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Abstract: Applying the machine learning (ML) technique in the modelling of crack growth (CG)
behavior is a potential way to improve the efficiency and precision of CG assessment. However,
research in this field at elevated temperatures is limited, although a lot of achievements have been
obtained in CG assessment at room temperature. Neutral network (NN)-based methods to model
the CG at elevated temperatures were therefore investigated in this paper. An “indirect” method
(NNK method) assessing the CG by modelling and integrating the crack growth rate (CGR) was
established. A “direct” method (ENNIL method) was built by further developing the NN-based
increment learning scheme. The NNK method shows high accuracy in CG prediction with relatively
short CG life, while the ENNIL method gives perfectly predicted results for cases with relatively
long CG life. The combination of these two methods may be an effective way to further improve CG
assessment at elevated temperatures.
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1. Introduction

Key structural components in a series of important equipment, such as aircraft engine,
pressure vessel and power generation et al., serve in elevated temperature environments.
Crack growth (CG) assessment needs to be carried out on some of these components
(turbine disk et al.) in order to ensure structure integrity. However, the accuracy of CG
assessment is always limited. This is because of the difficulty in the quantitative description
of CG with the significant effect of temperature and the existence of creep-fatigue (CF)
coupling effects [1,2]. Many investigations have therefore been carried out on modelling
CG behavior at elevated temperatures, especially under CF interactive conditions [3,4].

Most of these investigations are focused on developing the crack growth rate (CGR)
model (the formula between crack driving force (CDF) and CGR), because the CG curves
(a-N curves) can be predicted via integration of CGR. Tong and Onofrio et al. [5,6] estab-
lished earlier CGR models at elevated temperatures by modifying the material constants
(C, n) in the Paris law (da/dNfatigue = C(∆K)n [7]). Djavanroodi and Whittaker et al. [8,9]
considered the existence of both fatigue effects and creep effects in the failure at elevated
temperatures. They thought the effects of fatigue and creep to be independent and pre-
sented a group of CF linear superposition models (da/dN = (da/dN)fatigue + (da/dN)creep).
Grover, Shlyannikov and Yang et al. [10–12] further developed CF superposition models
by adding a term to consider the CF interactive effects, such as da/dN = (da/dN)fatigue +
(da/dN)creep + (da/dN)interaction. Their CGR models further improve calculation accuracy.
However, no one of above mentioned CGR models was widely accepted in CG analysis,
untill now. The reason is that these CGR models fail to generalize to a wide temperature
and loads range, in the prediction of CG curves, as they depend on human knowledge to
a large extent.

Some methods modelling the CG at elevated temperatures were established based on
the numerical simulation technique. In most of these investigations, the crack tip field was
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simulated by building the Finite Element (FE) model with visco-plastic constitutive and
then the CG was modelled based on the simulated crack tip field. Lepore [13] calculated
the evolution of crack driving force based on the simulated crack tip field and modelled
the CGR based on the CGR model. Lianyong [14] calculated the accumulated damage
under the interacted effects of CF, utilizing the non-linear summation approach. After
the accumulated damage of the element reached a critical value, nodes were released
to model the CGR. In other research [15,16], an irreversible cohesive zone model was
applied in the FE model to describe material damage during crack propagation. The above
numerical simulation-based methods usually achieved good agreement with experimental
data. However, they require the complex constitutive model to describe material properties
under the CF condition and high calculation costs to simulate step-by-step the CG, thus
retarding the wide application of NS-based methods into the engineering field.

The application of the machine learning (ML) technique in the CG modelling at
elevated temperatures (ML-based method) seems to be the potential way to solve the
above issues. Although limited ML research of CGR at elevated temperatures can be
found, the research of applying ML-based methods in the fatigue and FCG analysis at
room temperature (which show great learning and generalization ability) has indicated this.
Morse [17] used the dual boundary element method to model fatigue crack growth and used
the machine learning to decrease the calculation costs successfully. Enrico [18] and Hu [19]
developed the Bayesian-based calibration method and achieved greater accuracy, higher
computational efficiency and better uncertainties analysis in the fatigue crack growth (FCG)
life prediction of complex components, such as turbine discs. Mortazavi [20] established
a radial basis function artificial neural network model, which shows good interpolation
capability in the prediction of both short and long FCG behavior in Ti-6Al-4V, 2024-T3 and
7075-T6 alloys.

The neutral network (NN) is a typical ML technique. It has been applied to model
the CGR and shows advantages in FCG prediction at room temperature. Mohanty [21]
trained a nine-layer NN to simulate the CGR of aluminum alloys by learning CGR data
with six stress ratios (R = 0, 0.2, 0.4, 0.6, 0.7, 0.8) and used this NN to predict the CGR
under R = 0.5. Zhang [22] trained a radial basis function artificial NN to calculate the
CGR for different aluminum alloys. Both Mohanty and Zhang achieved good agreement
with CGR experimental data, but the calculated a-N curves used the integration method
based on their predicted CGR data deviated from experimental data. Due to the existence
of significant deviation in the prediction of a-N curves using the integration method,
some researchers directly predicted a-N curves using the NN based methods. Palakal [23]
predicted the evolution of crack length under various arbitrary aircraft spectrum loadings
using back-propagation NN. Do [24] utilized long short-term memory and multi-layer
NN to successfully forecast the next propagation of a crack. Xiaofan [25] developed an
NN-based increment learning scheme for the prediction of a-N curves. The trained network
via this scheme can give satisfactory results with a significantly small amount of data,
thus providing a new direction for the further development of NN-based methods in the
CG prediction.

Although NN-based methods have shown significant advantages in CG prediction
at room temperature, they were not widely applied in the CG prediction at elevated
temperature until now. In terms of this issue, the NN-based methods performing well
at room temperature were extended to CG prediction at elevated temperatures in this
paper. The “indirect” NN-based method assessing the CG at elevated temperature by
modelling and integrating the CGR was investigated. The “direct” NN-based methods
building the relationship between a and N by using NN was developed based on the
NN-based increment learning scheme. These methods not only extend the generaliza-
tion of the previous NN-based method, but also provide high accuracy predicted results
with low calculation costs, thus promoting the further improvement of CG prediction at
elevated temperatures.
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2. Materials and Methods
2.1. Experimental CG Data of FGH97 at Elevated Temperatures

CG data previously presented by our research group [26–28] are served as the input
data for the NN learning in this research. These data were measured by carrying out
CG tests on compact tension specimens with 50 mm width and 25 mm thickness (see
Figure 1a). Specimens were manufactured by a nickel-based superalloy FGH97, whose
nominal chemical composition is listed in Table 1. The average grain size and the amount of
γ’ precipitates for this material are about 30 µm and 62.4 wt.%, respectively [29]. Loading
waveforms used in CG tests were triangular wave and trapezoidal wave (schematically
shown in Figure 1b,c). Figure 1b is the 1.5 s–1.5 s triangular wave used to measure the
FCG data. Figure 1c is the trapezoidal wave formed by superimposing different dwell
time at the peak load to the triangular wave, which is used to measure CG data under CF
conditions (CFCG data).
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Figure 1. (a) Configuration of CT specimens, (b) 1.5 s−1.5 s triangular waveforms, and (c) trapezoidal
waveforms corresponding to the dwelling time (tHold).

Table 1. Nominal chemical composition of FGH97 (wt.%) [27].

C Cr Mo W Al Ti Co Nb Hf Mg Zr B Ce Ni

0.02–0.06 8.0–10 3.5–4.2 5.2–5.9 4.8–5.3 1.6–2.0 15.0–16.5 2.4–2.8 0.1–0.4 ≤0.02 ≤0.02 ≤0.02 ≤0.01 Remains

CG data under 16 service conditions (listed in Table 2) with the same load ratio
(R = PMin/PMax = 0.05) were used in this research as the basic dataset of machine learn-
ing. These conditions cover 550–750 ◦C temperature (T), 0–1500 s holding time (tHold),
14–33 kN maximum load (PMax) and 0.9–1.65 kN minimum load (PMin), reflecting the inter-
active effect of temperature, holding time and load level on the CG. For these 16 conditions,
only CGR data (da/dN-∆K) were presented previously but the raw data (a-N) of CG tests
were not reported. In order to fulfil the requirement of ML in this research, the a-N data
for these 16 conditions are published in this paper. It should be noted that all data for the
16 conditions (over 600 data points in total) are not shown in this section. They are shown
in Section 3, together with the ML predicted results.
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Table 2. Groups of CG data under various loading conditions at elevated temperatures.

Dataset Name Condition Name T (◦C) tHold (s) PMax
(kN)

PMin
(kN) Type

Data 1 C1 550 0 18 0.9 F
Data 2 C2 650 0 18 0.9 F
Data 3 C3 650 90 18 0.9 CF
Data 4 C4 650 90 20 1 CF
Data 5 C5 650 90 33 1.65 CF
Data 6 C6 670 90 30 1.5 CF
Data 7 C7 690 90 24.5 1.2025 CF
Data 8 C8 710 90 20 1 CF
Data 9 C9 750 0 18 0.9 F
Data 10 C10 750 1500 16 0.8 CF
Data 11 C11 750 1500 20 1 CF
Data 12 C12 750 25 18 0.9 CF
Data 13 C13 750 450 18 0.9 CF
Data 14 C14 750 90 14 0.7 CF
Data 15 C15 750 90 18 0.9 CF
Data 16 C16 750 90 20 1 CF

2.2. NN-Based Methods for CG Prediction

The back propagation neutral network (BPNN) is a NN successfully used in CG
prediction at room temperature. It consists of an input layer, one or more hidden layers
and an output layer. In this research, BPNN with one hidden layer was used to model the
CG at elevated temperature. Four groups of methods based on different BPNN (BPNN
with different input and output parameters) were investigated. Their detailed information
is listed in Table 3.

Table 3. List of NN-based methods for predicting CG at elevated temperatures.

Method NN Name NN Input NN Output

NNK
NNK-K Kmax, ∆K

da/dNNNK-KT Kmax, ∆K, T
NNK-KTt Kmax, ∆K, T, tHold

RNN RNN-N N a

NNIL NNIL-N N, ∆N′ a, ∆a′

ENNIL

ENNIL-a a, ∆N

∆a
ENNIL-aP a, ∆N, PMax, PMin

ENNIL-aPT a, ∆N, PMax, PMin, T
ENNIL-aPTt a, ∆N, PMax, PMin, T, tHold

NNK is the only one “indirect” NN-based method in these methods. The “indi-
rect” means that the NN in this method is used to model the CGR rather than the CG
(a-N curves). The CG prediction is indirectly achieved by integrating the modelled CGR in
the NNK method, see Figure 2. In the NN of this method, the maximum intensity factor
(Kmax) and the range of intensity factor (∆K) were selected as input parameters because
they were usually used in the formula of CF CGR models to represent the effect of CDF.
Their values were calculated based on ASTM standard [30] using following equations:

∆K =
∆P

B
√

W
· (2 + α)

(1− α)3/2

(
0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4

)
(1)

Kmax = ∆K/(1− R) (2)
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where B and W are sample dimensions marked in Figure 1a; R is the stress ratio; α is equal
to a/W; ∆P is equal to Pmax − Pmin.
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Temperature (T) and duration of dwelling time (tHold) were also served as input pa-
rameters of NN to consider the effect of elevated temperature and the related CF interactive
effect. It should be noted that three types of NN (see NNK-K, NNK-KT and NNK-KTt
in Table 3) were investigated in the research of NNK method. The design of them is to
describe a group of CG under various conditions, such as the CG under interactive effect of
Kmax, ∆K, T and tHold (NNK-KTt), CG under the constant tHold (NNK-KT) and CG under
the constant T and tHold (NNK-K).

The RNN, NNIL and ENNIL methods listed in Table 3 are “direct” NN-based methods,
which use NN to model the CG (a-N curves) directly. The RNN method adopts the simplest
type of NN to directly build the relationship between number of cycles (N) and crack length
(a). Its network structure consists of an input layer with one neuron (N), one hidden layer
with multiple neurons and an output layer with one neuron (a).

The NNIL method is the NN-based increment learning scheme. Two types of NNIL
methods were investigated in this research. They are NNIL-N and NNIL-NP listed in
Table 3. NNIL-N is Xiaofan’s NN-based increment learning scheme [25]. The information
for NNIL-N is shown in Figure 3. Figure 3a presents the NN structure: inputs are N and its
increment (∆N′); the number of hidden layers is one; outputs are a and its increment (∆a′).
Figure 3b demonstrates the way to generate training dataset (a, ∆a′, N, ∆N′) for NN, where
a and N are experimental measured values. ∆a′ and ∆N′ are difference values between
a pair of experimental points.

In this way, an experimental dataset (a, N) with the size of n can generate a training
dataset (a, ∆a′, N, ∆N′) with the size of n × (n − 1)/2. This means a significant increase of
input information for the training of NN. In this way, this method gets over the shortage of
using BPNN to model the CG (not good at training on small dataset).

The ENNIL method is a NN-based method developed in this research. It is established
by improving the NNIL method via fully considering the effect of more input parameters.
Three types of NN listed in Table 3 were used in the ENNIL method to model CG under
different conditions, such as the CG under interactive effect of Pmax, Pmin, T and tHold
(ENNIL-aPTt), CG under the constant tHold (ENNIL-aPT) and CG under the constant T
and tHold (ENNIL-aP). Figure 4 demonstrate the structure of NN in the ENNIL method,
where the ∆a and ∆N are the same as them in NNIL method. ∆a and ∆N are kept in the
training dataset to take advantage of the NNIL method in order to get over the shortage
of BPNN (not good at training on small dataset). The basic inputs of the ENNIL method
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changed from N and ∆N to a and ∆N. This change is because a plays an important role in
the modelling of CG, in the view of fracture mechanics; it determines the CDF, and thus
affects the CG directly. However, N cannot determine the value of CGR under specific
service conditions.
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3. Results and Discussion
3.1. CG Prediction at Elevated Temperatures Based on CGR

The NNK method was used to predict CG at elevated temperatures for different cases.
Table 4 lists the information of NN for different cases in detail, including the NN structure
and the corresponding dataset. It should be noted that the dataset is written as a format
composed by type of testing conditions, train dataset and test dataset (marked by blue,
black and red colors, respectively, in Table 4): the type of testing conditions is represented
by the dataset name listed in Table 2; the train dataset is the set of experimental data points
used to train the NN; the test dataset is the set of experimental data points, which cannot
be obtained by interpolating the train dataset and will be compared with the NN-predicted
results to verify the validation of NNK-K in the CG modelling at elevated temperatures.
For example, FCG: 80% Data 2 + 20% Data 2 means that: the NNK-K was used to model
the FCG under the specific service condition corresponding to Data 2; 80% data of Data 2
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(∆K < 61 MPa·m1/2) was served as train dataset to train the NN; the remaining 20% data
with larger ∆K (∆K ≥ 61 MPa·m1/2) was served as test dataset to be compared with the
NN-predicted results.

Table 4. List of modelling cases using NNK method.

Method NN Name NN Input NN Output Dataset (Type of Testing Conditions:
Train Data + Test Data)

NNK

NNK-K Kmax, ∆K

da/dN

FCG: 80% Data 2 + 20% Data 2
CFCG: 80 % Data 3 + 20% Data 3

NNK-KT Kmax, ∆K, T

FCG with different T: 80% Data 1, 2,
9 + 20% Data 1, 2, 9
CFCG with same thold: Data 5, 6, 8,
15 + Data 7

NNK-KTt Kmax, ∆K, T, tHold
FCG + CFCG: Data 1–3, 6, 8–11, 13,
15 + Data 7, 12

Note: blue color and red color was used to mark the train dataset and test dataset respectively.

Three types of NN structures (stated as NNK-K, NNK-KT and NNK-KTt) were used in
the NNK method to model the CGR at elevated temperatures. NNK-K is designed to model
the CGR under a specific service condition. About 80% data of Data 2 and 3 were learned
by this NN, respectively. The obtained NN was used to predict the CGR corresponding the
∆K range for the remaining 20% data (∆K > 46 MPa·m1/2 for Data 2, ∆K > 58 MPa·m1/2 for
Data 3). Figure 5 shows the learning parameters of NN, the original data and modelling
results. The black and red color mark the FCG (Data 2) and CFCG (Data 3) condition,
respectively. It can be found that the slope of each curve decreases from a significantly high
value to a stable value with the increase of the ∆K. This indicates the NN can clearly reflect
the CGR characteristics at stage I and stage II. It can also be seen that black/red curves
(both solid and dash curves) are within the range of rectangle/ triangle data points. This
reflects that the NN results correspond well with the corresponding experimental data,
thus predicting the CGR at elevated temperatures successfully. Above all, the NNK-K can
be applied in CGR prediction at elevated temperatures to consider the single effect of CDF
on the CGR of FCG and CFCG.

NNK-KT is designed to model the CGR under conditions with the same tHold (the
interactive effect of CDF and T). This NN K-KT was applied to model the CGR based on
a group of FCG data (tHold = 0) and a group of CFCG data (tHold = constant 6= 0), respectively.
It should be noted that six neurons were used in the hidden layer of NNK-KT, while there
are four neurons in the hidden layer of NNK-K. More neurons were used because the
NNK-KT need to consider the effect of one more factor (T) on the CGR prediction.

In terms of CGR prediction under the FCG condition, about 80% data of FCG dataset
(Data 1, 2, 9) were learned together by NNK-KT. The evolution of CGR with ∆K under
these three conditions were predicted by the obtained NNK-KT and compared with the
remaining 20% data, see Figure 6a. It can be found that curves still correspond with the
experimental data points but they do not correspond as well as that in Figure 5. The main
deviations exist in the low ∆K area (∆K < 30 MPa·m1/2), where the NN-predicted value is
higher than the experimental value (around two times). It should be noted that this case is
not a simple extrapolating by using 80% data to 20% data. These 20% data experimental
data were used to validate the NNK-KT method by comparing them with the predicted
results. The validated NN can be used to predict the FCG under other temperatures, like
670 ◦C. Because we do not have other group of FCG data to be compared with predicted
results in this case, the predicted results under other temperatures are not shown here.
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The NNK-KT was also used in the CGR prediction under CFCG conditions, see
Figure 6b. Four groups of CFCG data with different temperatures (Data 5, 6, 8, 15) were
used to train the NNK-KT. The CGR under another temperature was predicted by the
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obtained NNK-KT and compared with the experimental data (Data 7). Although the range
of above data is short, they clearly reflect the relationship between da/dN and ∆K under
different service conditions. As a result, it is useful to use these data to investigate the
accuracy of the NN-based method in the CG prediction under different conditions in
this research. A longer range of data will be measured and applied in CG prediction in
future. It can be seen in Figure 6b that: the predicted values show the stage I and stage II
CGR characteristics; differences between curves and experimental data in Figure 6b are
remarkable at the stage I of CG (lower ∆K) but small at the stage II of CG (higher ∆K); the
NN-predicted da/dN is higher than the experimental value at the stage I of CG. These
characteristics are the same as for that of the CGR prediction under FCG conditions (see
Figure 6a). These indicate that the NNK-KT can be applied in the CGR prediction under
the interactive effect of CDF and T for both FCG and CFCG. It predicts CGR at the higher
∆K area for each case (stage II of CG) very well but overestimates CGR at the lower ∆K
area for each case (stage I of CG). This overestimation may result in the lower predicted
value of CG life in CG prediction based on CGR.

NNK-KTt is designed to model the CGR under general conditions (with the interactive
effect of CDF, T and tHold). More neurons were used in its hidden layer (eight neurons in
total) than that of NNK-KT in order to consider the effect of added factor (tHold). Experi-
mental da/dN-∆K data for all combination of T and tHold listed in Table 2 (Data 1–3, 6–13,
15) were used in this research to train and test this NN. Figure 7 shows the predicted results
of obtained NNK-KTt and related experimental data. The predicted results corresponding
to train data under the same tHold were marked by the same type of curves. For example,
dot curves are used to mark the Data with tHold = 0 s. The predicted results corresponding
to test data (Data 7, 13) were marked by solid curves. It can be found in Figure 7 that
maximum differences between all types of curves and experimental data are about twice
that of the smaller da/dN under a same ∆K. This can be accepted in the CGR prediction
and reflects the usefulness of applying NNK-KTt in the CGR prediction with the interactive
effect of CDF, T and tHold.
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Based on the CGR predicted in this section, the evolution of CG (a-N curves) un-
der different conditions was modelled. It should be noted that this research is focused
on the relationship between the a and N rather than the modelling of the crack growth
life. Therefore, there is not a unified stop criteria for the modelling. When the crack
length is relatively long or reaches the maximum crack length of the corresponding exper-
imental data, the prediction will be stopped. The modelling results of CG are shown in
Figures 8 and 9, where Figures 8a–c and 9 are integrated results of Figures 5, 6a, 6b and 7,
respectively. It can be found in these images that all predicted results (solid curves) corre-
spond well with the experimental data (data points) at the start of CG but the difference
between them (deviation of CG prediction) increase with the increase of cycle numbers
N. For example, the difference of crack length between the blue solid curve and black
rectangle in Figure 8a is 0 mm at N = 0 cycle, while the value of this difference increases
to over 4 mm at N = 15,447 cycle. This indicates the accumulation of deviation in the
CG prediction based on CGR. As a result, the accuracy of the NNK method in the CG
prediction under different conditions is relatively high when the CG life is relative short (see
N ≤ 800 cycles in Figure 9b). However, the accuracy of this method becomes low when CG
life is relative long (see N > 5000 cycle in Figure 9a). In summary, this “Indirect” NN-based
method is more appropriate to be applied in CG prediction at elevated temperatures with
short CG life.
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Figure 8. Prediction of a-N curves using NNK method for: (a) fatigue condition (Data2–650 ◦C-
0s-18/0.9 kN) and creep-fatigue condition (Data3–650 ◦C-90s-18/0.9 kN), respectively; (b) fatigue
condition with different elevated temperatures (550/650/750 ◦C-0s-18/0.9 kN); and (c) creep-fatigue
condition with different elevated temperatures (650–750 ◦C).
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3.2. CG Prediction at Elevated Temperatures Using NN-Based Method Established at
Room Temperature

The RNN and NNIL are two types of “direct” NN-based CG prediction methods,
which directly build the relationship between N and a by using NN. They were established
at room temperature but were used to model the CG at elevated temperatures in this
research. Table 5 lists their NN structure and the corresponding dataset, including the type
of testing conditions (marked by blue color), train data (marked by black color) and test
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data (marked by red color). The design of these dataset is to reflect the problem of applying
these methods into the CG prediction at elevated temperatures.

Table 5. List of modelling cases using RNN and NNIL method.

Method NN Name NN Input NN Output Dataset (Type of Testing Conditions: Train Data
+ Test Data)

RNN RNN-N N a

FCG: 45% Data 2 + 55% Data 2
FCG: 65% Data 2 + 35% Data 2
FCG: 85% Data 2 + 15% Data 2
CFCG: 65% Data 3 + 35% Data 3

NNIL NNIL-N N, ∆N′ a, ∆a′ FCG: 80% Data 2 + 20% Data 2
CFCG: 80% Data 3 + 20% Data 3

3.2.1. Prediction Using the Basic NN Method

The RNN is the traditional NN-based method modelling the CG under a specific
service condition at room temperature. Its input and output parameter are N and a,
respectively. This method was applied in the FCG and CFCG prediction in this section.

About 65% data of FCG data measured under a specific condition (Data 2) were
learned by the RNN to train the NN. The obtained NN was used to predict the a-N curve
corresponding to the remaining 35% data (test data with the N ranging from 13,690 to
15,447 cycles). Figure 10a shows the predicted results (FCG prediction), where the predicted
results for the train data and test data were marked by the blue solid curve and blue dash
curve, respectively. It can be found that the blue solid curve corresponds well with the
experimental data (marked by black rectangles) in the range of N from 0 to 13,690 cycles.
However, the difference between the blue dash curve and black rectangles is significant:
the predicted value is smaller than the test data; the difference between the predicted value
and test data increases from around 0 mm at 13,690 cycles to over 3 mm at 15,447 cycles
(37.9 − 34.22 = 3.68 mm). These characteristics can also be seen in the CFCG prediction
(Data 3 in Figure 10a), where the difference between the predicted value and experimental
value increases from around 0 mm at 10,694 cycles to over 4 mm at 13,190 cycles.
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The effect of percentage of data selected to train the RNN on the predicted results were
also investigated. About 45%, 65% and 85% data of Data 2 (train data) were learned by the
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RNN to train the NN, see Figure 10b. It can be found that differences between predicted
results (dash curves) and experimental data (black rectangle) decreases with the increase of
the percentage of selected train data. It decreases to around 2.6 mm at 15,447 cycles for 85%
selected train data. This indicates that increasing the percentage of data selected to train
NN can improve the above-mentioned deviation of predicted value in the CG prediction
at elevated temperatures. However, the predicted results were not well although over
85% data were selected. Therefore, RNN cannot predict the CG at elevated temperature
very well.

3.2.2. Prediction Using NN-Based Increment Learning Scheme

The NNIL method was applied in the FCG and CFCG prediction. Two train datasets
were generated by about 65% data of Data 2 and Data 3, respectively, using the method
stated in Figure 3b. These generated datasets were used to train NNIL for the prediction
of FCG and CFCG. Figure 11 shows predicted results of obtained NNILs, where the navy
dash curve and the gray dash curve are predicted results for test dataset in FCG and CFCG
prediction, respectively. The significant decrease of predicted deviations can be found
for both FCG prediction (from over 3 mm to around 0.9 mm at 19,857 cycles) and CFCG
prediction (from over 4 mm to around 0.5 mm at 14,009 cycles). This shows the potential of
the NNIL method in the improvement of CG prediction at elevated temperatures.
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However, the current structure of NNIL limits the further application of this NN in
CG prediction. The NN structure of NNIL cannot be used to consider the effect of multiple
factors on the CG directly because its input parameters (N and ∆N′) are not essential
parameters controlling CG. For example, the a-N curve will change significantly with
the change of the initial crack length, although the service condition of CG is the same.
This means that the N cannot determine the CG at elevated temperatures together with
other affecting factors T, thold, Pmax and Pmin. This issue will be solved in Section 3.3 by
developing an amended NNIL method. The consideration of the effect of a0 is because
the a0 of a-N curves measured in repeatability tests (same sample configures and loading
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conditions) is different. This difference of a0 is due to the difference of pre-crack and
reading strategy.

3.3. CG prediction at Elevated Temperature with Amended NNIL Method (ENNIL Method)

The ENNIL is an amended NNIL method developed in this research, where a, ∆N′

replace N, ∆N′ to serve as the basic input parameters and the ∆a becomes the only one
output parameter. Bringing the crack length into the input parameters is because a can
determine the CG at specific service conditions together with other affecting factors, such
as T, thold, Pmax and Pmin. In order to check the predicted results of this ENNIL method, CG
at elevated temperatures under a series of different cases were investigated in this research.
Table 6 lists their NN structure and the corresponding dataset for these cases, including
type of testing conditions (marked by blue color), train dataset (marked by black color) and
test dataset (marked by red color).

Table 6. List of modelling cases using ENNIL method.

Method NN Name NN Input NN Output Dataset (Type of Testing Conditions:
Train Data + Test Data)

ENNIL

ENNIL-a a, ∆N′

∆a

F: 80% Data 2 + 20%Data 2
CF: 80% Data 3 + 20%Data 3

ENNIL-aP a, ∆N′, PMax, PMin
CF with effects of loads: 80% Data 3,
4 + 20%Data 3, 4

ENNIL-aPT a, ∆N′, PMax, PMin, T CF with effect of loads and temperature:
Data 5, 6, 8, 15 +Data7

ENNIL-aPTt a, ∆N′, PMax, PMin, T, tHold F + CF: Data 1–6, 8–12, 14–16 +Data 7, 13

It should be noted that the way to construct dataset for predicting the crack length of
the target testing point is the basis in the CG prediction using the ENNIL method. Therefore,
it was investigated before applying different NN structures of ENNIL on CG prediction at
elevated temperatures. There are two ways that were investigated in total.

The first way is the one used in the NNIL method (“Unmove” way), see Figure 12a.
This prediction was carried out based on all data points with the same PMax, PMin, T and
tHold in train dataset (the group of these data points were stated as Groupbasic). There are
two steps to follow in this way.
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(a) The crack lengths at the NTarget of the target testing point were predicted by using each
data point in Groupbasic, respectively. The predicted crack length using the ith point of
Groupbasic was stated as aTarget−i, whose value was calculated by Equation (3):

aTarget−i = ai + ∆aTarget−i (3)

where ai is the crack length of ith point, ∆aTarget−i is the increment crack length calculated
by inputting ai and NTarget − Ni into the NN of the ENNIL method.

(b) The mean value of all predicted crack lengths were calculated by Equation (4):

aTarget = 1/n×∑n
i=1 aTarget = 1/n×∑n

i=1

(
ai + ∆aTarget−i

)
(4)

where n is the total number of data points in Groupbasic. This obtained mean value aTarget
is the final predicted crack length of the target testing point in the “Unmove” way.

The other way is the “Move” way, demonstrated in Figure 12b.
(

aj
Target, N j

Target

)
represents the coordinate value of jth predicted data point Aj. Groupj represents the dataset
used to predict this data point Aj. The detailed procedure is as follows:

(a) For the first predicted data point, the “Unmove” way was used to predict the a1
Target

corresponding to N1
Target based on the train dataset (Group1).

(b) For other predicted data points, the crack length is also calculated using the “Unmove”
way, but the Groupbasic used in the calculation of Equation (1) and (2) is composed
by Group1 and previously predicted data points. For example, the Groupbasic in the
predition of jth data point is composed by Group1 and (A1, A2, . . . , Aj-1). The equation

for the aj
Target is

aj
Target = 1/(n0 + j− 1)×

[
∑n0

i=1

(
ai + ∆aTarget−i

)
+ ∑j−1

i=1

(
ai

Target + ∆a′Target−i

)]
(5)

where n0 is the number of data points in Group1, ∆a′Target−i is the increment crack length

calculated by inputting ai
Target and N j

Target − Ni
Target into the NN of the ENNIL method.

These two ways were applied into the FCG prediction under a specific service condi-
tion (Data 2) to compare their predicting accuracy. The NN structure used in this prediction
is ENNIL-a. Predicted results are shown in Figure 13, where the 60% and 85% data of
Data 2 were used to train the ENNIL-a, respectively. It can be found in both Figure 13a,b
that the predicted results of ENNIL-a with the “Move” way (marked by blue dash curves)
are closer to the experimental data (marked by black rectangles) than that of ENNIL-a
with “Unmove” way (marked by red dash curves). This indicates that the predicting
deviation of the “Move” way (below 1 mm at 15,447 cycles) is remarkable smaller than that
of the previous “Unmove” way (over 3 mm at 15,447 cycles). The possible reason for this
may be that the “Move” way can consider the increased slope of a with the increase of N
better because it used predicted data with bigger slope in the CG prediction for bigger N.
Therefore, the “Move” way is more appropriate to be applied into the CG prediction at
elevated temperatures.

The ENNIL method with the “Move” way was applied to analyze the case which
cannot be modelled by the NNIL method (demonstrated in the end of Section 3.2.2).
A total of 60% data of Data 3 were used to the train the ENNIL-a in this CFCG prediction.
Figure 14 shows the predicted results, where predicted results for train dataset and test
dataset are marked by a solid curve and a dash curve, respectively. It can be found that
all curves correspond well with the experimental data. This means that using a to replace
N in the NN of the NNIL method (a, ∆N as basic input parameters of NN in ENNIL
method) can determine CG characteristics (a-N curves for all initial length) under a specific
service condition.
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The CG with the effect of multiple service conditions were predicted by the ENNIL
method with the “Move” way. Parameters around service conditions were added in NN
as input parameters. PMax and PMin were added first (ENNIL-aP) to consider the effect of
loads on the CG prediction. Figure 15a shows a CG prediction case by using the ENNIL
method with ENNIL-aP, where ENNIL-aP were trained by two groups of data measured
under different loads (Data 3, Data 4). It can be seen that the predicted results for both
train dataset and test dataset (solid curves and dash curves) correspond well with the
experimental data (differences below 0.2 mm at the same N). T were further added in
the NN of the ENNIL method (ENNIL-aPT). Figure 15b shows a CG prediction case by
using the ENNIL method with ENNIL-aPT. In this case, four groups of experimental data
measured under different loads and temperatures (Data 5, 6, 8, 15) were used to train NN.
The obtained NN were used to predict the CG for another service condition (corresponding
to the test dataset Data 7). The input of this prediction includes the a0 and parameters
describing the service conditions. It can be seen in Figure 15b that differences between
predicted results (solid/dash curves) and corresponding experimental data (discrete points
marked by different shapes) are minor (below 0.5 mm). The above comparisons verify the
validation of the ENNIL method in the CG prediction at elevated temperatures.
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Figure 15. a-N curves prediction using ENNIL scheme for data measured under: (a) the same
temperature but different loading conditions; (b) different loading conditions and temperature.

This ENNIL method was also applied in the CG prediction under more general
conditions (interactive effect of PMax, PMin, T and tHold). This prediction uses ENNIL-aPTt
and all experimental data listed in Table 2, where Data 7, 13 compose test dataset and
other data (Data 1–6, 8–12, 14–16) compose the train dataset. The number of neurons in the
hidden layer was increased from 40 to 120 in this prediction because there are more input
parameters. Figure 16 shows the predicted results for this case, where Figure 16b is the
zoom-in image of Figure 16a for the narrow range of N (0–1000 cycles). It can be seen that:
for CG with longer CG life (N > 1000 cycles at a = 32 mm), predicted results corresponds
well with experimental data (maximum deviation below 1 mm); for CG with shorter CG
life (N ≤ 1000 cycles at a = 32 mm), predicted results can coarsely describe the increase of a
with the increase of N, while predicted results cannot describe the rapid increase in slope
of curves for longer crack length; the maximum deviation for both test dataset and train
dataset with the shorter CG life is around 3 mm. These indicate that the ENNIL method can
be used in the CG prediction under general conditions and give perfectly predicted results
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for cases with relatively long CG life. However, the predicted accuracy of this method for
CG with relatively short CG life need to be further improved. Increasing the CG data with
the short CG life to train NN and taking log of N for all data before training NN may be the
possible solution. They will be investigated in the future.
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It should be noted that the NNK method presented in Section 3.1 shows high accuracy
in CG prediction with relatively short CG life, but low accuracy in CG prediction with
relative long CG life. This is opposite to the ENNIL method. It means that the combination
of these two methods may be an effective way to achieve high accuracy in CG prediction at
elevated temperatures. The detailed solution maybe: (a) training NN for the NNK methods
and the ENNIL methods, respectively, by using same train dataset; (b) using the NNK
methods to predict CG at elevated temperatures with shorter CG life and (c) using the
ENNIL methods to predict CG at elevated temperatures with the longer CG life.

4. Conclusions

The neutral network was applied in CG prediction at elevated temperatures in this
research. Both the “direct” and “indirect” NN-based methods were built by extending the
NN-based methods performing well at room temperature to the CG prediction at elevated
temperatures. The following conclusions were drawn:

(a) NN with the input of CDF and other parameters describing service condition can be
applied in CGR prediction at elevated temperatures. The CGR at the higher ∆K area
are predicted well by this NN but CGR at the lower ∆K area are usually overestimated.

(b) The RNN and NNIL cannot be directly used in CG prediction at elevated tempera-
tures. An important reason for this is that N cannot determine the CG at elevated
temperatures together with other affecting factors.

(c) The ENNIL method was developed in this research, where a, ∆N′ replace N, ∆N′ in
the NNIL method to serve as the basic input parameters and the ∆a becomes the only
one output parameter. This method makes the increment schedule can be applied in
the CG prediction under general conditions, thus getting over the shortage of using
BPNN to model the CG (not good at training on small dataset).

(d) The ENNIL method gives perfectly predicted results for cases with relatively long
CG life, while the predicted accuracy of this method for CG with relatively short CG
life need to be further improved. However, the NNK method shows high accuracy in
CG prediction with relatively short CG life, but low accuracy in CG prediction with
relative long CG life. The combination of these two methods may be an effective way
to achieve high accuracy in CG prediction at elevated temperatures.
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