Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (635)

Search Parameters:
Keywords = N2O mitigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 785 KB  
Article
Carbon Farming in Türkiye: Challenges, Opportunities and Implementation Mechanism
by Abdüssamet Aydın, Fatma Köroğlu, Evan Alexander Thomas, Carlo Salvinelli, Elif Pınar Polat and Kasırga Yıldırak
Sustainability 2026, 18(2), 891; https://doi.org/10.3390/su18020891 - 15 Jan 2026
Abstract
Carbon farming represents a strategic approach to enhancing agricultural sustainability while reducing greenhouse gas (GHG) emissions. In Türkiye, agriculture accounted for approximately 14.9% of national GHG emissions in 2023, dominated by methane (CH4) and nitrous oxide (N2O). By increasing [...] Read more.
Carbon farming represents a strategic approach to enhancing agricultural sustainability while reducing greenhouse gas (GHG) emissions. In Türkiye, agriculture accounted for approximately 14.9% of national GHG emissions in 2023, dominated by methane (CH4) and nitrous oxide (N2O). By increasing carbon storage in soils and vegetation, carbon farming can improve soil health, water retention, and climate resilience, thereby contributing to mitigation efforts and sustainable rural development. This study reviews and synthesizes international and national evidence on carbon farming mechanisms, practices, payment models, and adoption enablers and barriers, situating these insights within Türkiye’s agroecological and institutional context. The analysis draws on a systematic review of peer-reviewed literature, institutional reports, and policy documents published between 2015 and 2025. The findings indicate substantial mitigation potential from soil-based practices and livestock- and manure-related measures, yet limited uptake due to low awareness, capacity constraints, financial and administrative barriers, and regulatory gaps, highlighting the need for region-specific approaches. To support implementation and scaling, the study proposes a policy-oriented, regionally differentiated and digitally enabled MRV framework and an associated implementation pathway designed to reduce transaction costs, enhance farmer participation, and enable integration with emerging carbon market mechanisms. Full article
Show Figures

Figure 1

21 pages, 4613 KB  
Article
Physiological and Metabolic Changes Induced by Fullerene C60 Derivatives in Zinc-Stressed Cucumber
by Nikolai Bityutskii, Kirill Yakkonen, Roman Puzanskiy, Allexey Shavarda, Konstantin Semenov and Marina Nadporozhskaya
Plants 2026, 15(2), 254; https://doi.org/10.3390/plants15020254 - 14 Jan 2026
Abstract
Zinc (Zn) in excess is very toxic for plants and can limit agriculture. Carbon-based engineered nanomaterials with high electron mobility and electron-accepting capability may be essential for mitigating heavy metal stress. In the present study, the protective role of some fullerene C60 [...] Read more.
Zinc (Zn) in excess is very toxic for plants and can limit agriculture. Carbon-based engineered nanomaterials with high electron mobility and electron-accepting capability may be essential for mitigating heavy metal stress. In the present study, the protective role of some fullerene C60 derivatives (fullerenol [C60(OH)22–24] and the arginine C60 [C60(C6H13N4O2)8H8]) were tested for the first time against Zn toxicity in Cucumis sativus L. (cucumber). Plants were grown hydroponically at three concentrations of fullerenes (0, 2, and 10 mg L−1) without or with 40 µM Zn for 17 days. Plant growth, leaf chlorosis, and nutritional imbalances in combination with a metabolomics approach were analyzed. The Zn-treated plants show chlorotic leaves, the retarded growth of shoots (−20%), and roots (−49%) and nutrient imbalance. Addition of fullerene C60 derivatives suppressed loss in the dry biomass of leaves (15%) and roots (40%; fullerenol only) induced by high Zn. However, they did not alter leaf chlorophyll, shoot dry biomass, and elemental composition, including leaf Zn. Moreover, the Zn of xylem sup from roots remained unchanged by fullerenes. In an adsorption experiment, the amounts of Zn adsorbed by tested C60 were below the detection limits. The addition of C60 derivatives slightly changed the metabolite profiling in stressed plants. Nevertheless, in fullerene-treated plants, the abundance of some Zn-responsible metabolites tended to be altered in the opposite direction as compared with the metabolic responses to excessive Zn alone. There were several up-regulated metabolites protecting plants under oxidative stress. We speculate that fullerene C60 derivatives have the ability to increase antioxidant non-enzyme activity at least, improving some growth parameters. However, fullerenes did not reduce Zn transport from the root to the shoots. We concluded that the low capacity of these compounds to buffer Zn in the root zone might limit the efficiency of fullerene derivatives against Zn toxicity. Our results provide new evidence for the crucial role of Zn–fullerene interactions in the amelioration of Zn toxicity in plants. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Graphical abstract

18 pages, 29966 KB  
Article
Green Manure Intercropping with Reduced Chemical N Input Mitigates Yield-Scaled N2O Emissions in Arid Maize Systems
by Hanting Li, Guiping Chen, Zhilong Fan, Yunyou Nan, Falong Hu, Wen Yin, Weidong Cao, Min Zhang, Qiang Chai and Tuo Yao
Agronomy 2026, 16(2), 196; https://doi.org/10.3390/agronomy16020196 - 13 Jan 2026
Abstract
Agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), primarily due to excessive nitrogen (N) fertilization and inefficient N management. Mitigating N2O emissions from croplands without compromising productivity is therefore a major global challenge for climate and [...] Read more.
Agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), primarily due to excessive nitrogen (N) fertilization and inefficient N management. Mitigating N2O emissions from croplands without compromising productivity is therefore a major global challenge for climate and environmental sustainability. A three-year split-plot field experiment was conducted in an arid maize production region of northwestern China to examine how green manure intercropping combined with reduced chemical N input regulates N2O emissions and soil N residues. The main plots comprised maize monoculture (M), maize intercropped with common vetch (M/V), and maize intercropped with rape (M/R), while subplots consisted of local conventional N application (N1: 360 kg N ha−1) and a 25% reduced rate (N2: 270 kg N ha−1). Results indicated that intercropping with green manure can offset the reduction in maize grain yield caused by a 25% decrease in N supply. Green manure intercropping significantly decreased cumulative N2O emissions compared with monoculture maize, and the mitigation effect was further strengthened under reduced N input. The M/V system under reduced N input exhibited the strongest mitigation effect, reducing N2O emissions per unit of grain yield by 9.2–11.5% compared with the M/R system. This reduction was driven by the ability of M/V to stabilize soil mineral N availability. Notably, the independent maize growth stage contributed 52.6–66.9% of total seasonal N2O emissions, emphasizing it as a critical period for emission mitigation. Overall, integrating green manure intercropping with reduced chemical N input effectively mitigates N2O emissions while maintaining maize productivity in arid regions, providing a practical strategy for sustainable and environmentally responsible agricultural intensification. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Graphical abstract

18 pages, 2654 KB  
Article
Automated Tumor and Node Staging from Esophageal Cancer Endoscopic Ultrasound Reports: A Benchmark of Advanced Reasoning Models with Prompt Engineering and Cross-Lingual Evaluation
by Xudong Hu, Lingde Feng, Bingzhong Jing, Linna Luo, Wencheng Tan, Yin Li, Xinyi Zheng, Xinxin Huang, Shiyong Lin, Huiling Wu and Longjun He
Diagnostics 2026, 16(2), 215; https://doi.org/10.3390/diagnostics16020215 - 9 Jan 2026
Viewed by 165
Abstract
Objectives: To benchmark the performance of DeepSeek-R1 against three other advanced AI reasoning models (GPT-4o, Qwen3, Grok-3) in automatically extracting T/N staging from esophageal cancer endoscopic ultrasound (EUS) complex medical reports, and to evaluate the impact of language (Chinese/English) and prompting strategy (with/without [...] Read more.
Objectives: To benchmark the performance of DeepSeek-R1 against three other advanced AI reasoning models (GPT-4o, Qwen3, Grok-3) in automatically extracting T/N staging from esophageal cancer endoscopic ultrasound (EUS) complex medical reports, and to evaluate the impact of language (Chinese/English) and prompting strategy (with/without designed prompt) on model accuracy and robustness. Methods: We retrospectively analyzed 625 EUS reports for T-staging and 579 for N-staging, which were collected from 663 patients at the Sun Yat-sen University Cancer Center between 2018 and 2020. A 2 × 2 factorial design (Language × Prompt) was employed under a zero-shot setting. The performance of the models was evaluated using accuracy, and the odds ratio (OR) was calculated to quantify the comparative performance advantage between models across different scenarios. Results: Performance was evaluated across four scenarios: (1) Chinese with-prompt, (2) Chinese without-prompt, (3) English with-prompt, and (4) English without-prompt. In both T and N-staging tasks, DeepSeek-R1 demonstrated superior overall performance compared to the competitors. For T-staging, the average accuracy was (DeepSeek-R1 vs. GPT-4o vs. Qwen3 vs. Grok-3: 91.4% vs. 84.2% vs. 89.5% vs. 81.3%). For N-staging, the respective average accuracy was 84.2% vs. 65.0% vs. 68.4% vs. 51.9%. Notably, N-staging proved more challenging than T-staging for all models, as indicated by lower accuracy. This superiority was most pronounced in the Chinese without-prompt T-staging scenario, where DeepSeek-R1 achieved significantly higher accuracy than GPT-4o (OR = 7.84, 95% CI [4.62–13.30], p < 0.001), Qwen3 (OR = 5.00, 95% CI [2.85–8.79], p < 0.001), and Grok-3 (OR = 6.47, 95% CI [4.30–9.74], p < 0.001). Conclusions: This study validates the feasibility and effectiveness of large language models (LLMs) for automated T/N staging from EUS reports. Our findings confirm that DeepSeek-R1 possesses strong intrinsic reasoning capabilities, achieving the most robust performance across diverse conditions, with the most pronounced advantage observed in the challenging English without-prompt N-staging task. By establishing a standardized, objective benchmark, DeepSeek-R1 mitigates inter-observer variability, and its deployment provides a reliable foundation for guiding precise, individualized treatment planning for esophageal cancer patients. Full article
(This article belongs to the Special Issue AI-Enhanced Medical Imaging: A New Era in Oncology)
Show Figures

Figure 1

19 pages, 2882 KB  
Article
Soil Environmental Factors Dominate over Nitrifier and Denitrifier Abundances in Regulating Nitrous Oxide Emissions Following Nutrient Additions in Alpine Grassland
by Mingyuan Yin, Xiaopeng Gao, Yufeng Wu, Yanyan Li, Wennong Kuang, Lei Li and Fanjiang Zeng
Agronomy 2026, 16(2), 168; https://doi.org/10.3390/agronomy16020168 - 9 Jan 2026
Viewed by 139
Abstract
Nutrient additions including nitrogen (N) and phosphorus (P) are widely considered as an important strategy for enhancing grassland productivity. However, the effects of these nutrients additions on soil nitrous oxide (N2O) emissions and the underlying mechanisms remain debated. We conducted a [...] Read more.
Nutrient additions including nitrogen (N) and phosphorus (P) are widely considered as an important strategy for enhancing grassland productivity. However, the effects of these nutrients additions on soil nitrous oxide (N2O) emissions and the underlying mechanisms remain debated. We conducted a two-year field experiment in an alpine grassland on Kunlun Mountain in northwestern China to assess the effects of N and P additions on N2O emissions, in relation with nitrifying enzyme activity (NEA), denitrifying enzyme activity (DEA), and key functional genes abundance responsible for nitrification (amoA and Nitrobacter-like nxrA) and denitrification (narG, nirS, nirK and nosZ). Compared to the Control without nutrient addition (CK), N addition alone substantially increased cumulative N2O emission (ƩN2O) by 2.0 times. In contrast, P addition or combined N and P (N+P) addition did not significantly affect ƩN2O, though both treatments significantly increased plant aboveground biomass. Such results indicate that P addition may mitigate N-induced N2O emission, likely by reducing soil N availability through enhanced plant and microbial N uptake. Compared to CK, N or N+P addition significantly elevated NEA but did not affect DEA. Structural equation modeling (SEM) indicated that NEA was directly influenced by the gene abundances of ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nxrA but not by ammonia-oxidizing archaea (AOA). However, SEM also revealed that soil environmental variables including soil temperature, pH, and water-filled pore space (WFPS) had a stronger direct influence on N2O emissions than the abundances of nitrifiers. These results demonstrate that soil environmental conditions play a more significant role than functional gene abundances in regulating N2O emissions following N and P additions in semi-arid alpine grasslands. This study highlights that the N+P application can potentially decrease N2O emissions than N addition alone, while increasing productivity in the alpine grassland ecosystems. Full article
Show Figures

Figure 1

19 pages, 1163 KB  
Article
Impact of Alternative Fuels on IMO Indicators
by José Miguel Mahía-Prados, Ignacio Arias-Fernández and Manuel Romero Gómez
Gases 2026, 6(1), 4; https://doi.org/10.3390/gases6010004 - 8 Jan 2026
Viewed by 195
Abstract
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index [...] Read more.
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index (EEDI), Energy Efficiency Operational Indicator (EEOI), and Carbon Intensity Indicator (CII). The results show that methane offers the most balanced alternative, reducing CO2 by more than 30% and improving energy efficiency, while methanol provides an intermediate performance, eliminating sulfur and partially reducing emissions. Ammonia and hydrogen eliminate CO2 but generate NOx (nitrogen oxides) emissions that require mitigation, demonstrating that their environmental impact is not negligible. Unlike previous studies that focus on a single fuel or only on CO2, this work considers multiple pollutants, including SOx (sulfur oxides), H2O, and N2, and evaluates the economic cost of emissions under the European Union Emissions Trading System (EU ETS). Using a representative model ship, the study highlights regulatory gaps and limitations within current standards, emphasizing the need for a global system for monitoring and enforcing emissions rules to ensure a truly sustainable and decarbonized maritime sector. This integrated approach, combining energy efficiency, emissions, and economic evaluation, provides novel insights for the scientific community, regulators, and maritime operators, distinguishing itself from previous multicriteria studies by simultaneously addressing operational performance, environmental impact, and regulatory gaps such as unaccounted NOx emissions. Full article
Show Figures

Figure 1

15 pages, 1784 KB  
Article
Sulfur Polymer to Develop Low-Carbon Reclaimed Asphalt Pavements
by Mohammad Doroudgar, Mohammadjavad Kazemi, Shadi Saadeh, Mahour Parast and Elham H. Fini
Polymers 2026, 18(2), 168; https://doi.org/10.3390/polym18020168 - 8 Jan 2026
Viewed by 173
Abstract
The incorporation of reclaimed asphalt pavement (RAP) offers significant environmental benefits; however, its use is often limited by an increased susceptibility to cracking due to the insufficient elasticity of the severely aged RAP binder. This limitation is conventionally mitigated using polymers such as [...] Read more.
The incorporation of reclaimed asphalt pavement (RAP) offers significant environmental benefits; however, its use is often limited by an increased susceptibility to cracking due to the insufficient elasticity of the severely aged RAP binder. This limitation is conventionally mitigated using polymers such as styrene–butadiene styrene, which, despite their effectiveness, are costly and carbon intensive. This paper introduces a low-carbon sulfur-based ternary polymer developed through TiO2-catalyzed inverse vulcanization of elemental sulfur to be used as a modifier to address the abovementioned challenge at the asphalt mixture level. The sulfur polymer containing waste cooking oil and metal-rich biochar was incorporated into hot-mix asphalt having 25% RAP. The mixture specimens were evaluated before and after accelerated thermal and ultraviolet aging. Cracking resistance was measured using the Indirect Tensile Asphalt Cracking Test (IDEAL-CT), while resistance to rutting and moisture damage were assessed through the Hamburg Wheel Tracking Test (HWT). IDEAL-CT findings showed improved CTIndex values for the modified mixture under unaged conditions and after three days of thermal aging, with smaller variations noted after prolonged thermal aging and during the combined thermal–ultraviolet aging process. Results from the HWT test revealed that the addition of the sulfur polymer did not negatively impact resistance to rutting or moisture damage; all mixtures remained significantly below rutting failure thresholds. Furthermore, a simplified environmental analysis indicated that substituting 10 wt% of petroleum binder with the sulfur polymer lowered the binder’s cradle-to-gate global warming potential by around 11%. In summary, study results showed that the newly developed sulfur polymer system has the potential to improve cracking resistance even when exposed to select accelerated aging protocols while decreasing embodied carbon, thus endorsing its viability as a sustainable modifier for asphalt mixtures. Full article
Show Figures

Graphical abstract

16 pages, 1309 KB  
Article
The Influence of Vegetation and Snow Cover on Soil Greenhouse Gas Fluxes in the Permafrost Region of Northeast China
by Xiangwen Wu, Dalong Ma, Hongwei Ni and Shuying Zang
Atmosphere 2026, 17(1), 68; https://doi.org/10.3390/atmos17010068 - 7 Jan 2026
Viewed by 223
Abstract
Permafrost is an important carbon pool for terrestrial ecosystems and a significant source of atmospheric greenhouse gases, but the effects of ground vegetation and snow cover on permafrost greenhouse gas fluxes are still unclear. The soil–atmosphere exchange fluxes of greenhouse gases (mainly carbon [...] Read more.
Permafrost is an important carbon pool for terrestrial ecosystems and a significant source of atmospheric greenhouse gases, but the effects of ground vegetation and snow cover on permafrost greenhouse gas fluxes are still unclear. The soil–atmosphere exchange fluxes of greenhouse gases (mainly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) occupy key roles during the winter snow and the vegetation growing seasons. Here, a typical Larix gmelinii forest, located in the permafrost region of the Daxing’an Mountains, northeast China, was studied. Using the static chamber-gas chromatograph method, the relationship between soil greenhouse gas emissions, ground vegetation, and snow cover was investigated. We found that the CO2, CH4, and N2O cumulative fluxes from vegetative soils had increased by 19.5%, 37.5%, and 10.7%, compared with fluxes from areas where the ground vegetation had been removed. Snow cover increased soil CO2 cumulative flux by 53.1% and soil N2O cumulative flux by 28.6%, and soil CH4 cumulative flux decreased by 39.3%. Our results show that snow cover and ground vegetation removal reduce CO2 and N2O emissions from permafrost soils. Ground vegetation removal also increases the absorption of CH4 in permafrost soils, while snow cover removal promotes CH4 emissions. These findings confirm the effects of ground vegetation and snow cover on the transformation processes of greenhouse gases from forest ecosystems in permafrost regions. Therefore, this research provides scientific data support for the improvement of land surface climate models and the mitigation of climate change in cold regions. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

32 pages, 8817 KB  
Article
Geospatial Assessment and Modeling of Water–Energy–Food Nexus Optimization for Sustainable Paddy Cultivation in the Dry Zone of Sri Lanka: A Case Study in the North Central Province
by Awanthi Udeshika Iddawela, Jeong-Woo Son, Yeon-Kyu Sonn and Seung-Oh Hur
Water 2026, 18(2), 152; https://doi.org/10.3390/w18020152 - 6 Jan 2026
Viewed by 366
Abstract
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the [...] Read more.
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the need for efficient resource management to restore food security globally. The study analyzed the three components of the WEF nexus for their synergies and trade-offs using GIS and remote sensing applications. The food productivity potential was derived using the Normalized Difference Vegetation Index (NDVI), Soil Organic Carbon (SOC), soil type, and land use, whereas water availability was assessed using the Normalized Difference Water Index (NDWI), Soil Moisture Index (SMI), and rainfall data. Energy potential was mapped using WorldClim 2.1 datasets on solar radiation and wind speed and the proximity to the national grid. Scenario modeling was conducted through raster overlay analysis to identify zones of WEF constraints and synergies such as low food–low water areas and high energy–low productivity areas. To ensure the accuracy of the created model, Pearson correlation analysis was used to internally validate between hotspot layers (representing extracted data) and scenario layers (representing modeled outputs). The results revealed a strong positive correlation (r = 0.737), a moderate positive correlation for energy (r = 0.582), and a positive correlation for food (r = 0.273). Those values were statistically significant at p > 0.001. These results confirm the internal validity and accuracy of the model. This study further calculated the total greenhouse gas (GHG) emissions from paddy cultivation in NCP as 1,070,800 tCO2eq yr−1, which results in an emission intensity of 5.35 tCO2eq ha−1 yr−1, with CH4 contributing around 89% and N2O 11%. This highlights the importance of sustainable cultivation in mitigating agricultural emissions that contribute to climate change. Overall, this study demonstrates a robust framework for identifying areas of resource stress or potential synergy under the WEF nexus for policy implementation, to promote climate resilience and sustainable paddy cultivation, to enhance the food security of the country. This model can be adapted to implement similar research work in the future as well. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

19 pages, 6675 KB  
Article
Silicate Agrominerals Mitigate Greenhouse Gas Emissions and Enhance Soil Carbon in Tropical Pasture of the Brazilian Cerrado
by Marcos Vinícius Araujo dos Santos, Alexsandra Duarte de Oliveira, Cícero Célio de Figueiredo, João Paulo Guimarães Soares, Giuliano Marchi, Thayná Xavier Santana, Altair César Moreira de Andrade, Daphne Heloísa de Freitas Muniz, José Ferreira Lustosa Filho, Arminda Moreira de Carvalho, Marcos Aurélio Carolino de Sá and Éder de Souza Martins
Agronomy 2026, 16(2), 138; https://doi.org/10.3390/agronomy16020138 - 6 Jan 2026
Viewed by 350
Abstract
The mitigation of greenhouse gas emissions in livestock farming is one of the main challenges for agriculture in the Cerrado biome. Among promising practices, the use of soil remineralizers (REM) stands out as a sustainable and complementary alternative to conventional fertilizers. This study [...] Read more.
The mitigation of greenhouse gas emissions in livestock farming is one of the main challenges for agriculture in the Cerrado biome. Among promising practices, the use of soil remineralizers (REM) stands out as a sustainable and complementary alternative to conventional fertilizers. This study evaluated the effects of applying REM derived from basalt and biotite schist on emissions of N2O, CO2 and CH4, the global warming potential (GWP), as well as on soil carbon and nitrogen in Urochloa brizantha cv. BRS Paiaguás pasture. The experiment was conducted in randomized blocks with five treatments (control, KCl, basalt 8.33 Mg ha−1, basalt 40 Mg ha−1, and biotite schist 151 Mg ha−1). Results indicated that KCl and high-dose basalt (40 Mg ha−1) promoted greater accumulated N2O emissions and higher GWP values. In contrast, biotite schist reduced N2O emissions and showed the lowest GWP (81.67 kg CO2 eq. ha−1), while basalt at a moderate dose (8.33 Mg ha−1) increased soil C and N stocks. It is concluded that soil remineralizers, especially those derived from biotite schist, represent viable alternatives to reduce environmental impacts and promote the sustainability of tropical agricultural systems in Cerrado biome. Full article
Show Figures

Figure 1

29 pages, 7064 KB  
Article
Effects of Mixed Fruits and Berries on Ameliorating Gut Microbiota and Hepatic Alterations Induced by Cafeteria Diet
by Rawan Al Hazaimeh, Louis Shackelford and Judith Boateng
Nutrients 2026, 18(2), 181; https://doi.org/10.3390/nu18020181 - 6 Jan 2026
Viewed by 260
Abstract
Background/Objectives: The study investigated the potential of mixed fruits and berries (MFB) as a dietary intervention to mitigate cafeteria (CAF) diet-induced gut microbiome dysbiosis and hepatic dysfunction associated with metabolic syndrome and steatohepatitis (MASH) in an adolescent rat model. Methods: Forty-eight adolescent male [...] Read more.
Background/Objectives: The study investigated the potential of mixed fruits and berries (MFB) as a dietary intervention to mitigate cafeteria (CAF) diet-induced gut microbiome dysbiosis and hepatic dysfunction associated with metabolic syndrome and steatohepatitis (MASH) in an adolescent rat model. Methods: Forty-eight adolescent male Sprague-Dawley rats (n = 3 cages per group (two rats per cage)) were divided into eight experimental groups, where NC received the normal AIN-93G basal diet, PC received the CAF diet and normal AIN-93G basal diet, T1 and T2 received MFB supplementation (3% and 6% levels) without CAF exposure, P1 and P2 received a MFB (3% and 6% levels) supplementation initiated at the onset of CAF feeding, and I1 and I2 received MFB supplementation initiated 2 weeks after CAF feeding. After 6 weeks, cecal 16S rRNA, hepatic histopathology, Oil Red O staining, and metabolic dysfunction-associated steatotic liver disease (MASLD)-related biomarkers (liver enzymes, alanine aminotransferase (ALT), and aspartate aminotransferase (AST)) were analyzed. Results: AST: ALT ratio was the highest in the PC group (3.63, p < 0.05) compared to the MFB groups. Oil Red O staining showed lower hepatic lipid accumulation, and histological analysis demonstrated a marked reduction in portal inflammatory cell infiltration in MFB. Alpha diversity (Simpson Index) decreased in PC (Kruskal–Wallis, p = 0.043). CAF increased Lactobacillus johnsonii (+75%, p < 0.05), while reducing L. murinus and L. intestinalis (~90%, p < 0.05). MFB supplementation restored Bifidobacterium Pseudolongum and increased Akkermansia muciniphila levels in the P2, I1, and I2 groups (~20-fold, p < 0.05). Bacteroides dorei was present in all groups except the PC group. These bacteria presented a positive correlation with key SCFAs. Conclusions: The results from this study indicated that MFB supplementation modulated gut microbiota composition and enhanced SCFA production, thereby strengthening intestinal barrier integrity and reducing gut-derived inflammation. Collectively, these effects attenuated hepatic lipid accumulation and inflammation, highlighting the potential of MFB to restore gut–liver axis homeostasis disrupted by CAF-induced dysbiosis in adolescent rats. Full article
Show Figures

Figure 1

16 pages, 1980 KB  
Article
Legume-Based Rotations Enhance Ecosystem Sustainability in the North China Plain: Trade-Offs Between Greenhouse Gas Mitigation, Soil Carbon Sequestration, and Economic Viability
by Feng Lin, Yinzhan Liu, Li Zhang and Yaojun Zhang
Agriculture 2026, 16(1), 116; https://doi.org/10.3390/agriculture16010116 - 1 Jan 2026
Viewed by 274
Abstract
Reconciling agricultural productivity with greenhouse gas (GHG) mitigation remains a pivotal challenge for achieving climate-smart food systems. This study evaluates the capacity of legume-based crop rotations to balance economic viability, yield stability, and GHG reduction in the North China Plain. A two-year randomized [...] Read more.
Reconciling agricultural productivity with greenhouse gas (GHG) mitigation remains a pivotal challenge for achieving climate-smart food systems. This study evaluates the capacity of legume-based crop rotations to balance economic viability, yield stability, and GHG reduction in the North China Plain. A two-year randomized complete block field experiment compared six cropping systems: conventional wheat–maize (WM) rotations and legume-integrated systems (wheat–soybean, WS; wheat–soybean–maize, WSM), under fertilized and unfertilized regimes. Results revealed that nitrogen fertilization increased cumulative N2O emissions and global warming potential (GWP), with seasonal peaks occurring post-fertilization. Legume systems enhanced CH4 uptake but showed no significant effect on N2O emissions compared to conventional systems. N2O fluxes correlated positively with soil moisture and soil temperature, while CH4 uptake increased with soil moisture alone. Soybean phases reduced short-term yields by 32–52% relative to the maize yield of conventional systems, but boosted subsequent wheat/maize productivity by 2–47% through hydraulic redistribution and N priming. The wheat–soybean rotation with 200 kg N ha−1 (WS200) achieved optimal sustainability, delivering the highest net profit (8061.56 USD ha−1) alongside a 9% reduction in global warming potential (3980.21 kg CO2-eq ha−1) versus conventional systems. These findings provide actionable insights for sustainable intensification in global cereal systems, demonstrating that strategic legume integration can advance both food security and climate goals. Full article
Show Figures

Figure 1

14 pages, 1188 KB  
Article
α-Klotho Supplementation Mitigates Cumulative Exercise-Induced Fatigue via Coordinated NRF2-Mediated Antioxidant Defense and AKT/GS-Driven Hepatic Glycogen Supercompensation in Mice
by Lifang Zheng, Yinian Wang, Zirui Xiao, Zhijian Rao and Rengfei Shi
Int. J. Mol. Sci. 2026, 27(1), 412; https://doi.org/10.3390/ijms27010412 - 30 Dec 2025
Viewed by 186
Abstract
Exercise-induced fatigue involves oxidative stress and metabolic dysregulation. While the anti-aging protein α-Klotho regulates metabolism and oxidative stress, its role in exercise fatigue is unexplored. This study investigated whether α-Klotho supplementation mitigates cumulative exercise-induced fatigue and elucidated the underlying tissue-specific mechanisms. Male C57BL/6J [...] Read more.
Exercise-induced fatigue involves oxidative stress and metabolic dysregulation. While the anti-aging protein α-Klotho regulates metabolism and oxidative stress, its role in exercise fatigue is unexplored. This study investigated whether α-Klotho supplementation mitigates cumulative exercise-induced fatigue and elucidated the underlying tissue-specific mechanisms. Male C57BL/6J mice were divided into three groups (n = 10 per group), the control group, fatigue treated with saline, or α-Klotho (0.2 mg/kg, i.p. daily) group. Fatigue was induced by a 6-day exhaustive swimming protocol (5% body weight load). Tissues were collected 24h post-final exercise. Assessments included daily exhaustion time, grip strength, serum creatine kinase (CK), urea nitrogen (BUN), oxidative stress markers (H2O2, MDA, SOD, GSH/GSSG), tissue glycogen, and pathway protein expression (Western blot). α-Klotho supplementation prevented exercise-induced weight loss and restored grip strength. While exhaustive exercise markedly increased serum CK and BUN levels, α-Klotho selectively normalized CK without effecting serum BUN. α-Klotho attenuated oxidative damage by reducing hydrogen peroxide levels while enhancing antioxidant capacity, accompanied by activation of the NRF2/HO-1 pathway and further upregulation of PGC-1α. Notably, α-Klotho induced striking hepatic glycogen supercompensation through activation of the AKT/GS signaling pathway and upregulation of GLUT4, whereas muscle glycogen levels remained unchanged. In conclusion, α-Klotho ameliorates cumulative exercise-induced fatigue through dual recovery-phase mechanisms: NRF2/HO-1-mediated antioxidant protection in skeletal muscle and AKT/GS-triggered hepatic glycogen supercompensation, thereby facilitating oxidative stress resolution and enhancing energy reserve restoration. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

33 pages, 1685 KB  
Systematic Review
Do Soil Microbes Drive the Trade-Off Between C Sequestration and Non-CO2 GHG Emissions in EU Agricultural Soils? A Systematic Review
by Arianna Latini, Luciana Di Gregorio, Elena Valkama, Manuela Costanzo, Peter Maenhout, Marjetka Suhadolc, Francesco Vitali, Stefano Mocali, Alessandra Lagomarsino and Annamaria Bevivino
Sustainability 2026, 18(1), 319; https://doi.org/10.3390/su18010319 - 29 Dec 2025
Viewed by 411
Abstract
The role of soil microbial communities in soil organic matter (OM) decomposition, transformation, and the global nitrogen (N) and carbon (C) cycles has been widely investigated. However, a comprehensive understanding of how specific agricultural practices and OM inputs shape microbial-driven processes across different [...] Read more.
The role of soil microbial communities in soil organic matter (OM) decomposition, transformation, and the global nitrogen (N) and carbon (C) cycles has been widely investigated. However, a comprehensive understanding of how specific agricultural practices and OM inputs shape microbial-driven processes across different European pedoclimatic conditions is still lacking, particularly regarding their effectiveness in mitigating greenhouse gas (GHG) emissions. This systematic review synthesizes current knowledge on the biotic mechanisms underlying soil C sequestration and GHG reduction, emphasizing key microbial processes influenced by land management practices. A rigorous selection was applied, resulting in 16 eligible articles that addressed the targeted outcomes: soil microorganism biodiversity, including microbiome composition and other common Biodiversity Indexes, C sequestration and non-CO2 GHG emissions (namely N2O and CH4 emissions), and N leaching. The review highlights that, despite some variations across studies, the application of OM enhances soil microbial biomass (MB) and activity, boosts soil organic carbon (SOC), and potentially reduces emissions. Notably, plant richness and diversity emerged as critical factors in reducing N2O emissions and promoting carbon storage. However, the lack of methodological standardization across studies hinders meaningful comparison of outcomes—a key challenge identified in this review. The analysis reveals that studies examining the simultaneous effects of agricultural management practices and OM inputs on soil microorganisms, non-CO2 GHG emissions, and SOC are scarce. Standardized studies across Europe’s diverse pedoclimatic regions would be valuable for assessing the benefits of OM inputs in agricultural soils. This would enable the identification of region-specific solutions that enhance soil health, prevent degradation, and support sustainable and productive farming systems. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Graphical abstract

19 pages, 3416 KB  
Article
Effect of Initial Temperature and Hydrogen/Oxygen Concentration on Minimum Ignition Energy of Cryogenic Hydrogen–Air Mixtures in Liquid Hydrogen Leakage Scenarios
by Lijuan Liu, Miao Li, Lei Huang, Yuhang Ding, Mengru Li, Xianfeng Chen, Chuyuan Huang, Youbang Yue, Weixi Hu and Xincheng Wang
Fire 2026, 9(1), 18; https://doi.org/10.3390/fire9010018 - 27 Dec 2025
Viewed by 460
Abstract
Hydrogen, a promising alternative to conventional fuels, presents significant combustion hazards due to its low minimum ignition energy (MIE) and wide flammability range (4–75 vol.%). The risks are amplified with liquid hydrogen (LH2), which has an extremely low boiling point (20.3 [...] Read more.
Hydrogen, a promising alternative to conventional fuels, presents significant combustion hazards due to its low minimum ignition energy (MIE) and wide flammability range (4–75 vol.%). The risks are amplified with liquid hydrogen (LH2), which has an extremely low boiling point (20.3 K) and high diffusivity. Once released, LH2 vaporizes rapidly and mixes with ambient air. This process forms a cryogenic and highly flammable cloud, which significantly increases ignition and explosion hazards. Therefore, a comprehensive understanding of the MIE of cryogenic hydrogen–air mixtures is crucial for quantitative risk assessment. This work develops and validates a numerical algorithm for predicting the MIE of hydrogen–air mixtures at cryogenic temperatures (down to 93 K) across a wide range of hydrogen concentrations (10~50 vol.%) and oxygen concentration ratios [O2/(O2 + N2) = 21~52%]. By coupling a detailed H2/O2 reaction mechanism with a large eddy simulation (LES) turbulence model, this algorithm demonstrates high reliability and accuracy. The results indicate (1) an exponential increase in MIE with decreasing initial temperature; (2) a U-shaped dependence of MIE on hydrogen concentration, with the minimum occurring near 25% hydrogen concentration; (3) an asymptotic dependence of MIE on oxygen concentration ratio, particularly at 40% hydrogen concentration. The initial temperature has the greatest influence on MIE; hydrogen concentration is the second; and the oxygen concentration ratio has the weakest influence. This study provides a theoretical framework and a practical computational tool for assessing and mitigating cryogenic ignition associated with LH2 leakage, thereby enabling safer application of liquid hydrogen technologies. Full article
Show Figures

Figure 1

Back to TopTop