Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = NKX2-5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4684 KiB  
Article
Molecular Network Analysis and Effector Gene Prioritization of Endurance-Training-Influenced Modulation of Cardiac Aging
by Mingrui Wang, Samuhaer Azhati, Hangyu Chen, Yanyan Zhang and Lijun Shi
Genes 2025, 16(7), 814; https://doi.org/10.3390/genes16070814 - 11 Jul 2025
Viewed by 584
Abstract
Background/Objectives: Cardiac aging involves the progressive structural and functional decline of the myocardium. Endurance training is a well-recognized non-pharmacological intervention that counteracts this decline, yet the molecular mechanisms driving exercise-induced cardiac rejuvenation remain inadequately elucidated. This study aimed to identify key effector genes [...] Read more.
Background/Objectives: Cardiac aging involves the progressive structural and functional decline of the myocardium. Endurance training is a well-recognized non-pharmacological intervention that counteracts this decline, yet the molecular mechanisms driving exercise-induced cardiac rejuvenation remain inadequately elucidated. This study aimed to identify key effector genes and regulatory pathways by integrating human cardiac aging transcriptomic data with multi-omic exercise response datasets. Methods: A systems biology framework was developed to integrate age-downregulated genes (n = 243) from the GTEx human heart dataset and endurance-exercise-responsive genes (n = 634) from the MoTrPAC mouse dataset. Thirty-seven overlapping genes were identified and subjected to Enrichr for pathway enrichment, KEA3 for kinase analysis, and ChEA3 for transcription factor prediction. Candidate effector genes were ranked using ToppGene and ToppNet, with integrated prioritization via the FLAMES linear scoring algorithm. Results: Pathway enrichment revealed complementary patterns: aging-associated genes were enriched in mitochondrial dysfunction and sarcomere disassembly, while exercise-responsive genes were linked to protein synthesis and lipid metabolism. TTN, PDK family kinases, and EGFR emerged as major upstream regulators. NKX2-5, MYOG, and YBX3 were identified as shared transcription factors. SMPX ranked highest in integrated scoring, showing both functional relevance and network centrality, implying a pivotal role in mechano-metabolic coupling and cardiac stress adaptation. Conclusions: By integrating cardiac aging and exercise-responsive transcriptomes, 37 effector genes were identified as molecular bridges between aging decline and exercise-induced rejuvenation. Aging involved mitochondrial and sarcomeric deterioration, while exercise promoted metabolic and structural remodeling. SMPX ranked highest for its roles in mechano-metabolic coupling and redox balance, with X-inactivation escape suggesting sex-specific relevance. Other top genes (e.g., KLHL31, MYPN, RYR2) form a regulatory network supporting exercise-mediated cardiac protection, offering targets for future validation and therapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 8645 KiB  
Article
CIC-Rearranged Sarcoma: A Clinical and Pathological Study of a Peculiar Entity
by Ward Maaita, Nabil Hasasna, Sameer Yaser, Yacob Saleh, Ramiz Abu-Hijlih, Wafa Asha, Hadeel Halalsheh, Samer Abdel Al, Maysa Al-Hussaini and Omar Jaber
Diagnostics 2025, 15(14), 1758; https://doi.org/10.3390/diagnostics15141758 - 11 Jul 2025
Viewed by 460
Abstract
Background: CIC-rearranged sarcoma is a rare and aggressive type of undifferentiated round cell tumor characterized by CIC gene fusion, most commonly CIC::DUX4. This study presents a series of eleven cases, highlighting their clinicopathological features. Methods: Pathology records (2019 to 2024) [...] Read more.
Background: CIC-rearranged sarcoma is a rare and aggressive type of undifferentiated round cell tumor characterized by CIC gene fusion, most commonly CIC::DUX4. This study presents a series of eleven cases, highlighting their clinicopathological features. Methods: Pathology records (2019 to 2024) were searched using “sarcoma with CIC”, identifying eleven cases, of which seven referred cases were initially misdiagnosed. Pathological and clinical analysis was conducted. Treatment was dictated upon multidisciplinary panel discussion based on tumor stage. Follow-up data (1–25 months) was available for all patients. Results: The cohort included six males and five females, with a median age of 43 years (range;14–53), with nine in soft tissue and two in bone. Tumor size ranged from 3.5 cm to 20.0 cm (mean: 9.8 cm). Most cases showed sheets of undifferentiated round- to oval-shaped cells. Two cases showed an Ewing-like pattern, and one case showed spindle cells in a fibrotic stroma transitioning to epithelioid cells. Necrosis was present in nine cases, and mitotic count ranged from 2 to 38/ 10HPFs (mean = 14.2). CD99 was positive in (10/11) cases and WT-1 in (6/9). NKX2.2, S100, and MDM2 were positive in rare cases. CIC::DUX4 fusion was detected in four cases. FISH for CIC gene rearrangement was positive in seven cases, two of them confirmed by methylation analysis. Metastasis at diagnosis was common (n = 8), primarily in the lungs, with later metastasis to the brain and bone. At time of final analysis, eight patients died within a median of 10 months (range: 1–19 months), while three were alive, two with stable disease (for a period of 6 and 25 months) and one with progression after 10 months. Significant correlation was seen between overall survival and the presence of metastasis at diagnosis (p value = 0.03). Conclusions: CIC-rearranged sarcomas are rare, high-grade tumors with predilection for soft tissue. Misdiagnosis is frequent, necessitating molecular confirmation. These tumors are treatment-resistant, often present with lung metastasis, and carry a poor prognosis, especially with initial metastasis. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

20 pages, 4805 KiB  
Article
A Novel Primary Cell Line Model of Localized Prostate Cancer and Radioresistance—A Role for Nicotinamide N-Methyltransferase
by Jessica A. Wright, Stephanie D. White, Gavin Frame, Ana Bosiljkov, Shahbaz Khan, Roni Haas, Qian Yang, Minzhi Sheng, Xiaoyong Huang, Geoff S. Higgins, Ian Mills, Michelle R. Downes, Danny Vesprini, Hans T. Chung, Robert A. Screaton, Hon S. Leong, Paul C. Boutros, Thomas Kislinger and Stanley K. Liu
Cells 2025, 14(11), 819; https://doi.org/10.3390/cells14110819 - 31 May 2025
Cited by 1 | Viewed by 1098
Abstract
Prostate cancer cell lines are particularly clinically homogenous, mostly representing metastatic states rather than localized disease. While there has been significant work in the development of additional models, few have been created without oncogenic transformation. We derived a primary prostate cancer cell line [...] Read more.
Prostate cancer cell lines are particularly clinically homogenous, mostly representing metastatic states rather than localized disease. While there has been significant work in the development of additional models, few have been created without oncogenic transformation. We derived a primary prostate cancer cell line from a patient with localized Gleason 7 prostate cancer—designated CaB34—which spontaneously immortalized. We leveraged CaB34 to generate a paired radioresistant subline, CaB34-CF, using a clinically relevant fractionated radiotherapy schedule. These two paired cell lines were investigated extensively to determine their molecular characteristics and therapy responses. Both CaB34 and CaB34-CF express prostate-specific markers, including KRT18, NKX3.1, and AMACR. Multi-omic analyses using RNAseq and shotgun proteomics identified NNMT as the most significantly dysregulated component in CaB34-CF. A bioinformatic analysis determined that NNMT was more abundant within prostate tumors compared to benign prostate, suggesting a role in tumor progression. Knockdown studies of NNMT demonstrated significant radiosensitization of CaB34-CF cells, which was largely a result of increased radiation-induced cellular senescence. Growth as 3D organoids was significantly higher in the CaB34-CF line, and demonstrated a less structured pattern of expression of cytokeratin markers. Radiosensitization with NNMT siRNA was recapitulated in a 3D organoid clonogenic assay in CaB34-CF cells. Our research provides a paired primary model of treatment-naïve and radioresistant disease to address mechanisms of therapy resistance, while expanding the repertoire of localized prostate cancer cell lines for the research community. In addition, our findings present NNMT as a potential therapeutic target for sensitization of radioresistant disease. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapies in Epithelial Cancers)
Show Figures

Figure 1

12 pages, 4225 KiB  
Communication
Deletions of LPL and NKX3.1 in Prostate Cancer Progression: Game Changers or By-Standers in Tumor Evolution
by Tereza Vodičková, Mária Wozniaková, Vladimír Židlík, Jana Žmolíková, Jana Dvořáčková, Adéla Kondé, Jana Schwarzerová, Michal Grepl and Jan Bouchal
Biomolecules 2025, 15(6), 758; https://doi.org/10.3390/biom15060758 - 24 May 2025
Viewed by 563
Abstract
The tumor suppressor gene NKX3.1 and the LPL gene are located in close proximity on chromosome 8, and their deletion has been reported in multiple studies. However, the significance of LPL loss may be misinterpreted due to its co-deletion with NKX3.1, [...] Read more.
The tumor suppressor gene NKX3.1 and the LPL gene are located in close proximity on chromosome 8, and their deletion has been reported in multiple studies. However, the significance of LPL loss may be misinterpreted due to its co-deletion with NKX3.1, a well-established event in prostate carcinogenesis. This study investigates whether LPL deletion represents a biologically relevant event or occurs merely as a bystander to NKX3.1 loss. We analyzed 28 formalin-fixed paraffin-embedded prostate cancer samples with confirmed LPL deletion and 28 without. Immunohistochemical staining was performed, and previously published whole-genome sequencing data from 103 prostate cancer patients were reanalyzed. Deletion of the 8p21.3 region was associated with higher Gleason grade groups. While NKX3.1 expression was significantly reduced in prostate cancer compared to benign prostatic hyperplasia, LPL protein expression showed no significant difference between cancerous and benign tissue, nor was it affected by the 8p21.3 deletion status. Copy number analysis confirmed the co-deletion of NKX3.1 and LPL in 54 patients. Notably, NKX3.1 loss without accompanying LPL deletion was observed in eight additional cases. These findings suggest that LPL deletion is a passenger event secondary to NKX3.1 loss and underscore the importance of cautious interpretation of cytogenetic findings involving the LPL locus. Full article
(This article belongs to the Special Issue Advances in the Pathology of Prostate Cancer)
Show Figures

Figure 1

21 pages, 5080 KiB  
Article
P53-Induced Autophagy Degradation of NKX3-2 Improves Ovarian Cancer Prognosis
by Alessandra Ferraresi, Ian Ghezzi, Amreen Salwa, Chiara Lualdi, Danny N. Dhanasekaran and Ciro Isidoro
Cells 2025, 14(11), 765; https://doi.org/10.3390/cells14110765 - 22 May 2025
Viewed by 707
Abstract
NKX3-2, a transcriptional repressor factor belonging to the NK family of homeobox-containing proteins, has been widely studied for its role in promoting chondrogenic differentiation and homeostasis. NKX3-2 is upregulated in chemoresistant ovarian tumors and metastatic gastric cancer cells; however, its prognostic role and [...] Read more.
NKX3-2, a transcriptional repressor factor belonging to the NK family of homeobox-containing proteins, has been widely studied for its role in promoting chondrogenic differentiation and homeostasis. NKX3-2 is upregulated in chemoresistant ovarian tumors and metastatic gastric cancer cells; however, its prognostic role and mechanistic involvement in cancer cell biology remain to be elucidated. By interrogating the TCGA database, we found that cancer patients with high NKX3-2 expression had a shorter overall survival rate than patients with low expression. In ovarian cancer patients, NKX3-2 negatively correlates with P53. Given the prominent role of the latter oncosuppressor in controlling DNA repair and cell death, here we investigate the molecular mechanism involved in this negative correlation in several ovarian cancer cell lines expressing different levels of the two proteins. We found that the high expression of endogenous or ectopic P53 reduced NKX3-2 protein expression, while its knockdown increased it. In contrast, the genetic manipulation of NKX3-2 expression did not affect P53 expression. Mechanistically, P53-mediated downregulation of NKX3-2 does not entail transcriptional activity or proteasomal clearance but occurs via P53–NKX3-2 protein–protein interaction, which in turn results in P53-induced NKX3-2 degradation via the autophagy–lysosome pathway. Remarkably, patients bearing a tumor characterized by low NKX3-2 and high MAP1LC3B expression (indicative of active autophagy) display a better prognosis. Taken together, our data indicate that NKX3-2 represents a negative prognostic factor under P53 control in ovarian cancer. From a translational point of view, identifying this novel mechanism may represent a new molecular signature capable of predicting the clinical outcome of patients, a crucial aspect of developing personalized therapeutic approaches. Full article
(This article belongs to the Special Issue Ovarian Cancer and Endometriosis)
Show Figures

Graphical abstract

10 pages, 2187 KiB  
Case Report
Characterization of a Novel GATA4 Missense Variant p.Gly303Trp in a Family with Septal Heart Defects and Pulmonary Stenosis
by Marco Fabiani, Costanza Zangheri, Antonella Cima, Francesca Monaco, Chiara Ali’, Maria Antonietta Barone, Antonella Viola, Alvaro Mesoraca, Katia Margiotti and Claudio Giorlandino
Int. J. Mol. Sci. 2025, 26(10), 4931; https://doi.org/10.3390/ijms26104931 - 21 May 2025
Viewed by 433
Abstract
Congenital heart disease (CHD) represents a prevalent group of structural cardiac anomalies often associated with alterations in key transcription factors including NKX2-5, TBX5, and, particularly, GATA4. GATA4 is a zinc finger transcription factor essential for regulating genes involved in cardiogenesis. [...] Read more.
Congenital heart disease (CHD) represents a prevalent group of structural cardiac anomalies often associated with alterations in key transcription factors including NKX2-5, TBX5, and, particularly, GATA4. GATA4 is a zinc finger transcription factor essential for regulating genes involved in cardiogenesis. Here, we report the identification of a novel heterozygous missense variant in GATA4 (NM_002052.5:c.907G>T, p.Gly303Trp) in a family with a history of CHD. The proband, exhibiting ventricular septal defect (VSD) and pulmonary stenosis, was referred for genetic evaluation after recurrent spontaneous abortions occurred in their partner. In addition, the mother of the proband has a history of atrial septal defect (ASD) with pulmonary stenosis, which suggests a familial inheritance pattern. Full article
(This article belongs to the Special Issue Genetic Testing in Molecular Pathology and Diagnosis)
Show Figures

Figure 1

14 pages, 2142 KiB  
Article
Search for Ancient Selection Traces in Faverolle Chicken Breed (Gallus gallus domesticus) Based on Runs of Homozygosity Analysis
by Anna E. Ryabova, Anastasiia I. Azovtseva, Yuri S. Shcherbakov, Artem P. Dysin and Natalia V. Dementieva
Animals 2025, 15(10), 1487; https://doi.org/10.3390/ani15101487 - 20 May 2025
Viewed by 481
Abstract
Runs of homozygosity (ROHs) are continuous homozygous segments of genomes that can be used to infer the historical development of the population. ROH studies allow us to analyze the genetic structure of a population and identify signs of selection. The present study searched [...] Read more.
Runs of homozygosity (ROHs) are continuous homozygous segments of genomes that can be used to infer the historical development of the population. ROH studies allow us to analyze the genetic structure of a population and identify signs of selection. The present study searched for ROH regions in the Faverolle chicken breed. DNA samples from modern individuals and museum Faverolle specimens were obtained and sent for whole-genome sequencing (WGS) with 30× coverage. The results were aligned to the reference genome and subjected to additional filtering. ROH segments were then analyzed using PLINK 1.9. As a result, 10 regions on GGA1, 2, 3, 4, and 13 were identified. A total of 19 genes associated with fat deposition and lipid metabolism (GBE1, CACNA2D1, STON1, PPP1R21, RPL21L1, ATP6V0E1, CREBRF, NKX2-2, COMMD1), fertility (LHCGR, GTF2A1L, SAMD5), muscle development and body weight (VGLL3, CACNA2D1, FOXN2, ERGIC1, RPL26L1), the shape and relative size of the skeleton (FAT4), and autophagy and apoptosis (BNIP1) were found. Developmental protein genes (PAX1, NKX2-2, NKX2-4, NKX2-5) formed a separate cluster. Probably, selection for the preservation of high flavor characteristics contributed to the consolidation of these ROH regions. The present research enhances our knowledge on the Faverolle breed’s genome and pinpoints their ROH segments that are also specific «selection traces». Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1112 KiB  
Article
Identification and Functional Characterization of a Novel SOX4 Mutation Predisposing to Coffin–Siris Syndromic Congenital Heart Disease
by Zi Yan, Bin-Bin Dong, Yan-Jie Li, Chen-Xi Yang, Ying-Jia Xu, Ri-Tai Huang, Xing-Yuan Liu and Yi-Qing Yang
Children 2025, 12(5), 608; https://doi.org/10.3390/children12050608 - 7 May 2025
Viewed by 603
Abstract
Background/Objectives: Congenital heart disease (CHD) occurs in ~1% of all live neonates globally, rendering it the most prevalent developmental anomaly affecting humans; this condition confers substantial infant morbidity and mortality worldwide. Although there is ample evidence to suggest a paramount genetic basis for [...] Read more.
Background/Objectives: Congenital heart disease (CHD) occurs in ~1% of all live neonates globally, rendering it the most prevalent developmental anomaly affecting humans; this condition confers substantial infant morbidity and mortality worldwide. Although there is ample evidence to suggest a paramount genetic basis for CHD, the genetic etiologies underpinning the majority of CHD remain elusive. In the present study, SOX4 was selected as a significant candidate gene for human CHD, mainly because SOX4 is abundantly expressed in both human and murine hearts during embryogenesis, and the knockout of Sox4 in mice causes embryonic demise predominantly attributable to cardiovascular developmental defects. Methods: Sequencing analysis of SOX4 was fulfilled in 248 probands affected with various types of CHD and the available relatives of the identified variation carrier as well as 262 unrelated healthy individuals. Functional analysis of the mutant SOX4 protein was conducted by utilizing a dual-reporter gene system. Results: a novel heterozygous SOX4 variation, NM_003107.3:c.331G>T;p.(Glu111*), was discovered in a male proband with Coffin–Siris syndromic CHD. Genetic investigation of the proband’s available relatives revealed that the truncating variation co-segregated with the phenotype in the whole family. The nonsense variation was absent from 262 healthy controls. Functional analysis demonstrated that the Glu111*-mutant SOX4 lost transactivation on NKX2.5 and GATA4, two well-established genes that are causative factors for CHD. Moreover, the Glu111* mutation nullified the synergistic transactivation between SOX4 and TBX20, another CHD-causing gene. Conclusions: These findings support SOX4 as a causative gene accountable for familial Coffin–Siris syndromic CHD in humans. These findings may aid in developing personalized preventive and therapeutic strategies for patients with Coffin–Siris syndromic CHD. Full article
(This article belongs to the Section Pediatric Cardiology)
Show Figures

Figure 1

11 pages, 3234 KiB  
Article
Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids
by Boyd H. T. Gouw, Flavia C. M. Oliveira, Hans S. Kooistra, Bart Spee, Lisa van Uden and Louis C. Penning
Vet. Sci. 2025, 12(4), 362; https://doi.org/10.3390/vetsci12040362 - 13 Apr 2025
Cited by 1 | Viewed by 728
Abstract
Background: Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. Objective: The aim of this study is to establish functional differentiated canine pancreatic β-cells that [...] Read more.
Background: Diabetes mellitus (DM) is a common potentially life-threatening endocrine disorder in pets and humans. Since only symptomatic treatment is available, a more sustainable treatment is urgently needed. Objective: The aim of this study is to establish functional differentiated canine pancreatic β-cells that release insulin upon glucose stimulus. Methods: Pancreatic tissue was obtained from surplus material of healthy dogs (n = 4), euthanized for non-pancreatic related research. Ductal cells were isolated and expanded in dog pancreas expansion media (dpEM) and differentiated and maturated in five sequentially added pancreas differentiation media (PDMs). Gene expression was analyzed by reversed transcriptase qPCR (RT-qPCR), and insulin release was analyzed with a canine-specific ELISA. Results: Canine pancreatic ductal cells (LGR5 and SOX9 expression) were differentiated into β-cells expressing key β-cell-related genes: Pancreatic and duodenal homeobox 1 (PDX1), NK6 Homeobox 1 (NKX6.1), Glucose Transporter Type 2 (GLUT2), Proprotein convertase subtilisin/kexin type 1 (PCSK1), and low levels of insulin. Neither Glucagon (α-cells) nor LGR5 and SOX9 were expressed, and somatostatin was expressed at low levels. The differentiated cells released insulin upon glucose stimulation. Conclusion and implications: The step-by-step differentiation protocol, mimicking pancreatic organogenesis, resulted in β-cells secreting insulin levels suitable for β-cell disease modelling. It remains to be seen if stem cells from diseased animals behave similarly. Full article
Show Figures

Figure 1

17 pages, 3412 KiB  
Hypothesis
Ethanol Induces Craniofacial Defects in Bmp Mutants Independent of nkx2.3 by Elevating Cranial Neural Crest Cell Apoptosis
by Hieu D. L. Vo and C. Ben Lovely
Biomedicines 2025, 13(3), 755; https://doi.org/10.3390/biomedicines13030755 - 20 Mar 2025
Viewed by 456
Abstract
Background: Craniofacial malformations lie at the heart of fetal alcohol spectrum disorders (FASDs). While there is growing evidence for a genetic component in FASDs, little is known of the cellular mechanisms underlying these ethanol-sensitive loci in facial development. The bone morphogenetic protein (Bmp) [...] Read more.
Background: Craniofacial malformations lie at the heart of fetal alcohol spectrum disorders (FASDs). While there is growing evidence for a genetic component in FASDs, little is known of the cellular mechanisms underlying these ethanol-sensitive loci in facial development. The bone morphogenetic protein (Bmp) signaling pathway-dependent endoderm pouch formation is a key mechanism in facial development. We have previously shown that multiple Bmp mutants are sensitized to ethanol-induced facial defects. However, ethanol does not directly impact Bmp signaling. This suggests that downstream effectors, like nkx2.3, may mediate the impact of ethanol on Bmp mutants. Methods: We use an ethanol exposure paradigm with nkx2.3 knockdown approaches to test if nkx2.3 loss sensitizes Bmp mutants to ethanol-induced facial defects. We combine morphometric approaches with immunofluorescence and a hybridization chain reaction to examine the cellular mechanisms underlying Bmp–ethanol interactions. Results: We show that Bmp–ethanol interactions alter the morphology of the endodermal pouches, independent of nkx2.3 gene expression. Knockdown of nkx2.3 does not sensitize wild-type or Bmp mutants to ethanol-induced facial defects. However, we did observe a significant increase in CNCC apoptosis in ethanol-treated Bmp mutants, suggesting an ethanol sensitive, Bmp-dependent signaling pathway driving tissue interactions at the heart of FASDs. Conclusions: Collectively, our work builds on the mechanistic understanding of ethanol-sensitive genes and lays the groundwork for complex multi-tissue signaling events that have yet to be explored. Ultimately, our work provides a mechanistic paradigm of ethanol-induced facial defects and connects ethanol exposure with complex tissue signaling events that drive development. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease 4.0)
Show Figures

Figure 1

11 pages, 2539 KiB  
Article
The Human Thyroid-Derived CI-huThyrEC Cell Line Expresses the Thyrotropin (TSH) Receptor and Thyroglobulin but Lacks Other Essential Characteristics of Thyroid Follicular Cells
by Mathias Halbout and Peter A. Kopp
Biomolecules 2025, 15(3), 375; https://doi.org/10.3390/biom15030375 - 5 Mar 2025
Viewed by 914
Abstract
Background: Thyroid hormone synthesis requires the normal function of thyroid follicular cells and adequate nutritional intake of iodine. For in vitro studies on thyroid cell pathophysiology, the immortalized FRTL5 rat thyroid cell line and a derivative thereof, the PCCL3 cell line, are widely [...] Read more.
Background: Thyroid hormone synthesis requires the normal function of thyroid follicular cells and adequate nutritional intake of iodine. For in vitro studies on thyroid cell pathophysiology, the immortalized FRTL5 rat thyroid cell line and a derivative thereof, the PCCL3 cell line, are widely used. However, a permanent human thyroid cell line is currently lacking. A recent report described a cell line obtained from human thyroid cells designated as Cl-huThyrEC. Methods: Four clones of Cl-huThyrEC cells were obtained and cultured in the presence of thyroid stimulating hormone (TSH). The expression of key genes defining the thyroid follicular cell phenotype was determined by reverse-transcription PCR (RT-PCR) in FRTL5, PCCL3, and Cl-huThyrEC cells. The latter were cultured as monolayers and as organoids in Matrigel. Iodide uptake was measured and compared among the cell lines. Results: Gene expression analysis reveals that Cl-huThyrEC cells express the thyroid-restricted transcription factors (PAX8, NKX2.1, FOXE1), the TSH receptor (TSHR), and thyroglobulin (TG), but they do not express the sodium-iodide symporter (NIS), thyroid peroxidase (TPO), and pendrin (SLC26A4). In functional studies, Cl-huThyrEC cells are unable to concentrate iodide. Conclusions: Despite the expression of certain key genes that are limited or restricted to thyroid follicular cells, Cl-huThyrEC cells lack some of the essential characteristics of thyroid follicular cells, in particular, NIS. Hence, their utility as a model system for thyroid follicular cells is limited. Full article
(This article belongs to the Special Issue Biosynthesis and Function of Thyroid Hormones)
Show Figures

Figure 1

16 pages, 6838 KiB  
Article
The Acute Toxicity and Cardiotoxic Effects of Levofloxacin on Zebrafish (Danio rerio)
by Yixiao Wu, Wenjing Yu, Zhenyan Song, Jiawei He, Ze Li, Qi Chen, Shiwei Wang, Ping Li and Shaowu Cheng
Toxics 2025, 13(2), 122; https://doi.org/10.3390/toxics13020122 - 5 Feb 2025
Cited by 2 | Viewed by 1706
Abstract
Emerging contaminants refer to chemical substances that have not been widely regulated but possess the potential to cause adverse effects on both the environment and human health. Antibiotics, as emerging contaminants, pose significant threats to ecosystems and human health due to their widespread [...] Read more.
Emerging contaminants refer to chemical substances that have not been widely regulated but possess the potential to cause adverse effects on both the environment and human health. Antibiotics, as emerging contaminants, pose significant threats to ecosystems and human health due to their widespread use and persistence in the environment. Levofloxacin, a broad-spectrum fluoroquinolone antibiotic, is commonly employed in the treatment of bacterial infections, and has been frequently detected in environmental matrices and freshwater systems. In this study, we assessed the effects of levofloxacin on hatchability, mortality rates, malformations, behavioral changes, and cardiac development in zebrafish embryos by exposing them to varying concentrations of levofloxacin (0, 0.5, 1, 2, 4, and 8 mM). Our results demonstrate that levofloxacin exposure significantly impaired the growth and development of zebrafish larvae, particularly at higher concentrations. Notable effects included reduced body length, abnormal yolk sac and swim bladder development, pericardial edema, prolonged distances between the sinus venosus and arteriolar bulb (SV-BA), and disruptions in heart rate. Quantitative PCR analysis further revealed that levofloxacin exposure significantly upregulated the expression of key cardiac development genes in zebrafish larvae, including nppa, myh6, cacna1ab, myl7, gata4, nkx2.5, tbx2b, and tbx5b. These findings indicate that levofloxacin exposure exerts significant toxic effects on both embryonic and larval growth as well as heart development and gene expression in zebrafish. This study provides critical insights into the potential ecological risks posed by levofloxacin along with other antibiotics while laying a foundation for further investigation into their toxicological mechanisms. Full article
Show Figures

Graphical abstract

19 pages, 3451 KiB  
Article
Type 1 Diabetes Risk Variants Reduce Beta Cell Function
by Wiktoria Ratajczak, Angus G. Jones, Sarah D. Atkinson and Catriona Kelly
Genes 2025, 16(2), 172; https://doi.org/10.3390/genes16020172 - 29 Jan 2025
Viewed by 1591
Abstract
Introduction: The variants rs10517086 and rs1534422 are predictive of type 1 diabetes mellitus (T1DM) development and poor residual β cell function within the first year of diagnosis. However, the mechanism by which risk is conferred is unknown. We explored the impact of both [...] Read more.
Introduction: The variants rs10517086 and rs1534422 are predictive of type 1 diabetes mellitus (T1DM) development and poor residual β cell function within the first year of diagnosis. However, the mechanism by which risk is conferred is unknown. We explored the impact of both variants on β cell function in vitro and assessed their relationship with C-peptide in people with T1DM and type 2 diabetes mellitus (T2DM). Methods: Using CRISPR/Cas9, the variants were introduced into a β cell line (BRIN-BD11) and a T cell line (Jurkat cells) from which the conditioned media was applied to otherwise healthy β cells to model the inflammatory environment associated with these variants. Results: Both variants significantly reduced glucose-stimulated insulin secretion, increased production of pro-inflammatory cytokines and reduced expression of several β cell markers and transcription factors (KCNJ11, KCNQ1, SCL2A2, GCK, NKX6.1, Pdx1 NGN3). However, HNF1A was significantly upregulated in the presence of both variants. We subsequently silenced HNF1A in variant expressing BRIN-BD11 cells using siRNA and found that gene expression profiles were normalised. Induction of each variant significantly increased expression of the lncRNAs they encode, which was normalised upon HNF1A silencing. Analysis of the DARE (Diabetes Alliance for Research in England) study revealed an association of rs10517086_A genotype with C-peptide in 153 individuals with T1DM, but not in 417 people with T2DM. Conclusions: These data suggest that rs1534422 and rs10517086 exert multiple insults on the β cell through excessive upregulation of HNF1A and induction of pro-inflammatory cytokines, and highlight their utility as prognostic markers of β cell function. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3214 KiB  
Article
A Recombinase-Mediated Cassette Exchange Platform for a Triple Independent Inducible Expression System for Human Pluripotent Stem Cells
by Roberto Castro-Gutierrez, Ankita Arora, Katherine F. Vaeth, J. Matthew Taliaferro and Holger A. Russ
Cells 2025, 14(3), 184; https://doi.org/10.3390/cells14030184 - 24 Jan 2025
Viewed by 1473
Abstract
Human pluripotent stem cells (hPSCs) and their differentiated derivatives represent valuable tools for studying development, modeling diseases, and advancing cell therapy. Recent improvements in genome engineering allow for precise modifications of hPSCs, further enhancing their utility in basic and translational research. Here we [...] Read more.
Human pluripotent stem cells (hPSCs) and their differentiated derivatives represent valuable tools for studying development, modeling diseases, and advancing cell therapy. Recent improvements in genome engineering allow for precise modifications of hPSCs, further enhancing their utility in basic and translational research. Here we describe a Recombinase-Mediated Cassette Exchange (RMCE) platform in hPSCs that allows for the highly efficient, rapid, and specific integration of transgenes. The RCME-mediated DNA integration process is nearly 100% efficient, without negatively affecting the pluripotency or karyotypic stability of hPSCs. Taking advantage of this convenient system, we first established a dual inducible expression system based on the Tet-On and Cumate-On systems, allowing for the inducible expression of two transgenes independently. Secondly, we incorporated a Tet-on inducible system, driving the expression of three genes simultaneously. However, two genes also contain independent degron sequences, allowing for precise control over the expression of each gene individually. We demonstrated the utility of these systems in hPSCs, as well as their functionality after differentiation into cells that were representative of the three germ layers. Lastly, we used the triple inducible system to investigate the lineage commitment induced by the pancreatic transcription factors NKX6.1 and PDX1. We found that controlled dual expression, but not individual expression, biases hPSC embryoid body differentiation towards the pancreatic lineage by inducing the expression of the NeuroD program. In sum, we describe a novel genetic engineering platform that allows for the efficient and fast integration of any desired transgene(s) in hPSCs using RMCE. We anticipate that the ability to modulate the expression of three transgenes simultaneously will further accelerate discoveries using stem cell technology. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

17 pages, 2532 KiB  
Article
The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells
by Audris Budreika, John T. Phoenix, Raymond J. Kostlan, Carleen D. Deegan, Marina G. Ferrari, Kristen S. Young, Sean W. Fanning and Steven Kregel
Cancers 2025, 17(2), 306; https://doi.org/10.3390/cancers17020306 - 18 Jan 2025
Viewed by 2080
Abstract
Background/Objectives: Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is [...] Read more.
Background/Objectives: Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR. Current standard-of-care therapies directly target AR and its aberrant signaling axis but resistance to these therapies commonly arises, and the mechanisms behind the onset of therapy-resistance are still elusive. Research has shown that even with resistant disease, AR remains the main driver of growth and survival of PCa, and AR target genes and cofactors may help mediate resistance to therapy. Here, we focused on a homeobox transcription factor that exhibits a close relationship with AR—NKX3.1. Though NKX3.1 is traditionally thought of as a tumor suppressor, it has been previously reported to promote cancer cell survival by cooperating with AR. The role of NKX3.1 as a tumor suppressor perhaps in early-stage disease also contradicts its profile as a diagnostic biomarker for advanced prostate cancer. Methods: We investigated the physical interaction between NKX3.1 and AR, a modulated NKX3.1 expression in prostate cancer cells via overexpression and knockdown and assayed subsequent viability and downstream target gene expression. Results: We find that the expression of NKX3.1 is maintained in advanced PCa, and it is often elevated because of aberrant AR activity. Transient knockdown experiments across various PCa cell line models reveal NKX3.1 expression is necessary for survival. Similarly, stable overexpression of NKX3.1 in PCa cell lines reveals an androgen insensitive phenotype, suggesting NKX3.1 is sufficient to promote growth in the absence of an AR ligand. Conclusions: Our work provides new insight into NKX3.1’s oncogenic influence on PCa and the molecular interplay of these transcription factors in models of late-stage prostate cancer. Full article
(This article belongs to the Special Issue New Insights into Urologic Oncology)
Show Figures

Graphical abstract

Back to TopTop