Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,921)

Search Parameters:
Keywords = N removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1267 KiB  
Systematic Review
Epidemiology and Diversity of Paratuberculosis in the Arabian Peninsula: A Systematic Review and Meta-Analysis with Implications for One Health
by Md Mazharul Islam, Ahmed K. Elfadl, Aisha Naeem, Randa Abdeen, Haya M. Al-Hajri, Md Abu Sayeed, Haileyesus Dejene, John I. Alawneh and Mohammad Mahmudul Hassan
Pathogens 2025, 14(9), 841; https://doi.org/10.3390/pathogens14090841 (registering DOI) - 23 Aug 2025
Abstract
Paratuberculosis is a chronic zoonotic bacterial infection, primarily affecting ruminants. This review examines the disease in the Arabian Peninsula, focusing on distribution, molecular diversity, prevalence, and associated risk factors. Following PRISMA guidelines, a systematic search was conducted in PubMed, Scopus, and Web of [...] Read more.
Paratuberculosis is a chronic zoonotic bacterial infection, primarily affecting ruminants. This review examines the disease in the Arabian Peninsula, focusing on distribution, molecular diversity, prevalence, and associated risk factors. Following PRISMA guidelines, a systematic search was conducted in PubMed, Scopus, and Web of Science. After duplicate removal and eligibility screening, data extraction, analysis, and quality assessment were performed. Pathogen sequences were retrieved from NCBI GenBank for phylogenetic analysis. The review included a total of 31 published articles from 1997 to 2025, of which 23 were used in the meta-analysis. Most studies (n = 12) were published between 2011 and 2015, predominantly from Saudi Arabia (n = 22), with no reports from Qatar, Bahrain, or Yemen. The majority of the studies involved camels and sheep (n = 16 on each species), followed by cattle (n = 9), goats (n = 7), humans (n = 2), and buffalo (n = 1). Phylogenetic analysis delineates two major clades—Type S and Type C—suggesting greater genetic diversity in Type S. The estimated pooled seroprevalence and pathogen prevalence in livestock ruminants were 8.1% and 22.4%, respectively. Herd-level estimated pooled seroprevalence was 26.9%. Small ruminants (19.3%) were more sero-prevalent than large ruminants (7.4%), with goats (28.7%) significantly (p < 0.01) more affected than sheep (21.5%), camel (9.8%), and cattle (6.6%). Clinical signs in ruminants included chronic diarrhea, emaciation, anorexia, alopecia, wry neck, and dehydration. The reviewed study patterns and findings suggest high pathogen diversity and a significant risk of transboundary transmission at the human–animal interface in this region. A One Health surveillance approach is crucial, particularly on farms with diarrheic and emaciated animals. Establishing a national surveillance plan and phased (short-, intermediate-, and long-term) control programs is essential to mitigate economic losses, limit transmission, overcome the cultural barrier, and protect public health. Full article
Show Figures

Figure 1

26 pages, 1350 KiB  
Article
ADL-Focused Occupation-Based Neurobehavioral Evaluation Software: Addition of a Rasch-Based Stroke Subscale to Measure Outcomes
by Guðrún Árnadóttir, Laufey Halla Atladóttir, Garðar Ingvarsson, Helgi Sigtryggsson and Bjarni Ármann Atlason
Brain Sci. 2025, 15(9), 904; https://doi.org/10.3390/brainsci15090904 (registering DOI) - 23 Aug 2025
Abstract
Background: Measurements are necessary in rehabilitation for evaluating service effectiveness. The ADL-focused Occupation-based Neurobehavioral Evaluation (A-ONE) is used for evaluating ADL performance and the impact of neurobehavioral impairments on the performance. Recently, Rasch-based software was constructed for the A-ONE ADL and neurobehavioral scales. [...] Read more.
Background: Measurements are necessary in rehabilitation for evaluating service effectiveness. The ADL-focused Occupation-based Neurobehavioral Evaluation (A-ONE) is used for evaluating ADL performance and the impact of neurobehavioral impairments on the performance. Recently, Rasch-based software was constructed for the A-ONE ADL and neurobehavioral scales. It converts ordinal rating scale scores into measures, estimates missing data values and calculates the statistical significance of changes. Objectives: To expand the A-ONE software by developing a cerebrovascular accident (CVA) neurobehavioral subscale. Additionally, to pilot-test whether the ADL and CVA scales of the software can detect statistically significant improvements. Method: Rasch analysis was used for evaluating the item fit, PCA, person separation and reliability to establish the internal validity of the CVA subscale (n = 222). The external validity (n = 22) was obtained by comparing A-ONE software measures to Winsteps measures. Subsequently 21 pre–post-intervention comparisons were made of stroke patients using both the ADL and CVA scales. Results: All set criteria for internal and external validity were met. By using the software clinically after incorporating the CVA subscale, statistically significant changes were detected in 90.5% of comparisons using the ADL scale and 36.4% using the CVA scale. The intervention program used was determined to consist of 66.4% occupation-based activities. Conclusions: This study is the first to deliver a clinically deployable Rasch-based CVA subscale integrated into routine occupational therapy software. The A-ONE software offers considerable time saving for therapists and the potential to detect significant differences in performance and impairment impact. It contributes to the removal of clinical obstacles toward the use of the instrument as an outcome measure and encourages the use of measures in rehabilitation. Full article
13 pages, 1260 KiB  
Article
Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis)
by Elena Baldi, Maurizio Quartieri, Giovambattista Sorrenti, Marco Mastroleo, Evangelos Xylogiannis and Moreno Toselli
Horticulturae 2025, 11(9), 1003; https://doi.org/10.3390/horticulturae11091003 (registering DOI) - 23 Aug 2025
Abstract
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial [...] Read more.
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial was conducted, for three years, in northern Italy, on a six-year-old kiwifruit orchard of the variety Zespri Zesy002. During the experiment organs were periodically sampled and analyzed for macro- and micronutrient concentration. A yearly nutrient uptake of 175 g N plant−1, 16 g P plant−1, 138 g K plant−1, 235 g Ca plant−1, 48 g Mg plant−1, 17 g S plant−1, 247 mg B plant−1, 673 mg Cu plant−1, 5.20 g Fe plant−1, 473 mg Mn plant−1, and 263 mg Zn plant−1 was calculated, confirming that kiwifruit is a high-nutrient-demanding species. The nutrients found in the tree organs were divided in two factions: removed (not returned into the soil) and recycled (returned into the soil during and at the end of the growing cycle). The two fractions were similar for N, P, K, S, and Mn. The fraction recycled of Ca, Mg, Cu, and Zn was higher than the fraction removed, and the reverse was observed for Fe. These data created the basis for the determination of the correct nutritional plans that take into consideration not only nutrient requirements but also the dynamics of uptake during the season. Full article
(This article belongs to the Special Issue Mineral Nutrition of Plants)
Show Figures

Figure 1

13 pages, 1614 KiB  
Article
Simultaneous Heterotrophic Nitrification and Aerobic Denitrification of High C/N Wastewater in a Sequencing Batch Reactor
by Tao Tao and Sheng Chang
Water 2025, 17(17), 2515; https://doi.org/10.3390/w17172515 (registering DOI) - 23 Aug 2025
Abstract
Heterotrophic nitrification and aerobic denitrification (HN–AD) is an emerging biological process capable of achieving efficient nitrogen removal in a single reactor. This study investigates the HN–AD performance of a sequencing batch reactor (SBR) operated with a simple anaerobic–aerobic cycle for treating high C/N [...] Read more.
Heterotrophic nitrification and aerobic denitrification (HN–AD) is an emerging biological process capable of achieving efficient nitrogen removal in a single reactor. This study investigates the HN–AD performance of a sequencing batch reactor (SBR) operated with a simple anaerobic–aerobic cycle for treating high C/N wastewater. Over a 220-day operation, the system achieved average removal efficiencies of 98.6% for COD, 93.3% for NH4+-N, and 87.1% for total nitrogen. Effluent concentrations of NO2-N and NO3-N remained negligible at the end of each aerobic phase. Concentration profiles of NH4+-N, NO2-N, and NO3-N throughout the operation cycles confirmed the occurrence of simultaneous nitrification and aerobic denitrification. The consistently high COD removal and robust nitrogen reduction highlight the stability of the HN–AD microbial consortia enriched from activated sludge. Phosphorus removal (average removal efficiency 66.3%) may be enhanced by increasing the activity of phosphate-accumulating organisms (PAOs) through process optimization. This study demonstrated effective HN–AD using activated sludge in SBRs. Future work will focus on evaluating the system with real wastewater and continuous-flow setups to further refine operational parameters for sustained HN–AD performance. Full article
(This article belongs to the Special Issue Advances in Biological Technologies for Wastewater Treatment)
Show Figures

Figure 1

12 pages, 1132 KiB  
Article
Efficacy of an Endoscopic Device Integrating a Sphincterotome and a Dilation Balloon Catheter for the Treatment of Choledocholithiasis (with Video)
by Jun-Ichi Hanatani, Koh Kitagawa, Shohei Asada, Yuki Motokawa, Yui Osaki, Tomihiro Iwata, Yukihisa Fujinaga, Norihisa Nishimura, Kosuke Kaji, Shinya Sato, Tadashi Namisaki, Akira Mitoro and Hitoshi Yoshiji
J. Clin. Med. 2025, 14(17), 5930; https://doi.org/10.3390/jcm14175930 - 22 Aug 2025
Abstract
Background/Objectives: The combined techniques of endoscopic sphincterotomy followed by endoscopic papillary balloon dilation (ESBD) and endoscopic sphincterotomy followed by endoscopic papillary large balloon dilation (ESLBD) have gained popularity for the endoscopic treatment of choledocholithiasis. However, the conventional approach to these procedures requires two [...] Read more.
Background/Objectives: The combined techniques of endoscopic sphincterotomy followed by endoscopic papillary balloon dilation (ESBD) and endoscopic sphincterotomy followed by endoscopic papillary large balloon dilation (ESLBD) have gained popularity for the endoscopic treatment of choledocholithiasis. However, the conventional approach to these procedures requires two separate devices, a sphincterotome and a balloon catheter, which can complicate and prolong the procedure. We herein evaluated a novel integrated device combining a sphincterotome and balloon catheter developed to improve the efficiency of ESBD and ESLBD. Methods: This retrospective study compared the clinical outcomes of patients with choledocholithiasis who were treated using conventional sphincterotome and balloon catheters (n = 106) and those who were treated using the integrated device (n = 54). Results: Overall complete stone removal rates (99.1% vs. 100%) and adverse event incidence (12.3% vs. 13.0%) were comparable between the two groups. However, the integrated device significantly reduced total procedure time (40 vs. 27 min, p = 0.01), use of mechanical lithotripter (50.0% vs. 22.2%, p < 0.01), total number of procedures required. Conclusions: Complete stone removal rates and safety were comparable between the two groups. However, the novel integrated device may enhance the efficiency of common bile duct stone removal through ESBD and ESLBD because it eliminates the need to prepare and exchange separate devices. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

31 pages, 1741 KiB  
Article
The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation
by Jingfei Luan, Anan Liu, Liang Hao, Boyang Liu and Hengchang Zeng
Nanomaterials 2025, 15(16), 1290; https://doi.org/10.3390/nano15161290 - 21 Aug 2025
Abstract
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5 [...] Read more.
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5Yb0.5O1.5 heterojunction photocatalyst (HBHP) was fabricated using a solvothermal method. The crystal structure, surface morphology, and physicochemical properties of the samples were characterized using XRD, a micro-Raman spectrometer, FT-IR, XPS, ultraviolet photoelectron spectroscopy (UPS), TEM, and SEM. The results showed that Ho2FeSbO7 possessed a pyrochlore-type cubic crystal structure (space group Fd-3m, No. 227), while Bi0.5Yb0.5O1.5 featured a fluorite-type cubic structure (space group Fm-3m, No. 225). The results of the degradation experiment indicated that when HBHP, Ho2FeSbO7, or Bi0.5Yb0.5O1.5 was employed as a photocatalytic nanomaterial, following 140 minutes of visible light irradiation, the removal efficiency of ciprofloxacin (CIP) reached 99.82%, 86.15%, or 73.86%, respectively. This finding strongly evidenced the remarkable superiority of HBHP in terms of photocatalytic performance. Compared to the individual catalyst Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, the removal efficiency of CIP by HBHP was 1.16 times, 1.36 times, or 2.52 times higher than that by Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, respectively. The radical trapping experiments indicated that in the CIP degradation process, the hydroxyl radical owned the strongest oxidation ability, followed by the superoxide anion and the photoinduced hole. These studies are of great significance for the degradation of antibiotics and environmental protection. Full article
18 pages, 4673 KiB  
Article
Effect of Iron–Carbon–Zeolite Substrate Configuration on Cadmium Removal in Vertical-Flow Constructed Wetlands
by Mengyi Li, Shiyu Chen, Jundan Chen, Naifu Zhou and Guanlong Yu
Separations 2025, 12(8), 223; https://doi.org/10.3390/separations12080223 - 21 Aug 2025
Abstract
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland [...] Read more.
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland (TF-CW), a zeolite–iron–carbon constructed wetland (FT-CW), and an iron–carbon–zeolite mixed constructed wetland (H-CW), to investigate the purification performance and mechanisms of constructed wetlands for cadmium-containing wastewater (0~6 mg/L). The results demonstrated that iron–carbon–zeolite composite substrates significantly enhanced Cd2+ removal efficiency (>99%) through synergistic redox-adsorption mechanisms, where the iron–carbon substrate layer dominated Fe-Cd co-precipitation, while the zeolite layer achieved short-term cadmium retention through ion-exchange adsorption. FT-CW exhibited superior NH4+-N removal efficiency (77.66%~92.23%) compared with TF-CW (71.45%~88.05%), while iron–carbon micro-electrolysis effectively inhibited NO3-N accumulation (<0.1 mg/L). Under cadmium stress, Typha primarily accumulated cadmium through its root systems (>85%) and alleviated oxidative damage by dynamically regulating antioxidative enzyme activity, with the superoxide dismutase (SOD) peak occurring at 3 mg/L Cd2+ treatment. Microbial community analysis revealed that iron–carbon substrates promoted the relative abundance of Bacteroidota and Patescibacteria as well as the enrichment of Saccharimonadales, Thauera, and Rhodocyclaceae (genera), enhancing system stability. This study confirms that iron–carbon–zeolite CWs provide an efficient and sustainable technological pathway for heavy metal-contaminated water remediation through multidimensional mechanisms of “chemical immobilization–plant enrichment–microbial metabolism”. Full article
Show Figures

Figure 1

14 pages, 851 KiB  
Article
Optimising Galdieria sulphuraria ACUF 427 Biomass for Enhanced Urban Wastewater Treatment: Evaluating Pollutant Removal Efficiency, Algal Growth, and Phycocyanin Production
by Berhan Retta, Manuela Iovinella and Claudia Ciniglia
Phycology 2025, 5(3), 40; https://doi.org/10.3390/phycology5030040 - 21 Aug 2025
Abstract
Urban wastewater is composed of nutrients such as nitrogen and phosphorus, organic matter, heavy metals, pathogens, and micropollutants. If untreated, these contribute to eutrophication and environmental degradation. Microalgae-based bioremediation offers a sustainable solution, showing promise for pollutant removal and high-value bioproduct generation. This [...] Read more.
Urban wastewater is composed of nutrients such as nitrogen and phosphorus, organic matter, heavy metals, pathogens, and micropollutants. If untreated, these contribute to eutrophication and environmental degradation. Microalgae-based bioremediation offers a sustainable solution, showing promise for pollutant removal and high-value bioproduct generation. This study evaluates the efficacy of Galdieria sulphuraria ACUF 427 in treating urban wastewater, with a focus on nutrient removal and phycocyanin production at different optical densities (OD 2, OD 4, and OD 6). Nutrient removal rates (RRs) were analysed for ammonium nitrogen (N-NH4+), ammonia nitrogen (N-NH3), phosphate phosphorus (P-PO43−), and chemical oxygen demand (COD). The RR for N-NH4+ increased with optical density, reaching 7.49 mg/L/d at an optical density of 6. Similar trends were observed for N-NH3 and P-PO43−, with peak removal at OD 6. COD removal remained high across all ODs, though differences between OD 4 and OD 6 were not statistically significant. Significant variations (p < 0.05) in nutrient removal were noted across the ODs, except for COD between OD 4 and OD 6. Biomass growth and phycocyanin production were significantly higher in the wastewater compared to the control (Allen Medium), with the most effective performance observed at an optical density (OD) of 6. Maximum growth rates were 0.241 g/L/d at OD 6, 0.178 g/L/d at OD 4, and 0.120 g/L/d at OD 2. These results highlight the potential of G. sulphuraria as an agent for wastewater bioremediation and the production of high-value compounds, particularly at elevated cell densities, where we achieved superior nutrient removal and biomass production. Full article
Show Figures

Figure 1

20 pages, 1896 KiB  
Article
Effect of Hydraulic Retention Time on Nutrient Removal in a Microalgae-Based Tertiary Treatment: A Pilot-Scale Study in Winter Conditions
by Sofia Vaz, Rui Martins, Helena M. Pinheiro and Laura Monteiro
Sustainability 2025, 17(16), 7553; https://doi.org/10.3390/su17167553 - 21 Aug 2025
Abstract
The wastewater treatment (WWT) industry is currently facing challenges imposed by the revised urban WWT directive, particularly in terms of nitrogen (N) and phosphorus (P) removal. This implies the need for mandatory tertiary treatment, for which microalgae cultivation shows great sustainability promise. This [...] Read more.
The wastewater treatment (WWT) industry is currently facing challenges imposed by the revised urban WWT directive, particularly in terms of nitrogen (N) and phosphorus (P) removal. This implies the need for mandatory tertiary treatment, for which microalgae cultivation shows great sustainability promise. This study investigated the impact of hydraulic retention time (HRT) on nutrient removal in open-air microalgae cultivation for tertiary WWT under winter conditions. Two pilot-scale semi-continuous raceway systems were operated with indigenous microalgae, natural sunlight, and no pH control. HRT values of 4, 5.5, and 7 days were tested, and N, P, and carbon (C) removal and recovery were measured. All conditions allowed nitrogen removal, complying with the revised urban WWT directive. Regarding P, only the 7-day HRT condition consistently complied with the directive’s lowest limit (<0.5 mg P·L−1) in the treated water, while 5.5 and 4 days left up to 0.7 and 1.0 mg P·L−1, respectively, in up to 25% of the samples. A stable microalgae consortium was established under variable light, pH, and dissolved oxygen conditions, albeit with variable biomass productivity. Elemental mass balances revealed that nutrients were mostly recovered in the produced biomass, particularly at high HRT, including effective CO2 capture from the atmosphere. Full article
Show Figures

Graphical abstract

19 pages, 5746 KiB  
Article
A Dual-Functional Intelligent Felt-like Label from Cationic Rice Straw Fibers Loaded with Alizarin Red S for Monitoring Al(III) and the Freshness of Fish
by Huiyan Feng, Yikun Li, Qian Cheng and Zhiming Liu
Foods 2025, 14(16), 2914; https://doi.org/10.3390/foods14162914 - 21 Aug 2025
Abstract
To achieve dual functionality that can monitor both Al3+ levels in food and the freshness of fish, rice straw fibers (RSFs) were treated in NaOH solutions and then cationized with 2,3-epoxypropyltrimethylammonium chloride, onto which alizarin red S molecules were immobilized through electrostatic [...] Read more.
To achieve dual functionality that can monitor both Al3+ levels in food and the freshness of fish, rice straw fibers (RSFs) were treated in NaOH solutions and then cationized with 2,3-epoxypropyltrimethylammonium chloride, onto which alizarin red S molecules were immobilized through electrostatic interaction to develop a smart felt-like label. An optimized treatment in 5 wt% NaOH solution effectively removed lignin and hemicellulose, facilitating quaternary ammonium group grafting and stable ARS anchoring. The ARS@BRSF-5NaOH exhibited high pH sensitivity, showing visually discernible color changes (ΔE > 5, perceptible to the naked eye) under acidic (pH ≤ 6) and strongly alkaline (pH > 12) conditions. During the storage of the fish, the label transformed from yellow to dark purple (ΔE increase) as TVB-N levels approached 20 mg/100 g, enabling real-time freshness monitoring for protein-rich products. Additionally, the label achieved a detection threshold of 1 × 10−5 mol·L−1 for Al3+ through a coordination-induced chromatic transition (purple to pale pink). This research highlights the feasibility of utilizing an agricultural waste-derived material to develop cost-effective, visually responsive, dual-functional intelligent labels for food safety, offering significant advancements in on-site quality assessment. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

20 pages, 3871 KiB  
Article
Influence of Ammonium on the Adsorption and Desorption of Heavy Metals in Natural Zeolites
by Luca Marco Ofiera and Christian Kazner
Processes 2025, 13(8), 2647; https://doi.org/10.3390/pr13082647 - 21 Aug 2025
Viewed by 74
Abstract
Natural zeolites have gained attention as low-cost adsorbents for the removal of heavy metals (HMs) from wastewater. However, their performance can be compromised by the presence of competing cations such as ammonium (NH4+). This study investigated the competitive adsorption and [...] Read more.
Natural zeolites have gained attention as low-cost adsorbents for the removal of heavy metals (HMs) from wastewater. However, their performance can be compromised by the presence of competing cations such as ammonium (NH4+). This study investigated the competitive adsorption and desorption dynamics of NH4+ and six HMs (Cd, Cr, Cu, Ni, Pb, and Zn) on two natural zeolites. Batch and column experiments using synthetic wastewater were conducted to evaluate the effects of different NH4+ concentrations, pH, and particle size on HM removal efficiency and desorption effects. Results showed that increasing NH4+ concentrations significantly reduce HM adsorption, with total capacity decreasing by ~45% at 100 mg/L NH4-N in kinetic tests. Adsorption isotherms of the HM mixture for both zeolite types followed a clear sigmoidal trend, which was captured well by the Hill model (R2 = 0.99), with loading rates up to 56.14 mg/g. Pb consistently exhibited the highest affinity for zeolites, while Cd, Cr, Ni, and Zn were most affected by NH4+ competition in the column tests. Desorption tests confirmed that NH4+ rapidly re-mobilises adsorbed metals, in particular Cd, Cu, and Zn. Slightly acidic to neutral pH conditions were optimal for minimising HM remobilisation. These findings underscore the need to consider competitive interactions and operational conditions when applying natural zeolites for HM removal, especially in ammonium-rich environments such constructed wetlands, soil filters, or other decentralised applications. Full article
(This article belongs to the Special Issue Innovation of Heavy Metal Adsorption Process)
Show Figures

Figure 1

20 pages, 3960 KiB  
Article
Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective
by Mengbing Li, Sili Tan, Jiajun Huang, Qianhui Chen and Guanlong Yu
Water 2025, 17(16), 2482; https://doi.org/10.3390/w17162482 - 21 Aug 2025
Viewed by 145
Abstract
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and [...] Read more.
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and Manure biochar FBC) coupled with intermittent aeration technology to enhance nitrogen removal in constructed wetlands. Through the construction of vertical flow wetland systems, hydraulic retention time (HRT = 1–3 d) and influent C/N ratios (1, 3, 5) were regulated, before being combined with material characterization (FTIR/XPS) and microbial analysis (16S rRNA) to reveal the synergistic nitrogen removal mechanisms. HBC achieved efficient NH4+-N adsorption (32.44 mg/L, Langmuir R2 = 0.990) through its high porosity (containing Si-O bonds) and acidic functional groups. Under optimal operating conditions (HRT = 3 d, C/N = 5), the CW-HBC system achieved removal efficiencies of 97.8%, 98.8%, and 79.6% for NH4+-N, TN, and COD, respectively. The addition of biochar shifted the dominant bacterial phylum toward Actinobacteriota (29.79%), with its slow-release carbon source (TOC = 18.5 mg/g) alleviating carbon limitation. Mechanistically, HBC synergistically optimized nitrogen removal pathways through “adsorption-biofilm (bacterial enrichment)-microzone oxygen regulation (pore oxygen gradient).” Based on technical validation, a dual-track institutionalization pathway of “standards-legislation” is proposed: incorporating biochar physicochemical parameters and aeration strategies into multi-level water environment technical standards; converting common mechanisms (such as Si-O adsorption) into legal requirements through legislative amendments; and innovating legislative techniques to balance precision and universality. This study provides an efficient technical solution for low C/N wastewater treatment while constructing an innovative framework for the synergy between technical specifications and legislation, supporting the improvement of watershed ecological restoration systems. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

12 pages, 1626 KiB  
Article
Operative Treatment of Adolescent Diaphyseal Clavicle Fracture: Elastic Stable Intramedullary Nail Versus Plate Fixation
by Kunhyung Bae, Soorack Ryu, Sung Hoon Choi, Hyunjae Kwon and Yoon Hae Kwak
Medicina 2025, 61(8), 1494; https://doi.org/10.3390/medicina61081494 - 21 Aug 2025
Viewed by 100
Abstract
Background and Objectives: Adolescent diaphyseal clavicle fracture surgery has increased in recent years. However, the optimal operative method remains debated, particularly between elastic stable intramedullary nailing (ESIN) and plate fixation. This study compared postoperative outcomes and complication rates between ESIN and plate [...] Read more.
Background and Objectives: Adolescent diaphyseal clavicle fracture surgery has increased in recent years. However, the optimal operative method remains debated, particularly between elastic stable intramedullary nailing (ESIN) and plate fixation. This study compared postoperative outcomes and complication rates between ESIN and plate fixation for treating diaphyseal clavicle fractures in adolescent patients. Materials and Methods: We conducted a retrospective review of 35 adolescents who underwent surgery for diaphyseal clavicle fractures between 2010 and 2024. Patients were assigned to either the ESIN group (n = 18) or the plate fixation group (n = 17). Postoperative outcomes assessed included the Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH) score, intraoperative time, time to complete fracture union, and clavicle shortening at 1 year postoperatively. Postoperative complications were also evaluated. Results: Fracture union occurred significantly faster with ESIN than with plate fixation, specifically 3 weeks earlier (11.0 weeks vs. 14.0 weeks; p < 0.001). No significant differences were observed between the groups in QuickDASH scores, intraoperative time, or clavicle shortening at 1 year. The overall postoperative complication rate was 25.7% (9/35), with no statistically significant difference between the ESIN (27.8%) and plate fixation groups (23.5%) (p = 0.774). Refractures occurred exclusively in the plate fixation group (n = 2), while one patient in the ESIN group required early nail removal due to insertion site irritation. Conclusions: ESIN provided functional and radiographic outcomes comparable to plate fixation in adolescents with diaphyseal clavicle fractures, with a 3-week shorter time to union and a less-invasive surgical approach. Full article
(This article belongs to the Special Issue Clinical Research in Orthopaedics and Trauma Surgery)
Show Figures

Figure 1

22 pages, 3537 KiB  
Article
Study of Sorption of Chlortetracycline Hydrochloride on Zirconium-Based Metal–Organic Framework Followed by Determination by UV-Vis Detection
by Julia D. Bryantseva, Marina O. Gorbunova, Vladimir A. Zhinzhilo and Igor E. Uflyand
Analytica 2025, 6(3), 28; https://doi.org/10.3390/analytica6030028 - 20 Aug 2025
Viewed by 150
Abstract
The reaction of zirconium tetrachloride with 2-amino-1,4-benzenedicarboxylic acid in N,N-dimethylformamide with the addition of HCl leads to the formation of zirconium 2-amino-1,4-benzenedicarboxylate. Zirconium 2-amino-1,4-benzenedicarboxylate was characterized by elemental analysis, infrared spectrometry, X-ray diffraction, scanning electron microscopy, and volumetric nitrogen adsorption/desorption. The sample has [...] Read more.
The reaction of zirconium tetrachloride with 2-amino-1,4-benzenedicarboxylic acid in N,N-dimethylformamide with the addition of HCl leads to the formation of zirconium 2-amino-1,4-benzenedicarboxylate. Zirconium 2-amino-1,4-benzenedicarboxylate was characterized by elemental analysis, infrared spectrometry, X-ray diffraction, scanning electron microscopy, and volumetric nitrogen adsorption/desorption. The sample has a constant porosity with an average pore diameter of 7.97 nm and both microporous and mesoporous structure with a large surface area (820 m2/g) corresponding to the type IV adsorption. Zirconium 2-amino-1,4-benzenedicarboxylate was used for solid-phase extraction (SPE) of chlortetracycline hydrochloride from the aqueous solution. The obtained results confirmed the possibility of using the proposed analytical technique as a new, convenient approach to the extraction of chlortetracycline hydrochloride from industrial or other wastewaters, where such substance is contained in insignificant concentrations and its determination requires expensive and complex equipment. In the future, this method can be used not only for the effective removal of pollutants from industrial wastewater with subsequent regeneration of the sorbent, but also as a sample-preparation method for concentrating chlortetracycline hydrochloride from dilute solutions with its subsequent elution and analysis by available methods, for example, spectrophotometry, since the limit of detection is 0.06 mg/L. Experimental data are described by the isotherm of SPE (R2 = 0.998–0.999) and show the ability of zirconium 2-amino-1,4-benzenedicarboxylate to extract up to 578 mg/g of sorbent at 5 °C under optimal conditions. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

19 pages, 2646 KiB  
Article
Fundamentals of Metal Contact to p-Type GaN—A New Multilayer Energy-Saving Design
by Konrad Sakowski, Cyprian Sobczak, Pawel Strak and Stanislaw Krukowski
Electronics 2025, 14(16), 3309; https://doi.org/10.3390/electronics14163309 - 20 Aug 2025
Viewed by 166
Abstract
The electrical properties of contacts to p-type nitride semiconductor devices, based on gallium nitride, were simulated by ab initio and drift-diffusion calculations. The electrical properties of the contact are shown to be dominated by the electron-transfer process from the metal to GaN, which [...] Read more.
The electrical properties of contacts to p-type nitride semiconductor devices, based on gallium nitride, were simulated by ab initio and drift-diffusion calculations. The electrical properties of the contact are shown to be dominated by the electron-transfer process from the metal to GaN, which is related to the Fermi-level difference, as determined by both ab initio and model calculations. The results indicate a high potential barrier for holes, leading to the non-Ohmic character of the contact. The electrical nature of the Ni–Au contact formed by annealing in an oxygen atmosphere was elucidated. The influence of doping on the potential profile of p-type GaN was calculated using the drift-diffusion model. The energy-barrier height and width for hole transport were determined. Based on these results, a new type of contact is proposed. The contact is created by employing multiple-layer implantation of deep acceptors. The implementation of such a design promises to attain superior characteristics (resistance) compared with other contacts used in bipolar nitride semiconductor devices. The development of such contacts will remove one of the main obstacles in the development of highly efficient nitride optoelectronic devices, both LEDs and LDs: energy loss and excessive heat production close to the multiple-quantum-well system. Full article
Show Figures

Figure 1

Back to TopTop