Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,473)

Search Parameters:
Keywords = NM-300K

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1366 KiB  
Article
Liquid-Phase Hydrogenation over a Cu/SiO2 Catalyst of 5-hydroximethylfurfural to 2,5-bis(hydroxymethyl)furan Used in Sustainable Production of Biopolymers: Kinetic Modeling
by Juan Zelin, Hernán Antonio Duarte, Alberto Julio Marchi and Camilo Ignacio Meyer
Sustain. Chem. 2025, 6(3), 22; https://doi.org/10.3390/suschem6030022 - 6 Aug 2025
Abstract
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF [...] Read more.
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF to BHMF over a Cu/SiO2 catalyst prepared by precipitation–deposition (PD) at a constant pH. Physicochemical characterization, using different techniques, confirms that the Cu/SiO2–PD catalyst is formed by copper metallic nanoparticles of 3–5 nm in size highly dispersed on the SiO2 surface. Before the kinetic study, the Cu/SiO2-PD catalyst was evaluated in three solvents: tetrahydrofuran (THF), 2-propanol (2-POH), and water. The pattern of catalytic activity and BHMF yield for the different solvents was THF > 2-POH > H2O. In addition, selectivity to BHF was the highest in THF. Thus, THF was chosen for further kinetic study. Several experiments were carried out by varying the initial HMF concentration (C0HMF) between 0.02 and 0.26 M and the hydrogen pressure (PH2) between 200 and 1500 kPa. In all experiments, BHMF selectivity was 97–99%. By pseudo-homogeneous modeling, an apparent reaction order with respect to HFM close to 1 was estimated for a C0HMF between 0.02 M and 0.065 M, while when higher than 0.065 M, the apparent reaction order changed to 0. The apparent reaction order with respect to H2 was nearly 0 when C0HMF = 0.13 M, while for C0HMF = 0.04 M, it was close to 1. The reaction orders estimated suggest that HMF is strongly absorbed on the catalyst surface, and thus total active site coverage is reached when the C0HMF is higher than 0.065 M. Several Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic models were proposed, tested against experimental data, and statistically compared. The best fitting of the experimental data was obtained with an LHHW model that considered non-competitive H2 and HMF chemisorption and strong chemisorption of reactant and product molecules on copper metallic active sites. This model predicts both the catalytic performance of Cu/SiO2-PD and its deactivation during liquid-phase HMF hydrogenation. Full article
Show Figures

Graphical abstract

17 pages, 2393 KiB  
Article
Impact of Cu-Site Dopants on Thermoelectric Power Factor for Famatinite (Cu3SbS4) Nanomaterials
by Jacob E. Daniel, Evan Watkins, Mitchel S. Jensen, Allen Benton, Apparao Rao, Sriparna Bhattacharya and Mary E. Anderson
Electron. Mater. 2025, 6(3), 10; https://doi.org/10.3390/electronicmat6030010 - 6 Aug 2025
Abstract
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, [...] Read more.
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, M = Cu, Zn, Mn) nanoparticles (diameter 20–30 nm) with controllable and stoichiometric incorporation of transition metal dopants on the Cu-site. To produce pellets for thermoelectric characterization, the densification process by spark plasma sintering was optimized for individual samples based on thermal stability determined using differential scanning calorimetry and thermogravimetric analysis. Electronic transport properties of undoped and doped famatinite nanoparticles were studied from 225–575 K, and the thermoelectric power factor was calculated. This is the first time electronic transport properties of famatinite doped with Zn or Mn have been studied. All famatinite samples had similar resistivities (>0.8 mΩ·m) in the measured temperature range. However, the Mn-doped famatinite nanomaterials exhibited a thermoelectric power factor of 10.3 mW·m−1·K−1 at 575 K, which represented a significant increase relative to the undoped nanomaterials and Zn-doped nanomaterials engendered by an elevated Seebeck coefficient of ~220 µV·K−1 at 575 K. Future investigations into optimizing the thermoelectric properties of Mn-doped famatinite nanomaterials are promising avenues of research for producing low-cost, environmentally friendly, high-performing thermoelectric materials. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

24 pages, 4967 KiB  
Article
CatBoost-Optimized Hyperspectral Modeling for Accurate Prediction of Wood Dyeing Formulations
by Xuemei Guan, Rongkai Xue, Zhongsheng He, Shibin Chen and Xiangya Chen
Forests 2025, 16(8), 1279; https://doi.org/10.3390/f16081279 - 5 Aug 2025
Abstract
This study proposes a CatBoost-enhanced hyperspectral modeling approach for accurate prediction of wood dyeing formulations. Using Pinus sylvestris var. mongolica veneer as the substrate, 306 samples with gradient dye concentrations were prepared, and their reflectance spectra (400–700 nm) were acquired. After noise reduction [...] Read more.
This study proposes a CatBoost-enhanced hyperspectral modeling approach for accurate prediction of wood dyeing formulations. Using Pinus sylvestris var. mongolica veneer as the substrate, 306 samples with gradient dye concentrations were prepared, and their reflectance spectra (400–700 nm) were acquired. After noise reduction and sensitive band selection (400–450 nm, 550–600 nm, and 600–650 nm), spectral descriptors were extracted as model inputs. The CatBoost algorithm, optimized via k-fold cross-validation and grid search, outperformed XGBoost, random forest, and SVR in prediction accuracy, achieving MSE = 0.00271 and MAE = 0.0349. Scanning electron microscopy (SEM) revealed the correlation between dye particle distribution and spectral response, validating the model’s physical basis. This approach enables intelligent dye formulation control in industrial wood processing, reducing color deviation (ΔE < 1.75) and dye waste by approximately 25%. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

32 pages, 995 KiB  
Case Report
Phytotoxic Effects and Agricultural Potential of Nanofertilizers: A Case Study Using Zeolite, Zinc Oxide, and Titanium Dioxide Under Controlled Conditions
by Ezequiel Zamora-Ledezma, Glenda Leonela Loor Aragundi, Willian Stalyn Guamán Marquines, Michael Anibal Macías Pro, José Vicente García Díaz, Henry Antonio Pacheco Gil, Julián Mauricio Botero Londoño, Mónica Andrea Botero Londoño and Camilo Zamora-Ledezma
J. Xenobiot. 2025, 15(4), 123; https://doi.org/10.3390/jox15040123 - 1 Aug 2025
Viewed by 294
Abstract
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K [...] Read more.
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K2Cr2O7) using Lactuca sativa seeds under adapted OECD-208 protocol conditions. Seeds were exposed to varying concentrations of each xenobiotic material (0.5–3% for NFs; 10–50% for NPs), with systematic assessment of seedling survival, root and hypocotyl length, dry biomass, germination index (GI), and median effective concentration (EC50) values. Nanofertilizers demonstrated significantly greater phytotoxicity than engineered nanoparticles despite lower application concentrations. The toxicity ranking was established as NF1 > NF3 > NF2 > NM2 > NM1 > NM3, with NF1 being most toxic (EC50 = 1.2%). Nanofertilizers caused 45–78% reductions in root length and 30–65% decreases in dry biomass compared with controls. GI values dropped to ≤70% in NF1 and NF3 treatments, indicating concentration-dependent growth inhibition. While nanofertilizers offer agricultural benefits, their elevated phytotoxicity compared with conventional nanoparticles necessitates rigorous pre-application safety assessment. These findings emphasize the critical need for standardized evaluation protocols incorporating both physiological and ecotoxicological endpoints to ensure safe xenobiotic nanomaterial deployment in agricultural systems. Full article
Show Figures

Graphical abstract

19 pages, 4156 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 124
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

16 pages, 2734 KiB  
Article
A 13-Bit 100 kS/s Two-Step Single-Slope ADC for a 64 × 64 Infrared Image Sensor
by Qiaoying Gan, Wenli Liao, Weiyi Zheng, Enxu Yu, Zhifeng Chen and Chengying Chen
Eng 2025, 6(8), 180; https://doi.org/10.3390/eng6080180 - 1 Aug 2025
Viewed by 122
Abstract
An Analog-to-Digital Converter (ADC) is an indispensable part of image sensor systems. This paper presents a silicon-based 13-bit 100 kS/s two-step single-slope analog-to-digital converter (TS-SS ADC) for infrared image sensors with a frame rate of 100 Hz. For the charge leakage and offset [...] Read more.
An Analog-to-Digital Converter (ADC) is an indispensable part of image sensor systems. This paper presents a silicon-based 13-bit 100 kS/s two-step single-slope analog-to-digital converter (TS-SS ADC) for infrared image sensors with a frame rate of 100 Hz. For the charge leakage and offset voltage issues inherent in conventional TS-SS ADC, a four-terminal comparator was employed to resolve the fine ramp voltage offset caused by charge redistribution in storage and parasitic capacitors. In addition, a current-steering digital-to-analog converter (DAC) was adopted to calibrate the voltage reference of the dynamic comparator and mitigate differential nonlinearity (DNL)/integral nonlinearity (INL). To eliminate quantization dead zones, a 1-bit redundancy was incorporated into the fine quantization circuit. Finally, the quantization scheme consisted of 7-bit coarse quantization followed by 7-bit fine quantization. The ADC was implemented using an SMIC 55 nm processSemiconductor Manufacturing International Corporation, Shanghai, China. The post-simulation results show that when the power supply is 3.3 V, the ADC achieves a quantization range of 1.3 V–3 V. Operating at a 100 kS/s sampling rate, the proposed ADC exhibits an effective number of bits (ENOBs) of 11.86, a spurious-free dynamic range (SFDR) of 97.45 dB, and a signal-to-noise-and-distortion ratio (SNDR) of 73.13 dB. The power consumption of the ADC was 22.18 mW. Full article
Show Figures

Figure 1

17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 - 1 Aug 2025
Viewed by 140
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

10 pages, 1468 KiB  
Article
Noninvasive Mapping of Extracellular Potassium in Breast Tumors via Multi-Wavelength Photoacoustic Imaging
by Jeff Folz, Ahmad Eido, Maria E. Gonzalez, Roberta Caruso, Xueding Wang, Celina G. Kleer and Janggun Jo
Sensors 2025, 25(15), 4724; https://doi.org/10.3390/s25154724 - 31 Jul 2025
Viewed by 201
Abstract
Elevated extracellular potassium (K+) in the tumor microenvironment (TME) of breast and other cancers is increasingly recognized as a critical factor influencing tumor progression and immune suppression. Current methods for noninvasive mapping of the potassium distribution in tumors are limited. Here, [...] Read more.
Elevated extracellular potassium (K+) in the tumor microenvironment (TME) of breast and other cancers is increasingly recognized as a critical factor influencing tumor progression and immune suppression. Current methods for noninvasive mapping of the potassium distribution in tumors are limited. Here, we employed photoacoustic chemical imaging (PACI) with a solvatochromic dye-based, potassium-sensitive nanoprobe (SDKNP) to quantitatively visualize extracellular potassium levels in an orthotopic metaplastic breast cancer mouse model, Ccn6-KO. Tumors of three distinct sizes (5 mm, 10 mm, and 20 mm) were imaged using multi-wavelength photoacoustic imaging at five laser wavelengths (560, 576, 584, 605, and 625 nm). Potassium concentration maps derived from spectral unmixing of the photoacoustic images at the five laser wavelengths revealed significantly increased potassium levels in larger tumors, confirmed independently by inductively coupled plasma mass spectrometry (ICP-MS). The PACI results matched ICP-MS measurements, validating PACI as a robust, noninvasive imaging modality for potassium mapping in tumors in vivo. This work establishes PACI as a promising tool for studying the chemical properties of the TME and provides a foundation for future studies evaluating the immunotherapy response through ionic biomarker imaging. Full article
(This article belongs to the Special Issue Advances in Photoacoustic Resonators and Sensors)
Show Figures

Figure 1

13 pages, 1600 KiB  
Article
LIMK2-1 Is a Phosphorylation-Dependent Inhibitor of Protein Phosphatase-1 Catalytic Subunit and Myosin Phosphatase Holoenzyme
by Andrea Kiss, Emese Tóth, Zsófia Bodogán, Mohamad Mahfood, Zoltán Kónya and Ferenc Erdődi
Int. J. Mol. Sci. 2025, 26(15), 7347; https://doi.org/10.3390/ijms26157347 - 30 Jul 2025
Viewed by 173
Abstract
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 [...] Read more.
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 regulates myosin phosphorylation in smooth muscle contraction and the tumorigenic transformation of several cell lines via the inhibition of MP. A phosphospecific antibody (anti-CPI-17pThr38) against the phosphorylation peptide was used to determine the phosphorylation levels in cells. We found that phospho-CPI-17 and its closely related proteins are not present in HeLa and MCF7 cells after inducing phosphorylation by inhibiting phosphatases with calyculin A. In contrast, cross-reactions of proteins in the 40–220 kDa range with anti-CPI-17pThr38 were apparent. Searching the protein database for similarities to the CPI-17 phosphorylation sequence revealed several proteins with 42–75% sequence identities. The LIMK2-1 isoform emerged as a possible PP1 inhibitor. Experiments with Flag-LIMK2-1 overexpressed in tsA201 cells proved that LIMK2-1 interacts with PP1c isoforms and is phosphorylated predominantly by protein kinase C. Phosphorylated LIMK2-1 inhibits PP1c and the MP holoenzyme with similar potencies (IC50 ~28–47 nM). In conclusion, our results suggest that LIMK2-1 is a novel phosphorylation-dependent inhibitor of PP1c and MP and may function as a CPI-17-like phosphatase inhibitor in cells where CPI-17 is present but not phosphorylated upon phosphatase inhibition. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

10 pages, 1855 KiB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 273
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

15 pages, 1411 KiB  
Article
Enhancing Antibiotic Effect by Photodynamic: The Case of Klebsiella pneumoniae
by Koteswara Rao Yerra and Vanderlei S. Bagnato
Antibiotics 2025, 14(8), 766; https://doi.org/10.3390/antibiotics14080766 - 29 Jul 2025
Viewed by 164
Abstract
Background: The effect of antibiotics can be severely affected by external factors. Combining the oxidative impact of photodynamic therapy with antibiotics is largely unexplored, which may result in positive results with great impact on clinical applications. In particular, that can be relevant in [...] Read more.
Background: The effect of antibiotics can be severely affected by external factors. Combining the oxidative impact of photodynamic therapy with antibiotics is largely unexplored, which may result in positive results with great impact on clinical applications. In particular, that can be relevant in the case of antibiotic resistance. Objectives: In this study, we examined the effects of aPDT using the photosensitizers (PSs), methylene blue (MB) or Photodithazine (PDZ), both alone and in combination with the antibiotics ciprofloxacin (CIP), gentamicin (GEN), and ceftriaxone (CEF), against the Gram-negative bacterium Klebsiella pneumoniae. Methods: A standard suspension of K. pneumoniae was subjected to PDT with varying doses of MB and PDZ solutions, using a 75 mW/cm2 LED emitting at 660 nm with an energy of 15 J/cm2. The MICs of CIP, GEN, and CEF were determined using the broth dilution method. We also tested the photosensitizers MB or PDZ as potentiating agents for synergistic combinations with antibiotics CIP, GEN, and CEF against K. pneumoniae. Results: The results showed that MB was more effective in inhibiting survival and killing K. pneumoniae compared to PDZ. The tested antibiotics CIP, GEN, and CEF suppressed bacterial growth (as shown by reduced MIC values) and effectively killed K. pneumoniae (reduced Log CFU/mL). While antibiotic treatment or aPDT alone showed a moderate effect (1 Log10 to 2 Log10 CFU reduction) on killing K. pneumoniae, the combination therapy significantly increased bacterial death, resulting in a ≥3 Log10 to 6 Log10 CFU reduction. Conclusions: Our study indicates that pre-treating bacteria with PDT makes them more susceptible to antibiotics and could serve as an alternative for treating local infections caused by resistant bacteria or even reduce the required antibiotic dosage. This work explores numerous possible combinations of PDT and antibiotics, emphasizing their interdependence in controlling infections and the unique properties each PS-antibiotic combination offers. Clinical application for the combination is a promising reality since both are individually already adopted in clinical use. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

16 pages, 2223 KiB  
Article
Plasmonic Sensing Design for Measuring the Na+/K+ Concentration in an Electrolyte Solution Based on the Simulation of Optical Principles
by Hongfu Chen, Shubin Yan, Yi Sun, Youbo Hu, Taiquan Wu and Yuntang Li
Photonics 2025, 12(8), 758; https://doi.org/10.3390/photonics12080758 - 28 Jul 2025
Viewed by 213
Abstract
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations [...] Read more.
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations is able to confine light to sub-wavelength dimensions. The data show that different geometrical factors have different effects on sensing, with the geometry of the rectangular cavity and the radius of the circular ring being the key factors affecting the Fano resonance. Furthermore, the resonance bifurcation enables the structure to achieve a tunable dual Fano resonance system. The structure was tuned to obtain optimal sensitivity (S) and figure of merit values up to 3066 nm/RIU and 78. The designed structure has excellent sensing performance with sensitivities of 0.4767 nm·(mg/dL1) and 0.6 nm·(mg/dL1) in detecting Na+ and K+ concentrations in the electrolyte solution, respectively, and can be easily achieved by the spectrometer. The wavelength accuracy of 0.001 nm can be easily achieved by a spectrum analyzer, which has a broad application prospect in the field of optical integration. Full article
Show Figures

Figure 1

15 pages, 1252 KiB  
Article
Origanum vulgare L. Essential Oil Mitigates Palmitic Acid-Induced Impairments in Insulin Signaling and Glucose Uptake in Human Adipocytes
by Andrea Müller, Jonathan Martinez-Pinto, Claudia Foerster, Mario Díaz-Dosque, Liliam Monsalve, Pedro Cisternas, Barbara Angel and Paulina Ormazabal
Pharmaceuticals 2025, 18(8), 1128; https://doi.org/10.3390/ph18081128 - 28 Jul 2025
Viewed by 290
Abstract
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is [...] Read more.
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is rich in monoterpenes with protective effects against IR. Objective: The study aimed to assess total phenols content and antioxidant activity of OVEO and its cytotoxicity, as well as its effect on insulin signaling and glucose uptake in PA-treated adipocytes. Methods: The quantification of total phenolic content was determined using the Folin–Ciocalteu method, while the antioxidant capacity of OVEO was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods. The cytotoxicity of OVEO (0.1–10 µg/mL) was assessed using the MTS assay. SW872 adipocytes were incubated with 0.4 mM PA for 24 h, with or without a 2 h preincubation of OVEO, and then stimulated with insulin (100 nM, 10 min) or a vehicle. Phosphorylation of Tyr-IRS-1, Ser-AKT, and Thr-AS160 was analyzed by Western blot, and glucose uptake was measured using 2-NBDG. Results: OVEO contained phenols and exhibits antioxidant capacity. All the concentrations of OVEO assessed were not cytotoxic on SW872 adipocytes. PA decreased basal phospho-AS160 as well as insulin-stimulated phospho-IRS1, phospho-AKT, phospho-AS160 and glucose uptake, while OVEO co-treatment enhanced these markers. Conclusions: These findings suggest a beneficial effect of OVEO on the PA-impaired insulin pathway and glucose uptake, which might be explained by its phenolic content and antioxidant capacity, highlighting its potential as a complementary therapeutic agent for IR and related metabolic disorders. Full article
Show Figures

Graphical abstract

21 pages, 966 KiB  
Article
Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions
by Hyeonbo Lee, Mi-Jung Choi and Jiseon Lee
Foods 2025, 14(15), 2625; https://doi.org/10.3390/foods14152625 - 26 Jul 2025
Viewed by 159
Abstract
This study investigated how microparticle size affects natural convective heat transfer in high-viscosity suspensions. Suspensions were formulated using 0.5% xanthan gum and 3% stearic acid, with particle sizes ranging from 120 to 750 nm. Key thermal properties, including thermal conductivity (0.598–0.679 W/m·K), specific [...] Read more.
This study investigated how microparticle size affects natural convective heat transfer in high-viscosity suspensions. Suspensions were formulated using 0.5% xanthan gum and 3% stearic acid, with particle sizes ranging from 120 to 750 nm. Key thermal properties, including thermal conductivity (0.598–0.679 W/m·K), specific heat, and the volumetric thermal expansion coefficient (0.990–1.000/°C), were measured. Rheological analysis based on the Herschel–Bulkley model revealed that reducing the particle size increased the consistency index from 0.56 to 0.75 Pa·s, while reducing the flow index from 0.63 to 0.50. This indicates enhanced shear-thinning behavior. A Rayleigh–Bénard convection system revealed that suspensions containing smaller particles exhibited higher Rayleigh and Nusselt numbers under large temperature gradients. Nusselt numbers reached values of up to 100 at a temperature difference of 9 °C. Conversely, suspensions containing larger particles exhibited relatively higher Rayleigh and Nusselt numbers under smaller temperature differences. These results demonstrate that optimizing microparticle size can enhance the efficiency of heat transfer in high-viscosity suspensions depending on the applied thermal gradient. This has practical implications for improving heat transfer in food and other viscous systems where convection is limited. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 1844 KiB  
Article
Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking
by Urszula Sudomir, Justyna Piechocka, Rafał Głowacki and Paweł Kubalczyk
Molecules 2025, 30(15), 3129; https://doi.org/10.3390/molecules30153129 - 25 Jul 2025
Viewed by 270
Abstract
This report presents the first method for simultaneous determination of the 2-S-lepidinium derivatives of total α-lipoic acid (LA), homocysteine (Hcy), cysteinylglycine (CysGly), and cysteine (Cys) in human saliva, using capillary electrophoresis with pH-mediated sample stacking and ultraviolet detection (CE-UV) at 355 [...] Read more.
This report presents the first method for simultaneous determination of the 2-S-lepidinium derivatives of total α-lipoic acid (LA), homocysteine (Hcy), cysteinylglycine (CysGly), and cysteine (Cys) in human saliva, using capillary electrophoresis with pH-mediated sample stacking and ultraviolet detection (CE-UV) at 355 nm. Electrophoretic separation is carried out at 20 kV and 25 °C using a standard fused silica capillary (effective length 91.5 cm, inner diameter 75 µm). The background electrolyte consists of 0.5 mol/L lithium acetate buffer, adjusted to pH 3.5 with 0.5 mol/L acetic acid. The limit of quantification was determined to be 1 µmol/L for LA and 0.17 µmol/L for Hcy, 0.11 µmol/L for CysGly, and 0.10 µmol/L for Cys in saliva samples. Calibration curves demonstrated linearity over the concentration range of 3 to 30 µmol/L for all analytes. Method precision did not exceed 4.7%, and accuracy ranged from 87.9% to 114.0%. The developed method was successfully applied to saliva samples from eleven apparently healthy volunteers to determine the content of LA, Hcy, CysGly, and Cys. The Hcy, CysGly, and Cys concentrations ranged from 0.55 to 13.76 µmol/L, 0.89 to 9.29 µmol/L, and 1.73 to 12.99 µmol/L, respectively. No LA-derived peaks were detected in the native saliva samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

Back to TopTop