Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = NNK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10944 KiB  
Article
Targeted Directed Evolution of an α-L-Rhamnosidase on Hesperidin Through Six-Codon Combinatorial Mutagenesis
by Bingbing Wu, Xueting Hou, Na Han, Xinfeng Li, Bin-Chun Li and Guo-Bin Ding
Catalysts 2024, 14(12), 935; https://doi.org/10.3390/catal14120935 - 18 Dec 2024
Viewed by 890
Abstract
Targeted saturation mutagenesis at the residues located at the substrate-binding pocket for generating focused libraries has emerged as the technique of choice for enzyme engineering, but choosing the optimal residue number of the randomization site and the reduced amino acid alphabet to minimize [...] Read more.
Targeted saturation mutagenesis at the residues located at the substrate-binding pocket for generating focused libraries has emerged as the technique of choice for enzyme engineering, but choosing the optimal residue number of the randomization site and the reduced amino acid alphabet to minimize the labor-determining screening effort remains a challenge. Herein, we propose the six-codon combinatorial mutagenesis (SCCM) strategy by using the BMT degeneracy codons encoding six amino acids with different chemical properties as the building blocks for the randomization of the amnio acid motif. SCCM requires only a small library of 646 clones for 95% coverage at the three-residue motif compared to conventional NNK degeneracy codons encoding all 20 canonical amino acids and requiring the screening of nearly 100,000 clones. SCCM generates a suitable number of mutant libraries, providing a new strategy for reducing the screening workload of saturated combination mutations in enzyme engineering. Using this approach, the α-L-rhamnosidase BtRha78A from Bacteroides thetaiotaomicron had been successfully engineered for improving the hydrolytic activity on natural flavonoid diglycoside hesperidin via targeted directed evolution at the motifs positioning the entrance of the substrate-binding pocket. The results indicate that the conversion rates of the four mutants on hesperidin were increased by more than 30% compared with the wild type using whole-cell biotransformation. Moreover, the catalytic efficiency kcat/KM value of the mutant TM1-6-F5 was 1.4-fold higher than that of the wild type. Full article
Show Figures

Figure 1

41 pages, 13239 KiB  
Article
The Phytochemical Profile of the Petroleum Ether Extract of Purslane Leaves and Its Anticancer Effect on 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 None (NNK)-Induced Lung Cancer in Rats
by Asmaa S. Abd Elkarim, Safaa H. Mohamed, Naglaa A. Ali, Ghada H. Elsayed, Mohamed S. Aly, Abdelbaset M. Elgamal, Wael M. Elsayed and Samah A. El-Newary
Int. J. Mol. Sci. 2024, 25(23), 13024; https://doi.org/10.3390/ijms252313024 - 4 Dec 2024
Cited by 2 | Viewed by 1506
Abstract
Lung cancer is a prevalent and very aggressive sickness that will likely claim 1.8 million lives by 2022, with an estimated 2.2 million additional cases expected worldwide. The goal of the current investigation was to determine whether petroleum ether extract of purslane leaf [...] Read more.
Lung cancer is a prevalent and very aggressive sickness that will likely claim 1.8 million lives by 2022, with an estimated 2.2 million additional cases expected worldwide. The goal of the current investigation was to determine whether petroleum ether extract of purslane leaf could be used to treat lung cancer induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-buta-4 none (NNK) in rats. In the in vitro extract recorded, promising anticancer effects in A540 cell lines with IC50 were close to the reference drug, doxorubicin (14.3 and 13.8 μg/mL, respectively). A dose of 500 mg/kg/day orally for 20 weeks exhibited recovery effects on NNK-induced lung cancer with a good safety margin, where Intercellular Adhesion Molecule-1 (ICAM-1), the lung cancer biomarker, was significantly reduced by about 18.75% compared to cancer control. Purslane exhibited many anticancer mechanisms, including (i) anti-proliferation as a significant reduction in Ki67 level (20.42%), (ii) anti-angiogenesis as evident by a considerable decrease in Matrix metalloproteinase-9 (MMP-9) expression (79%), (iii) anti-inflammation as a remarked decline in Insulin-like growth factor 1 (IGF-1) expression (62%), (iv) pro-apoptotic effect as a significant activation in Forkhead box protein O1 (FOXO1) expression (262%), and (v) anti-oxidation as remarkable activation on antioxidant biomarkers either non-enzymatic or enzymatic concurrent with considerable depletion on oxidative stress biomarker, in comparison to cancer control. The histopathological examination revealed that Purslane extract showed markedly improved tissue structure and reduced pathological changes across all examined organs caused by NNK. The anti-lung cancer effect exhibited by the extract may be linked to the active ingredients of the extract that were characterized by LC–MS, such as α-linolenic acid, linoleic acid, palmitic acid, β-sitosterol, and alkaloids (berberine and magnoflorine). Full article
Show Figures

Figure 1

23 pages, 3706 KiB  
Article
Suppression of NNK Metabolism by Anthocyanin-Rich Haskap Berry Supplementation Through Modulation of P450 Enzymes
by Madumani Amararathna, David W. Hoskin, Kerry B. Goralski and H. P. Vasantha Rupasinghe
Pharmaceuticals 2024, 17(12), 1615; https://doi.org/10.3390/ph17121615 - 30 Nov 2024
Cited by 1 | Viewed by 1377
Abstract
Oral supplementation of anthocyanins-rich haskap (Lonicera caerulea) berry (HB) reduces 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis, cytotoxicity, DNA damage, and modulated inflammation in vitro and in vivo. The procarcinogen NNK is metabolically activated by cytochrome P450 (P450) enzymes, producing reactive metabolites that induce [...] Read more.
Oral supplementation of anthocyanins-rich haskap (Lonicera caerulea) berry (HB) reduces 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis, cytotoxicity, DNA damage, and modulated inflammation in vitro and in vivo. The procarcinogen NNK is metabolically activated by cytochrome P450 (P450) enzymes, producing reactive metabolites that induce lung carcinogenesis. Hypothesis: Therefore, we hypothesized that the HB-modulated protective effect against NNK could be due to its ability to suppress P450 enzymes. Methods: HB (6 mg of cyanidin-3-O-glucoside [C3G] in 0.2 g of HB/mouse/day) was given to A/J mice as a dietary supplement following subsequent administration of NNK (100 mg/kg body weight). The liver tissues of mice were analyzed to determine the expression of P450s and metabolites. Results: HB upregulated the expression of cyp2a4 and cyp2a5 mRNA and nuclear receptor/transcription factor (PPARα) in NNK-deprived hepatic tissues. With NNK, HB downregulated the expression of cyp2a4 and cyp2a5 and facilitated the formation of non-carcinogenic NNK metabolites. Molecular docking indicated a high binding affinity and strong hydrophobic interactions between C3G and its major metabolites, peonidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin and cyanidin with Cyp2a5 and with human P450 homologue CYP2A13. Conclusions: HB could be a potential dietary supplement to inhibit the P450 activated NNK carcinogenic metabolites formation. Hence, inhibiting the activation of NNK by lung CYP2A13 through dietary HB supplementation could be a strategy to reduce lung carcinogenesis among smokers. Understanding the effect of HB on the activity of CYP2A13 in human studies is necessary before recommending these natural compounds as therapeutics. Full article
(This article belongs to the Special Issue Bioactive Substances, Oxidative Stress, and Inflammation)
Show Figures

Figure 1

44 pages, 6622 KiB  
Article
Chia Seed (Salvia hispanica) Attenuates Chemically Induced Lung Carcinomas in Rats through Suppression of Proliferation and Angiogenesis
by Naglaa A. Ali, Ghada H. Elsayed, Safaa H. Mohamed, Asmaa S. Abd Elkarim, Mohamed S. Aly, Abdelbaset M. Elgamal, Wael M. Elsayed and Samah A. El-Newary
Pharmaceuticals 2024, 17(9), 1129; https://doi.org/10.3390/ph17091129 - 27 Aug 2024
Cited by 4 | Viewed by 3032
Abstract
In 2022, 2.5 million cases of lung cancer were diagnosed, resulting in 1.8 million deaths. These statistics have motivated us to introduce a new natural product which is feasible in lung cancer therapies. This comprehensive study was performed to study the effects of [...] Read more.
In 2022, 2.5 million cases of lung cancer were diagnosed, resulting in 1.8 million deaths. These statistics have motivated us to introduce a new natural product which is feasible in lung cancer therapies. This comprehensive study was performed to study the effects of chia seed extracts (70% ethanol and petroleum ether) on lung cancer in vitro and in vivo models. The invitro cytotoxicity activity of the chia extracts was studied in lung cancer cell lines (A549 cells). After 48 h, chia alcohol and ether extracts showed more inhibitory influence (IC50, 16.08, and 14.8 µg/mL, respectively) on A549 cells compared to Dox (IC50, 13.6 µg/mL). In vivo, administration of chia alcohol and ether extracts (500 mg/kg/day, orally for 20 weeks) recovered 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer, as a significant reduction in the lung cancer biomarkers, including the relative weight of the lung (20.0 and 13.33%), ICAM(31.73 and 15.66%), and c-MYC (80 and 96%) and MMP9(60 and 69%) expression genes, and improvement in these changes were observed by histopathological examinations of the lung tissues compared to the lung control. Chia seeds fought lung cancer via suppression of proliferation, angiogenesis, inflammation, and activation apoptosis. These activities may be attributed to the chemical composition of chia, which is identified by LC-Mass, such as caffeic acid, vanillic acid, kaempferol-3-O-glucuronide, and taxifolin. Finally, we can conclude that chia seeds have an anti-lung cancer effect with a good safety margin. Full article
Show Figures

Figure 1

12 pages, 3461 KiB  
Article
Synthetic ShK-like Peptide from the Jellyfish Nemopilema nomurai Has Human Voltage-Gated Potassium-Channel-Blocking Activity
by Ye-Ji Kim, Yejin Jo, Seung Eun Lee, Jungeun Kim, Jae-Pil Choi, Nayoung Lee, Hyokyoung Won, Dong Ho Woo and Seungshic Yum
Mar. Drugs 2024, 22(5), 217; https://doi.org/10.3390/md22050217 - 13 May 2024
Cited by 1 | Viewed by 2059
Abstract
We identified a new human voltage-gated potassium channel blocker, NnK-1, in the jellyfish Nemopilema nomurai based on its genomic information. The gene sequence encoding NnK-1 contains 5408 base pairs, with five introns and six exons. The coding sequence of the NnK-1 precursor is [...] Read more.
We identified a new human voltage-gated potassium channel blocker, NnK-1, in the jellyfish Nemopilema nomurai based on its genomic information. The gene sequence encoding NnK-1 contains 5408 base pairs, with five introns and six exons. The coding sequence of the NnK-1 precursor is 894 nucleotides long and encodes 297 amino acids containing five presumptive ShK-like peptides. An electrophysiological assay demonstrated that the fifth peptide, NnK-1, which was chemically synthesized, is an effective blocker of hKv1.3, hKv1.4, and hKv1.5. Multiple-sequence alignment with cnidarian Shk-like peptides, which have Kv1.3-blocking activity, revealed that three residues (3Asp, 25Lys, and 34Thr) of NnK-1, together with six cysteine residues, were conserved. Therefore, we hypothesized that these three residues are crucial for the binding of the toxin to voltage-gated potassium channels. This notion was confirmed by an electrophysiological assay with a synthetic peptide (NnK-1 mu) where these three peptides were substituted with 3Glu, 25Arg, and 34Met. In conclusion, we successfully identified and characterized a new voltage-gated potassium channel blocker in jellyfish that interacts with three different voltage-gated potassium channels. A peptide that interacts with multiple voltage-gated potassium channels has many therapeutic applications in various physiological and pathophysiological contexts. Full article
Show Figures

Graphical abstract

11 pages, 1851 KiB  
Article
Nicotine, Humectants, and Tobacco-Specific Nitrosamines (TSNAs) in IQOS Heated Tobacco Products (HTPs): A Cross-Country Study
by Noel J. Leigh, Michelle K. Page, Denisha L. Robinson, Scott D. Heldwein, Richard J. O’Connor and Maciej L. Goniewicz
Toxics 2024, 12(3), 180; https://doi.org/10.3390/toxics12030180 - 27 Feb 2024
Cited by 3 | Viewed by 5280
Abstract
Heated Tobacco Products (HTPs) purport to reduce exposure to tobacco-related toxicants compared to combustible cigarettes. This cross-sectional study examined the content of nicotine, two humectants (propylene glycol (PG) and vegetable glycerin (VG)), and four tobacco-specific nitrosamines (TSNAs: NNN, NNK, NAT, and NAB) in [...] Read more.
Heated Tobacco Products (HTPs) purport to reduce exposure to tobacco-related toxicants compared to combustible cigarettes. This cross-sectional study examined the content of nicotine, two humectants (propylene glycol (PG) and vegetable glycerin (VG)), and four tobacco-specific nitrosamines (TSNAs: NNN, NNK, NAT, and NAB) in the tobacco filler of a popular HTP brand (IQOS). Non-menthol and menthol IQOS sticks were purchased from nine countries between 2017 and 2020 and were classified into two versions (“Bold” and “Light”) using Philip Morris’s flavor descriptors. The average nicotine concentration was 4.7 ± 0.5 mg/stick, and the highest nicotine concentration was found in products from Japan (5.1 ± 0.2 mg/stick). VG was the dominant humectant found in all sticks, with an average concentration of (31.5 ± 2.3 mg/stick). NNN, NNK, and NAT were substantially higher in the “Bold” sticks than the “Light” sticks. Significant differences between countries for TSNAs were also observed: the NAT and NAB contents were the highest in the “Light” products from Canada (192.5 ± 24.1 and 22.9 ± 1.0 ng/stick, respectively); the NNK concentration was the highest in the “Bold” products from Poland (64.8 ± 7.9 ng/stick); and the highest NNN concentrations were observed in the “Bold” products from South Africa (488.9 ± 26.7 ng/stick). As NNN and NNK are known human carcinogens, and as humectants like PG and VG can degrade into toxic carbonyl compounds upon heating, monitoring the concentration of these chemicals in HTPs is important for protecting users’ health and ensuring compliance with regulations. Full article
(This article belongs to the Special Issue 2nd Edition: Tobacco Smoke Exposure and Tobacco Product Use)
Show Figures

Figure 1

12 pages, 1650 KiB  
Article
Xanthohumol-Enriched Beer Does Not Exert Antitumorigenic Effects on HeLa Cell Line In Vivo
by Anna Júlia Éliás, Lajos Balogh, Tomáš Brányik, Erzsébet Mák, Éva Csajbókné Csobod, Márta Veresné Bálint and Csilla Benedek
Molecules 2023, 28(3), 1070; https://doi.org/10.3390/molecules28031070 - 20 Jan 2023
Cited by 2 | Viewed by 1980
Abstract
Xanthohumol is a hop-derived flavonoid that has been widely examined for its health-protecting and antitumorigenic properties, but not yet in a natural beer matrix. The aim of the study was to investigate the antitumorigenic potential of a xanthohumol-enriched beer in vivo. Four groups [...] Read more.
Xanthohumol is a hop-derived flavonoid that has been widely examined for its health-protecting and antitumorigenic properties, but not yet in a natural beer matrix. The aim of the study was to investigate the antitumorigenic potential of a xanthohumol-enriched beer in vivo. Four groups of 4 × 10 nude mice were formed. Following the injection of HeLa tumorigenic cell lines, the treatment groups were administered a xanthohumol supplementation for 100 days, either dissolved in beer or in an ethanolic solution with the same alcohol strength as beer. The control groups received un-supplemented material. The terminal tumor masses, liver weights, and plasma antioxidant capacities (FRAP and ABTS methods) were measured. For the statistical analysis, a two-way ANOVA test was performed (p < 0.05). There were no statistically significant differences in tumor size between the groups. Xanthohumol did not induce higher levels of plasma antioxidant capacity, neither in beer nor in the water–ethanol matrix. The terminal liver weights were significantly higher in the control group receiving the unsupplemented ethanol solution. Xanthohumol dissolved in beer or in the water–alcohol matrix did not have a protective effect on tumor growth, nor did it have a positive effect on plasma antioxidant capacity either. However, beer with added xanthohumol had a less harmful effect on the liver compared to the supplemented water–ethanol solution. Our results indicate the possible negative countereffect of ethanol; however, further investigations are needed. Full article
Show Figures

Figure 1

24 pages, 16944 KiB  
Review
Dietary Phytochemicals as Potential Chemopreventive Agents against Tobacco-Induced Lung Carcinogenesis
by Yan Ding, Ruilin Hou, Jianqiang Yu, Chengguo Xing, Chunlin Zhuang and Zhuo Qu
Nutrients 2023, 15(3), 491; https://doi.org/10.3390/nu15030491 - 17 Jan 2023
Cited by 12 | Viewed by 3774
Abstract
Lung cancer is the second most common cancer in the world. Cigarette smoking is strongly connected with lung cancer. Benzo[a]pyrene (BaP) and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-butanone (NNK) are the main carcinogens in cigarette smoking. Evidence has supported the correlation between these two carcinogens and lung cancer. [...] Read more.
Lung cancer is the second most common cancer in the world. Cigarette smoking is strongly connected with lung cancer. Benzo[a]pyrene (BaP) and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-butanone (NNK) are the main carcinogens in cigarette smoking. Evidence has supported the correlation between these two carcinogens and lung cancer. Epidemiology analysis suggests that lung cancer can be effectively prevented through daily diet adjustments. This review aims to summarize the studies published in the past 20 years exploring dietary phytochemicals using Google Scholar, PubMed, and Web of Science databases. Dietary phytochemicals mainly include medicinal plants, beverages, fruits, vegetables, spices, etc. Moreover, the perspectives on the challenges and future directions of dietary phytochemicals for lung cancer chemoprevention will be provided. Taken together, treatment based on the consumption of dietary phytochemicals for lung cancer chemoprevention will produce more positive outcomes in the future and offer the possibility of reducing cancer risk in society. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 4023 KiB  
Article
Regression of Lung Cancer in Mice by Intranasal Administration of SARS-CoV-2 Spike S1
by Monica Sheinin, Brian Jeong, Ramesh K. Paidi and Kalipada Pahan
Cancers 2022, 14(22), 5648; https://doi.org/10.3390/cancers14225648 - 17 Nov 2022
Cited by 19 | Viewed by 9857
Abstract
This study underlines the importance of SARS-CoV-2 spike S1 in prompting death in cultured non-small cell lung cancer (NSCLC) cells and in vivo in lung tumors in mice. Interestingly, we found that recombinant spike S1 treatment at very low doses led to death [...] Read more.
This study underlines the importance of SARS-CoV-2 spike S1 in prompting death in cultured non-small cell lung cancer (NSCLC) cells and in vivo in lung tumors in mice. Interestingly, we found that recombinant spike S1 treatment at very low doses led to death of human A549 NSCLC cells. On the other hand, boiled recombinant SARS-CoV-2 spike S1 remained unable to induce death, suggesting that the induction of cell death in A549 cells was due to native SARS-CoV-2 spike S1 protein. SARS-CoV-2 spike S1-induced A549 cell death was also inhibited by neutralizing antibodies against spike S1 and ACE2. Moreover, our newly designed wild type ACE2-interacting domain of SARS-CoV-2 (wtAIDS), but not mAIDS, peptide also attenuated SARS-CoV-2 spike S1-induced cell death, suggesting that SARS-CoV-2 spike S1-induced death in A549 NSCLC cells depends on its interaction with ACE2 receptor. Similarly, recombinant spike S1 treatment also led to death of human H1299 and H358 NSCLC cells. Finally, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) intoxication led to the formation tumors in lungs of A/J mice and alternate day intranasal treatment with low dose of recombinant SARS-CoV-2 spike S1 from 22-weeks of NNK insult (late stage) induced apoptosis and tumor regression in the lungs. These studies indicate that SARS-CoV-2 spike S1 may have implications for lung cancer treatment. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 17616 KiB  
Article
Prediction of Crack Growth Life at Elevated Temperatures with Neural Network-Based Learning Schemes
by Songsong Lu, Binchao Liu, Rong Yang, Qiuyi Wang and Rui Bao
Aerospace 2022, 9(10), 600; https://doi.org/10.3390/aerospace9100600 - 14 Oct 2022
Cited by 3 | Viewed by 2314
Abstract
Applying the machine learning (ML) technique in the modelling of crack growth (CG) behavior is a potential way to improve the efficiency and precision of CG assessment. However, research in this field at elevated temperatures is limited, although a lot of achievements have [...] Read more.
Applying the machine learning (ML) technique in the modelling of crack growth (CG) behavior is a potential way to improve the efficiency and precision of CG assessment. However, research in this field at elevated temperatures is limited, although a lot of achievements have been obtained in CG assessment at room temperature. Neutral network (NN)-based methods to model the CG at elevated temperatures were therefore investigated in this paper. An “indirect” method (NNK method) assessing the CG by modelling and integrating the crack growth rate (CGR) was established. A “direct” method (ENNIL method) was built by further developing the NN-based increment learning scheme. The NNK method shows high accuracy in CG prediction with relatively short CG life, while the ENNIL method gives perfectly predicted results for cases with relatively long CG life. The combination of these two methods may be an effective way to further improve CG assessment at elevated temperatures. Full article
Show Figures

Figure 1

17 pages, 6129 KiB  
Article
Pathogenesis of Tobacco-Associated Lung Adenocarcinoma Is Closely Coupled with Changes in the Gut and Lung Microbiomes
by Casey T. Finnicum, Zahraa Rahal, Maya Hassane, Warapen Treekitkarnmongkol, Ansam Sinjab, Rhiannon Morris, Yuejiang Liu, Elizabeth L. Tang, Sarah Viet, Jason L. Petersen, Philip L. Lorenzi, Lin Tan, Joseph Petrosino, Kristi L. Hoffman, Junya Fujimoto, Seyed Javad Moghaddam and Humam Kadara
Int. J. Mol. Sci. 2022, 23(18), 10930; https://doi.org/10.3390/ijms231810930 - 18 Sep 2022
Cited by 9 | Viewed by 4257
Abstract
Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples [...] Read more.
Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a−/− mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a−/− mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD. Full article
Show Figures

Figure 1

28 pages, 3722 KiB  
Article
Commonalities in Metabolic Reprogramming between Tobacco Use and Oral Cancer
by Blake R. Rushing, Spencer Tilley, Sabrina Molina, Madison Schroder and Susan Sumner
Int. J. Environ. Res. Public Health 2022, 19(16), 10261; https://doi.org/10.3390/ijerph191610261 - 18 Aug 2022
Cited by 11 | Viewed by 3474
Abstract
Tobacco use is a major public health concern and is linked to myriad diseases, including cancer. The link between tobacco use and oral cancer, specifically, is very strong, making tobacco use one of the primary risk factors for oral cancer. While this association [...] Read more.
Tobacco use is a major public health concern and is linked to myriad diseases, including cancer. The link between tobacco use and oral cancer, specifically, is very strong, making tobacco use one of the primary risk factors for oral cancer. While this association is well known, the underlying biochemical changes that result from tobacco use, and how this links to metabolic phenotypes of oral cancer, is not well understood. To address this knowledge gap, a combination of literature reviews and metabolomics studies were performed to identify commonalities in metabolic perturbations between tobacco use and oral cancers. Metabolomics analysis was performed on pooled reference urine from smokers and non-smokers, healthy and malignant oral tissues, and cultured oral cells with or without treatment of the well-known tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Alterations in amino acid metabolism, carbohydrates/oxidative phosphorylation, fatty acid oxidation, nucleotide metabolism, steroid metabolism, and vitamin metabolism were found to be shared between tobacco use and oral cancer. These results support the conclusion that tobacco use metabolically reprograms oral cells to support malignant transformation through these pathways. These metabolic reprogramming events may be potential targets to prevent or treat oral cancers that arise from tobacco use. Full article
Show Figures

Figure 1

19 pages, 7108 KiB  
Article
The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence
by Sotirios G. Doukas, Dimitra P. Vageli, Panagiotis G. Doukas, Dragana Nikitovic, Aristidis Tsatsakis and Benjamin L. Judson
Curr. Oncol. 2022, 29(8), 5531-5549; https://doi.org/10.3390/curroncol29080437 - 4 Aug 2022
Cited by 11 | Viewed by 3637
Abstract
Deregulation of the DNA mismatch repair (MMR) mechanism has been linked to poor prognosis of upper aerodigestive tract cancers. Our recent in vitro data have provided evidence of crosstalk between deregulated miRNAs and MMR genes, caused by tobacco smoke (TS) N-Nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone [...] Read more.
Deregulation of the DNA mismatch repair (MMR) mechanism has been linked to poor prognosis of upper aerodigestive tract cancers. Our recent in vitro data have provided evidence of crosstalk between deregulated miRNAs and MMR genes, caused by tobacco smoke (TS) N-Nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in hypopharyngeal cells. Here, we explored whether chronic exposure to TS components can affect MMR mechanism and miRNA profiles in hypopharyngeal mucosa. Using a mouse model (C57Bl/6J wild type) of in vivo 14-week exposure to NNK (0.2 mmol/L) and N-Nitrosodiethylamine (NDEA; 0.004 mmol/L), with or without nicotine (0.02 μmol/L), we provide direct evidence that TS components can promote dysplasia, significant downregulation of Msh2 and Mlh1 genes and deregulation of miR-21, miR-155, miR-34a, and miR-451a. By analyzing eight human specimens from tobacco smokers and eight controls, we provide clinical evidence of a significant reduction in hMSH2 and hMLH1 mRNAs in hypopharyngeal squamous cell carcinoma (HSCC). In summary, deregulation of the MMR mechanism and miRNAs is caused by chronic exposure to TS-related N-Nitrosamines, with or without nicotine, in the early stages of upper aerodigestive tract carcinogenesis, and can also be detected in human HSCC. Thus, we encourage future studies to further elucidate a possible in vivo dose-dependent effect of individual or combined N-Nitrosamines, NNK and/or NDEA, and nicotine, on the MMR mechanism and their clinical testing to elaborate prognosis and risk assessment. Full article
(This article belongs to the Special Issue Advances in Squamous Cell Carcinoma of the Head and Neck)
Show Figures

Figure 1

14 pages, 4033 KiB  
Article
Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells
by Yulin Sun, Hongjuan Wang, Huan Chen, Sen Zhang, Jun Li, Jingni Zhang, Jianlu Tian, Youyu Zhang, Hongwei Hou and Qingyuan Hu
Molecules 2022, 27(15), 4851; https://doi.org/10.3390/molecules27154851 - 29 Jul 2022
Cited by 5 | Viewed by 3579
Abstract
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell [...] Read more.
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK. Full article
(This article belongs to the Special Issue Molecular Toxicology and Cancer Prevention)
Show Figures

Figure 1

17 pages, 1023 KiB  
Review
Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke
by Jia-Xun Wu, Andy T. Y. Lau and Yan-Ming Xu
Toxics 2022, 10(7), 363; https://doi.org/10.3390/toxics10070363 - 30 Jun 2022
Cited by 19 | Viewed by 5643
Abstract
Smoking has been recognized by the World Health Organization (WHO) as the fifth highest threat to humanity. Smoking, a leading disease promoter, is a major risk factor for non-communicable diseases (NCDs) such as cancer, cardiovascular disease, diabetes, and chronic respiratory diseases. NCDs account [...] Read more.
Smoking has been recognized by the World Health Organization (WHO) as the fifth highest threat to humanity. Smoking, a leading disease promoter, is a major risk factor for non-communicable diseases (NCDs) such as cancer, cardiovascular disease, diabetes, and chronic respiratory diseases. NCDs account for 63% of all deaths worldwide. Passive smoking is also a health risk. Globally, more than a third of all people are regularly exposed to harmful smoke. Air pollution is a common global problem in which pollutants emitted into the atmosphere undergo a series of physical or chemical reactions to produce various oxidation products, which are often referred to as secondary pollutants. Secondary pollutants include ozone (O3), sulfur trioxide (SO3), nitrogen dioxide (NO2), and respirable particulate matter (PM). It is worth mentioning that third-hand smoke (THS), formed by the reaction of nicotine with second-hand smoke (SHS) caused by indoor O3 or nitrous acid (HONO), is a major indoor secondary pollutant that cannot be ignored. As a form of indoor air pollution that is relatively difficult to avoid, THS exists in any corner of the environment where smokers live. In this paper, we summarize the important research progress on the main components, detection, and toxicity of THS and look forward to future research directions. Scientific understanding of THS and its hazards will facilitate smoking bans in indoor and public places and raise public concern for how to prevent and remove THS. Full article
(This article belongs to the Special Issue Analysis, Exposure and Health Risk of Atmospheric Pollution)
Show Figures

Graphical abstract

Back to TopTop