patients) and the lack of detailed clinical characteristics
for many of the cases. However, our results provide a strong rationale for the contin-
ued investigation of RBPs since they seem central to chemotherapy resistance and ES
patient outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153736/s1, Figure S1. GEO data processing and normalization (A). A Venn diagram
illustrates the overlap of the genes across the four involved GEO datasets of ES. (B,C). The PCA
plots show the overall GEO data profiles of GSE17679, GSE34620, GSE61355, and GSE61366 before
and after removing batch effect, respectively. (D,E). The box plots show the expression profiles of
GSE17679, GSE34620, GSE61355, and GSE61366 before and after removing batch effect, respectively.
Figure S2. Consensus matrices of identified clusters (k = 2, 4–6); Figure S3. (A). The distribution of
significant gene sets enriched in high-risk patients at cutoff with −log10 (FDR) > 3. (B–D). Violin
plots show the correlation between risk score and enrichment scores of reactive oxygen species
pathway, UV response up, and glycolysis, respectively. Figure S4. Kaplan-Meier curves show the
overall survival in training group with high-risk and low-risk subgroups by DCF13, PRDX1, RPL15,
and STRAP, based on the median value of these gene expression levels, respectively. (p < 0.05).
Figure S5. (A). Kaplan-Meier curves show the overall survival in training group with high-risk
and low-risk subgroups by DCP1B, GPATCH8, and ZCCHC6, based on the median value of these
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gene expression levels, respectively. (p < 0.05). (B). The expression levels of DCP1B, GPATCH8, and
ZCCHC6 in training group by survival status. The Wilcoxon rank sum test was used to compare the
differences between groups. * p < 0.05. Figure S6. (A). Comparison of the survival status and the
NSUN7 IHC scores (negative vs. weak vs. moderate) in 24 Ewing sarcoma patients (Fisher’s exact
test). (B). Kaplan-Meier curve show the overall survival of NSUN7 (negative vs. weak vs. moderate)
in the subgroup of IHC staining. Table S1. The top 15 GO biological processes of DERBPs in ES.
Table S2. The top 15 REACTOME pathways of DERBPs in ES. Table S3. The top 15 hub genes with
the highest degree of connectivity in the PPI network. Table S4. Correlations between RBPs and TFs.
Table S5. ssGSEA scores of 50 Hallmarks and risk score in training cohort. Table S6. The correlations
between risk score and 23 significant hallmarks. Table S7. IHC scoring and corresponding clinical
characteristics in 24 Ewing sarcoma patients’ cohort.
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